×
20.04.2016
216.015.3620

БИОЦИДНАЯ КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ ПОКРЫТИЙ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к биоцидным композициям для получения покрытий, которые могут найти применение при создании покрытий с биоцидными свойствами, например, на полимерах, стеклах, металлах, бумаге, строительных материалах и т.д. Биоцидная композиция для получения покрытий состоит из растворителя, водорастворимого полиэлектролита (ПЭ) и соли, в качестве растворителя она содержит воду, в качестве ПЭ она содержит заряженный ПЭ, являющийся продуктом взаимодействия водосодержащих растворов катионного ПЭ и анионного ПЭ, взятых в соотношении, при котором содержание заряженных звеньев анионного ПЭ составляет от 3 до 30% от содержания заряженных звеньев катионного ПЭ, и в качестве соли она содержит по крайней мере одну водорастворимую соль, выбранную из группы, включающей соль щелочного металла или аммония, или смесь такой соли с солью кальция или магния. Изобретение позволяет в 3-5 раз повысить биоцидную активность композиции по сравнению с активностью известной композиции. 1 табл., 7 пр.
Основные результаты: Биоцидная композиция для получения покрытий, состоящая из растворителя, водорастворимого полиэлектролита и соли, отличающаяся тем, что в качестве растворителя она содержит воду, в качестве полиэлектролита она содержит заряженный полиэлектролит, являющийся продуктом взаимодействия водосодержащих растворов катионного полиэлектролита и анионного полиэлектролита, взятых в соотношении, при котором содержание заряженных звеньев анионного полиэлектролита составляет от 3 до 30% от содержания заряженных звеньев катионного полиэлектролита, и в качестве соли она содержит по крайней мере одну водорастворимую соль, выбранную из группы, включающей соль щелочного металла или аммония, или смесь такой соли с солью кальция или магния, при следующем соотношении компонентов, мас. %:
Реферат Свернуть Развернуть

Изобретение относится к биоцидным композициям, которые могут найти применение при создании покрытий с биоцидными свойствами, например, на полимерах, стеклах, металлах, бумаге, строительных материалах и т.д.

Известна биоцидная композиция для получения покрытий, состоящая из полимера и неорганической добавки, в качестве которой она содержит металлическое серебро или его соли (A.J. Taylor, G.A.F. Roberts, F.A. Wood, Powders having contact biocidal properties comprising a polymer and silver, Патент Великобритании № GB 2381749 A).

Известна биоцидная композиция, представляющая собой водный раствор смеси, включающей водорастворимый полимер, низкомолекулярный биоцидный препарат (хлоргексидин и его соли) и поверхностно-активное вещество (K.P. Ananthapadmanabhan, K.K. Chan, D.A. Grinstead, C.K. Vincent, A.U.. Gengler, Ultramild antibacterial cleaning composition for frequent use, Патент США №6045817).

Наиболее близкой к заявляемой является известная биоцидная композиция для получения покрытий, состоящая из растворителя (нитрометана), водорастворимого полиэлектролита (N-алкилированного поли-4-винилпиридина) и соли (пара-толуолсульфоната серебра) (V. Sambhy, M.M. MacBride, B.R. Peterson and A. Sen, Silver bromide nanoparticle/polymer composites: Dual action tunable antimicrobial materials, J. Am. Chem. Soc., 128 (2006) 9798-9808) - прототип.

Недостатком известной композиции является ее относительно низкая биоцидная активность.

Задачей изобретения является разработка биоцидной композиции, лишенной вышеуказанного недостатка, и расширение арсенала технических средств, которые могут быть использованы в качестве биоцидной композиции. Техническим результатом изобретения является повышение биоцидной активности композиции.

Предварительно были проведены эксперименты с различными полиэлектролитами (ПЭ), растворителями и солями, в результате которых было выявлено, что указанный технический результат достигается тем, что в известной биоцидной композиции для получения покрытий, состоящей из растворителя, водорастворимого ПЭ и соли, в качестве растворителя она содержит воду, в качестве ПЭ она содержит заряженный ПЭ, являющийся продуктом взаимодействия водосодержащих растворов катионного ПЭ и анионного ПЭ, взятых в соотношении, при котором содержание заряженных звеньев анионного ПЭ составляет от 3 до 30% от содержания заряженных звеньев катионного ПЭ, и в качестве соли она содержит по крайней мере одну водорастворимую соль, выбранную из группы, включающей соль щелочного металла или аммония, или смесь такой соли с солью кальция или магния, при следующем соотношении компонентов, мас. %:

продукт взаимодействия 0,099-18,79
водосодержащих растворов
катионного ПЭ и анионного ПЭ
водорастворимая соль 0,20-17,40
вода остальное

В предлагаемом техническом решении в качестве катионного ПЭ может быть использован любой водорастворимый катионный ПЭ, например, полидиметилдиаллиламмоний хлорид (ПДМДААХ), полигексаметиленгуанидиний хлорид (ПГМГХ), N-алкилированный поли-4-винилпиридин и т.д. Противо-ион у используемого катионного ПЭ может быть любым. В качестве анионного ПЭ можно использовать любой металла или аммония, например, натриевую соль карбоксиметилцеллюлозы (натрий-КМЦ), соль полиакриловой кислоты, соль полиметакриловой кислоты и т.д. При этом молекулярная масса катионного ПЭ и анионного ПЭ может варьироваться в широких пределах, например, от одного до нескольких тысяч килодальтон (кДа). Нерастворимые в воде полимеры не могут быть использованы в данном техническом решении.

Предлагаемая биоцидная композиция может быть получена путем смешения растворителя - воды, водорастворимого ПЭ - смеси водного раствора катионного ПЭ и водного раствора анионного ПЭ, взятых в соотношении, при котором содержание заряженных звеньев анионного ПЭ составляет от 3 до 30% от содержания заряженных звеньев катионного ПЭ, при общей исходной концентрации ПЭ от 0,1 до 20 мас. %., и по крайней мере одной водорастворимой соли, выбранной из группы, включающей соль щелочного металла или аммония, или смеси такой соли с солью кальция или магния при концентрации соли от 0,01 до 6,0 мас. %. При получении заявленной композиции водорастворимую соль можно вводить в твердом состоянии или в виде ее водного раствора. Соль можно смешивать с водным раствором одного из ПЭ или смешивать ее с водным раствором каждого из ПЭ. Можно к водосодержащему раствору катионного ПЭ добавлять водосодержащий раствор анионного ПЭ или наоборот.

Для приготовления водосодержащих растворов ПЭ целесообразно использовать дистиллированную воду. При использовании другой воды, например, водопроводной, колодезной и т.д., необходимо учитывать концентрации растворенных в воде солей. Смешение сухих катионного ПЭ и анионного ПЭ или смешение суспензии этих компонентов в органических средах не приводит к образованию продукта.

Оптимальное соотношение между заряженными звеньями катионного ПЭ и анионного ПЭ, оптимальная концентрация водорастворимой соли и оптимальная концентрация продукта взаимодействия водных растворов катионного ПЭ и анионного ПЭ были установлены экспериментально. Также экспериментально был установлен перечень используемых водорастворимых солей. Нерастворимые в воде соли не могут быть использованы в предлагаемом техническом решении.

При меньшем, чем заявлено, содержании водорастворимой соли композиция становится негомогенной, что приводит к формированию неоднородного по свойствам покрытия на обрабатываемой поверхности. При большем, чем заявлено, содержании соли композиция также становится негомоненной.

При меньшем, чем заявлено, содержании звеньев анионного ПЭ ухудшается стабильность покрытия, созданного на основе предлагаемой композиции. При большем, чем заявлено, содержании звеньев анионного ПЭ ухудшаются биоцидные свойства композиции.

При меньшей, чем заявлено, концентрации продукта взаимодействия водный растворов катионного ПЭ и анионного ПЭ уменьшается биоцидная активность композиции. При большей, чем заявлено, концентрации продукта взаимодействия не наблюдается увеличение биоцидной активности композиции.

Массовую пропорцию между исходными анионным и катионным ПЭ можно определить расчетным путем, исходя из общей исходной их концентрации, требуемого соотношения противоположно заряженных звеньев ПЭ и молекулярной массы заряженных звеньев катионного ПЭ и анионного ПЭ. Приводим пример расчета массовой пропорции для катионного полиэлектролита ПДМДААХ с молекулярной массой заряженного звена 162 дальтона(Да) и анионного ПЭ, натриевой соли полиакриловой кислоты (натрий-ПАК) с молекулярной массой заряженного звена 94 Да. Для получения из них требуемого продукта с содержанием отрицательно заряженных звеньев натрий-ПАК 25% необходимо брать натрий-ПАК и ПДМДААХ в соотношении (0,25×94)/162 соответственно, то есть 23,5/162. Таким образом, массовое содержание натрий-ПАК составит 23,5/(23,5+162)=23,5/185,5=0,127, или 12,7% от общей исходной массы ПЭ, а содержание ПДМДААХ будет составлять 87,3% от общей исходной массы ПЭ. Отсюда следует, что для получения, например, 10.000 г состава с 5%-ной общей исходной концентрацией ПЭ необходимо взять натрий-ПАК в количестве 500×0,127=63,5 г и ПДМДААХ в количестве 500-63,5=436,5 г. В ходе образования продукта взаимодействия водосодержащих растворов катионного ПЭ и анионного ПЭ в системе в результате взаимодействия высвобождающихся противоионов хлора и натрия будет образовываться соль NaCl. Количество этой соли будет равно массе анионного ПЭ, звенья которого взяты в недостатке (63,5 г), умноженной на молекулярную массу NaCl (58,5 Да) и деленной на молекулярную массу заряженного звена этого ПЭ, то есть на 94 Да. Таким образом, в ходе получения композиции образуется (63,5×58,5)/94=39,5 г NaCl или 0,395 мас. %. Масса продукта взаимодействия водосодержащих растворов катионного ПЭ и анионного ПЭ будет равна общей исходной массе ПЭ за вычетом количества образовавшейся соли, то есть 500-39,5=460,5 г или 4,605 мас. %. Если вышеуказанный состав получать при концентрации первоначально вводимой соли NaCl, например, 0,05 мас. %, то суммарное содержание соли в композиции будет равно 0,395+0,05=0,445 мас. %. Таким образом, будет получено 10.000 г композиции с содержанием продукта взаимодействия водосодержащих растворов катионного ПЭ и анионного ПЭ 4,605 мас. %, содержанием водорастворимой соли NaCl 0,445 мас. % и содержанием воды 94,95 мас. %. Для получения составов другой рецептуры необходимо произвести соответствующий расчет.

Наличие в композиции именно продукта взаимодействия водосодержащих растворов катионного ПЭ и анионного ПЭ, а не просто механической смеси растворенных вышеназванных полимеров подтверждается результатами следующих экспериментов. В соответствии с формулой изобретения готовят продукт взаимодействия водосодержащих растворов катионного ПЭ и анионного ПЭ в водном растворе соли NaCl. Помещают полученный образец в ячейку ультрацентрифуги и подбирают скорость вращения ротора ультрацентрифуги таким образом, чтобы обеспечить количественное (полное) осаждение продукта. Убеждаются в том, что надосадочная жидкость (супернатант) не содержит ни свободного катионного ПЭ, ни свободного анионного ПЭ. После этого проводят два контрольных эксперимента: в первом центрифугируют раствор катионного ПЭ в водном растворе соли, во втором - водный раствор анионного ПЭ в водном растворе соли. Концентрации ПЭ в контрольных экспериментах берут равными концентрации этих компонентов при формировании продукта. Центрифугирование растворов по отдельности взятых ПЭ проводят при той же скорости вращения ротора, при которой наблюдалось полное осаждение продукта. При этом убеждаются, что в указанных условиях ни отдельно взятый катионный ПЭ, ни отдельно взятый анионный ПЭ не осаждаются из раствора. Совокупность полученных результатов однозначно свидетельствует о том, что смешение водосодержащих растворов катионного ПЭ и анионного ПЭ при заявленном в формуле изобретения соотношении противоположно заряженных звеньев ПЭ сопровождается образованием нового продукта, в который количественно входят оба ПЭ.

Следует отметить, что поскольку при получении продукта катионный ПЭ берется в избытке по отношению к анионному ПЭ, то полученный продукт всегда будет являться заряженным.

Данный продукт является интерполиэлектролитным комплексом, однако точно описать его строение и состав не представляется возможным.

Особо следует отметить, что в данном изобретении мы заявляем истинный состав биоцидной композиции, а не перечень отдельных компонентов необходимых для получения такой композиции.

Примеры получения заявленной композиции приведены ниже. Во всех примерах проверку биоцидных свойств композиции проводят в соответствии с нормативными документами: «Методы испытаний дезинфекционных средств для оценки их эффективности и безопасности», Москва, 1998 г. и «Нормативные показатели безопасности и эффективной дезинфекции средств, подлежащих контролю при проведении обязательной сертификации №01-12/75-97». В качестве тест-объектов используют стекло и керамику, обсемененные тест-микроорганизмами.

В качестве тест-микроорганизмов используют бактерии Staphylococcus aureus, Escherichia coli, Candida albicans и Trichophyton gypseum и грибы Mycobacterium B5. Биоцидную композицию равномерно распределяют на поверхности стеклянных или керамических пластинок с помощью шпателя. После высушивания пластинок на воздухе в течение 60 мин на их поверхности наносят культуры микроорганизмов с плотностью обсеменения (2,1±0,3)×105 колоний образующих единиц (КОЕ)/см2. После выдерживания образцов в течение 60 мин подсчитывают количество микроорганизмов N(КОЕ)/см2.

Преимущества заявленной биоцидной композиции иллюстрируют следующие примеры.

Пример 1.

В трех химических стаканах готовят различные растворы в дистиллированной воде. В первом стакане растворяют 127,06 г катионного полиэлектролита ПДМДААХ в 500 г воды. Во втором стакане готовят раствор 72,94 г анионного ПЭ натрий-КМЦ в 270 г воды. В третьем стакане растворяют смесь 0,05 г CaCl3 и 0,05 г NaCl в 29,9 г воды. Содержимое третьего стакана переливают при перемешивании во второй стакан, после чего полученную смесь переносят в первый стакан и перемешивают. При получении композиции общая исходная концентрация ПЭ составляет 20,0 мас. %, и ПЭ взяты в соотношении, при котором содержание звеньев анионного ПЭ составляет 25% от содержания звеньев катионного ПЭ.

Получают 1.000 г гомогенной композиции, в которой содержание заряженного ПЭ, являющегося продуктом взаимодействия водосодержащих растворов катионного ПЭ и анионного ПЭ, составляет 18,79 мас. %, содержание водорастворимой соли (смеси CaCl2 и NaCl) равно 1,22 мас. %, содержание воды равно 79,99 мас. %. Наличие в композиции продукта взаимодействия водосодержащих растворов катионного ПЭ и анионного ПЭ доказывают методом ультрацентрифугирования. Биоцидные свойства композиции приведены в таблице.

Пример 2.

Смешивают 1740 г K2SO4 с 7.000 г раствора анионного ПЭ калиевой соли полиакриловой кислоты в дистиллированной воде, содержащего 0,19 г полимера. Затем полученный раствор смешивают с 1260 г водного раствора катионного ПЭ поли-N-этил-4-винилпиридиний хлорида (ПВП-хлор), содержащего 9, 81 г полимера. При этом общая исходная концентрация ПЭ составляет 0,1 мас. %, и ПЭ взяты в соотношении, при котором содержание звеньев анионного ПЭ составляет 3% от содержания звеньев катионного ПЭ. Получают 10.000 г гомогенной композиции, в которой содержание заряженного ПЭ, являющегося продутом взаимодействия водосодержащих растворов катионного ПЭ и анионного ПЭ, составляет 0,099 мас. %, содержание водорастворимой соли (смеси K2SO4 и KCl) равно 17,40 мас. % и содержание воды равно 82,501 мас. %. Наличие в композиции продукта взаимодействия водосодержащих растворов катионного ПЭ и анионного ПЭ доказывают методом ультрацентрифугирования. Биоцидные свойства композиции приведены в таблице.

Пример 3.

Смешивают 0,05 г MgCl2 и 0,10 г NH4Cl с 300,0 г раствора анионного ПЭ аммониевой соли полиакриловой кислоты в дистиллированной воде, содержащего 26,2 г полимера. Затем к полученному раствору добавляют 699,85 г. водного раствора катионного полиэлектролита ПГМГХ, содержащего 173,8 г полимера. При этом общая исходная концентрация ПЭ составляет 20,0 мас. %, и ПЭ взяты в соотношении, при котором содержание звеньев анионного ПЭ составляет 30% от содержания звеньев катионного ПЭ. Получают 1.000 г гомогенной композиции, в которой содержание заряженного ПЭ, являющегося продуктом взаимодействия водосодержащих растворов катионного ПЭ и анионного ПЭ, составляет 18,43 мас. %, содержание водорастворимой соли (смеси MgCl2 и NH4Cl) равно 1,59 мас. % и содержание воды равно 79,98 мас. %. Наличие в композиции продукта взаимодействия водосодержащих растворов катионного ПЭ и анионного ПЭ доказывают методом ультрацентрифугирования. Биоцидные свойства композиции приведены в таблице.

Пример 4.

Смешивают 10,0 г Na2SO4 с 300,0 г раствора анионного ПЭ натриевой соли полиакриловой кислоты в дистиллированной воде, содержащего 8,08 г полимера. Затем полученный раствор добавляют к 690,0 г водного раствора катионного ПЭ поли-N-этил-4-винилпиридиний бромида, содержащего 91,92 г полимера и 4,2 г Na2SO4. При этом общая исходная концентрация ПЭ составляет 10,0 мас. %, и ПЭ взяты в соотношении, при котором содержание звеньев анионного ПЭ составляет 20% от содержания звеньев катионного ПЭ. Получают 1.000 г гомогенной композиции, в которой содержание заряженного ПЭ, являющегося продуктом взаимодействия водосодержащих растворов катионного ПЭ и анионного ПЭ, составляет 9,01 мас. %, содержание водорастворимой соли (смеси Na2SO4 и NaBr) равно 2,41 мас. % и содержание воды равно 88,58 мас. %. Наличие в композиции продукта взаимодействия водосодержащих растворов катионного ПЭ и анионного ПЭ доказывают методом ультрацентрифугирования. Биоцидные свойства композиции приведены в таблице.

Пример 5.

Смешивают 3,85 г KCl и 2,2 г NaCl с 800 г раствора катионного полиэлектролита ПДМДААХ в дистиллированной воде, содержащего 136,35 г полимера. Затем полученный раствор смешивают с 194,15 г водного раствора анионного ПЭ натриевой соли полиметакриловой кислоты, содержащего 13,65 г полимера. При этом общая исходная концентрация ПЭ составляет 15,0 мас. %, и ПЭ взяты в соотношении, при котором содержание звеньев анионного ПЭ составляет 15% от содержания звеньев катионного ПЭ. Получают 1.000 г гомогенной композиции, в которой содержание заряженного ПЭ, являющегося продуктом взаимодействия водосодержащих растворов катионного ПЭ и анионного ПЭ, составляет 14,26 мас. %, содержание водорастворимой соли (смеси NaCl и KCl) равно 1,32 мас. % и содержание воды равно 84,42 мас. %. Наличие в композиции продукта взаимодействия водосодержащих растворов катионного ПЭ и анионного ПЭ доказывают методом ультрацентрифугирования. Биоцидные свойства композиции приведены в таблице.

Пример 6.

Смешивают 0,50 г NH4Cl и 0.04 г KCl с 100,0 г раствора анионного ПЭ - калиевой соли полиметакрилвой кислоты в дистиллированной воде, содержащего 6,8 г полимера. Затем полученный раствор добавляют к 899,46 г водного раствора катионного полиэлектролита ПВП-хлор, содержащего 93,2 г полимера. При этом общая исходная концентрация ПЭ составляет 10,0 мас. %, и ПЭ взяты в соотношении, при котором содержание звеньев анионного ПЭ составляет 10% от содержания звеньев катионного ПЭ. Получают 1.000 г гомогенной композиции, в которой содержание заряженного ПЭ, являющегося продуктом взаимодействия водосодержащих растворов катионного ПЭ и анионного ПЭ, составляет 9,59 мас. %, содержание водорастворимой соли (смеси NH4Cl и KCl) равно 0,46 мас. % и содержание воды равно 89,95 мас. %. Наличие в композиции продукта взаимодействия водосодержащих растворов катионного ПЭ и анионного ПЭ доказывают методом ультрацентрифугирования. Биоцидные свойства композиции приведены в таблице.

Пример 7.

Смешивают 1,19 г NH4Cl с 100,0 г раствора анионного ПЭ аммониевой соли полиметакрилвой кислоты в дистиллированной воде, содержащего 1,55 г полимера. Затем полученный раствор смешивают с 898,81 г водного раствора катионного полиэлектролита ПДМДААХ, содержащего 48,45 г полимера. При этом общая исходная концентрация ПЭ составляет 5,0 мас. %, и ПЭ взяты в соотношении, при котором содержание звеньев анионного ПЭ составляет 5% от содержания звеньев катионного ПЭ. Получают 1.000 г гомогенной композиции, в которой содержание заряженного ПЭ, являющегося продуктом взаимодействия водосодержащих растворов катионного ПЭ и анионного ПЭ, составляет 4,92 мас. %, содержание водорастворимой соли (NH4Cl) равно 0,20 мас. % и содержание воды равно 94,88 мас. %. Наличие в композиции продукта взаимодействия водосодержащих растворов катионного ПЭ и анионного ПЭ доказывают методом ультрацентрифугирования. Биоцидные свойства композиции приведены в таблице.

Таким образом, из приведенных примеров действительно видно, что биоцидная активность полученных композиций в 3-5 раз превышает активность известной композиции, описанной в прототипе. Биоцидная активность полученных композиций сохраняется в течение длительного времени (месяцы).

Биоцидная композиция для получения покрытий, состоящая из растворителя, водорастворимого полиэлектролита и соли, отличающаяся тем, что в качестве растворителя она содержит воду, в качестве полиэлектролита она содержит заряженный полиэлектролит, являющийся продуктом взаимодействия водосодержащих растворов катионного полиэлектролита и анионного полиэлектролита, взятых в соотношении, при котором содержание заряженных звеньев анионного полиэлектролита составляет от 3 до 30% от содержания заряженных звеньев катионного полиэлектролита, и в качестве соли она содержит по крайней мере одну водорастворимую соль, выбранную из группы, включающей соль щелочного металла или аммония, или смесь такой соли с солью кальция или магния, при следующем соотношении компонентов, мас. %:
Источник поступления информации: Роспатент

Показаны записи 1-9 из 9.
10.04.2013
№216.012.3354

Состав для закрепления почв и грунтов

Изобретение относятся к области составов для химического закрепления почв и грунтов и может быть использовано в сельском хозяйстве для борьбы с водной и ветровой эрозией, а также при строительстве дорог и других земляных сооружений. Состав включает полиэлектролит, водорастворимую соль и воду. В...
Тип: Изобретение
Номер охранного документа: 0002478683
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.3355

Способ получения состава для закрепления почв и грунтов

Изобретение относится к области способов химического закрепления почв и грунтов и может быть использовано в сельском хозяйстве для борьбы с водной и ветровой эрозией, а также при строительстве дорог и других земляных сооружений. Способ включает смешение водосодержащих растворов анионного...
Тип: Изобретение
Номер охранного документа: 0002478684
Дата охранного документа: 10.04.2013
20.08.2013
№216.012.605d

Способ получения состава для закрепления почв и грунтов

Изобретение относится к способу получения состава для химического закрепления почв и грунтов и может быть использовано в сельском хозяйстве для борьбы с водной и ветровой эрозией, а также при строительстве дорог и других земляных сооружений. Способ включает смешение водных растворов катионного...
Тип: Изобретение
Номер охранного документа: 0002490301
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.605e

Состав для закрепления почв и грунтов

Изобретение относится к составам для химического закрепления почв и грунтов и может быть использовано в сельском хозяйстве для борьбы с водной и ветровой эрозией, а также при строительстве дорог и других земляных сооружений. Предложенный водный состав для закрепления почв и грунтов содержит...
Тип: Изобретение
Номер охранного документа: 0002490302
Дата охранного документа: 20.08.2013
10.02.2016
№216.014.c486

Способ получения биоцидной композиции

Изобретение относится к способам получения биоцидных композиций, которые могут найти применение при создании покрытий с биоцидными свойствами, например, на полимерах, стеклах, металлах, бумаге, строительных материалах и т.д. В способе получения биоцидной композиции осуществляют смешение...
Тип: Изобретение
Номер охранного документа: 0002574759
Дата охранного документа: 10.02.2016
27.03.2016
№216.014.c935

Способ получения термочувствительных наночастиц на основе 2-гидроксипропил-β-циклодекстрина

Изобретение относится к области получения водорастворимых наноматериалов и касается способа получения термочувствительных водорастворимых наночастиц на основе высокозамещенного 2-гидроксипропил-β-циклодекстрина. Способ характеризуется тем, что к раствору, содержащему...
Тип: Изобретение
Номер охранного документа: 0002578421
Дата охранного документа: 27.03.2016
13.01.2017
№217.015.7ae9

Способ формирования эпитаксиального массива монокристаллических наноостровков кремния на сапфировой подложке в вакууме

Изобретение относится к сублимационному выращиванию эпитаксиальных массивов самоорганизованных монокристаллических наноостровков кремния на сапфировых подложках и может быть использовано в качестве нанотехнологического процесса, характеризующегося повышенной стабильностью формирования...
Тип: Изобретение
Номер охранного документа: 0002600505
Дата охранного документа: 20.10.2016
25.08.2017
№217.015.caeb

Способ получения иммобилизованных бислойных везикул

Изобретение относится к области биохимии и биотехнологии. Предложен способ получения иммобилизованных бислойных везикул путем обработки катионного носителя суспензией анионных бислойных везикул в водосодержащей среде. В предложенном способе носитель и/или иммобилизуемые везикулы содержат...
Тип: Изобретение
Номер охранного документа: 0002620077
Дата охранного документа: 22.05.2017
26.08.2017
№217.015.e76d

Способ получения иммобилизованных бислойных везикул

Изобретение относится к области биохимии, биотехнологии, биоаналитики и касается способа получения иммобилизованных бислойных везикул. Обрабатывают носитель, содержащий ковалентно связанный полимер и поверхностный отрицательный заряд, суспензией катионных бислойных везикул в водосодержащей...
Тип: Изобретение
Номер охранного документа: 0002627157
Дата охранного документа: 03.08.2017
Показаны записи 1-10 из 15.
10.04.2013
№216.012.3354

Состав для закрепления почв и грунтов

Изобретение относятся к области составов для химического закрепления почв и грунтов и может быть использовано в сельском хозяйстве для борьбы с водной и ветровой эрозией, а также при строительстве дорог и других земляных сооружений. Состав включает полиэлектролит, водорастворимую соль и воду. В...
Тип: Изобретение
Номер охранного документа: 0002478683
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.3355

Способ получения состава для закрепления почв и грунтов

Изобретение относится к области способов химического закрепления почв и грунтов и может быть использовано в сельском хозяйстве для борьбы с водной и ветровой эрозией, а также при строительстве дорог и других земляных сооружений. Способ включает смешение водосодержащих растворов анионного...
Тип: Изобретение
Номер охранного документа: 0002478684
Дата охранного документа: 10.04.2013
10.02.2016
№216.014.c486

Способ получения биоцидной композиции

Изобретение относится к способам получения биоцидных композиций, которые могут найти применение при создании покрытий с биоцидными свойствами, например, на полимерах, стеклах, металлах, бумаге, строительных материалах и т.д. В способе получения биоцидной композиции осуществляют смешение...
Тип: Изобретение
Номер охранного документа: 0002574759
Дата охранного документа: 10.02.2016
27.03.2016
№216.014.c935

Способ получения термочувствительных наночастиц на основе 2-гидроксипропил-β-циклодекстрина

Изобретение относится к области получения водорастворимых наноматериалов и касается способа получения термочувствительных водорастворимых наночастиц на основе высокозамещенного 2-гидроксипропил-β-циклодекстрина. Способ характеризуется тем, что к раствору, содержащему...
Тип: Изобретение
Номер охранного документа: 0002578421
Дата охранного документа: 27.03.2016
13.01.2017
№217.015.7ae9

Способ формирования эпитаксиального массива монокристаллических наноостровков кремния на сапфировой подложке в вакууме

Изобретение относится к сублимационному выращиванию эпитаксиальных массивов самоорганизованных монокристаллических наноостровков кремния на сапфировых подложках и может быть использовано в качестве нанотехнологического процесса, характеризующегося повышенной стабильностью формирования...
Тип: Изобретение
Номер охранного документа: 0002600505
Дата охранного документа: 20.10.2016
25.08.2017
№217.015.caeb

Способ получения иммобилизованных бислойных везикул

Изобретение относится к области биохимии и биотехнологии. Предложен способ получения иммобилизованных бислойных везикул путем обработки катионного носителя суспензией анионных бислойных везикул в водосодержащей среде. В предложенном способе носитель и/или иммобилизуемые везикулы содержат...
Тип: Изобретение
Номер охранного документа: 0002620077
Дата охранного документа: 22.05.2017
26.08.2017
№217.015.e76d

Способ получения иммобилизованных бислойных везикул

Изобретение относится к области биохимии, биотехнологии, биоаналитики и касается способа получения иммобилизованных бислойных везикул. Обрабатывают носитель, содержащий ковалентно связанный полимер и поверхностный отрицательный заряд, суспензией катионных бислойных везикул в водосодержащей...
Тип: Изобретение
Номер охранного документа: 0002627157
Дата охранного документа: 03.08.2017
10.04.2019
№219.016.ff3e

Способ очистки почв и грунтов от радионуклидов и тяжелых металлов

Изобретение относится к способам очистки почв и грунтов промзон АЭС, металлургических и радиохимических производств или территорий, подвергшихся загрязнению в результате техногенных аварий и катастроф. В соответствии с предлагаемым способом снимают загрязненный слой почвы и грунта, отделяют...
Тип: Изобретение
Номер охранного документа: 0002275974
Дата охранного документа: 10.05.2006
09.05.2019
№219.017.4940

Способ формирования гексагональной фазы кремния

Использование: для изготовления светоизлучающих приборов на основе гексагональной фазы кремния, обеспечивающей эффективное возбуждение фотолюминесценции. Сущность изобретения заключается в том, что в способе формирования фазы гексагонального кремния путем имплантации в изготовленную из...
Тип: Изобретение
Номер охранного документа: 0002687087
Дата охранного документа: 07.05.2019
06.06.2019
№219.017.7480

Способ получения полиакрилата золота, проявляющего противоопухолевую активность

Изобретение относится к способу получения полиакрилата золота. Способ включает взаимодействие водных растворов полиакриловой кислоты и золотохлористоводородной кислоты. Перед введением в реакцию исходную полиакриловую кислоту подвергают проточному диализу и последующей лиофильной сушке. Водные...
Тип: Изобретение
Номер охранного документа: 0002690536
Дата охранного документа: 04.06.2019
+ добавить свой РИД