×
10.04.2013
216.012.3354

СОСТАВ ДЛЯ ЗАКРЕПЛЕНИЯ ПОЧВ И ГРУНТОВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относятся к области составов для химического закрепления почв и грунтов и может быть использовано в сельском хозяйстве для борьбы с водной и ветровой эрозией, а также при строительстве дорог и других земляных сооружений. Состав включает полиэлектролит, водорастворимую соль и воду. В качестве полиэлектролита он содержит заряженный полиэлектролит, являющийся продуктом взаимодействия водосодержащих растворов катионного полиэлектролита и анионного полиэлектролита, выбранного из группы, включающей натриевую соль карбоксиметилцеллюлозы, соль щелочного металла или аммония полиакриловой кислоты или полиметакриловой кислоты, взятых в соотношении, при котором содержание заряженных звеньев одного полиэлектролита составляет от 5 до 50% от содержания заряженных звеньев другого полиэлектролита, а в качестве соли он содержит соль щелочного металла или аммония, или смесь такой соли с солью кальция или магния при следующем соотношении компонентов, мас.%: продукт взаимодействия водосодержащих растворов катионного полиэлектролита и анионного полиэлектролита - 0,91-9,91; водорастворимая соль - 0,10-0,62; вода - остальное. Технический результат - снижение содержания соли в составе и уменьшение нормы расхода состава. 9 пр.
Основные результаты: Состав для закрепления почв и грунтов на основе полиэлектролита, водорастворимой соли и воды, отличающийся тем, что в качестве полиэлектролита он содержит заряженный полиэлектролит, являющийся продуктом взаимодействия водосодержащих растворов катионного полиэлектролита и анионного полиэлектролита, выбранного из группы, включающей натриевую соль карбоксиметилцеллюлозы, соль щелочного металла или аммония полиакриловой кислоты или полиметакриловой кислоты, взятых в соотношении, при котором содержание заряженных звеньев одного полиэлектролита составляет от 5 до 50% от содержания заряженных звеньев другого полиэлектролита, а в качестве соли он содержит соль щелочного металла или аммония или смесь такой соли с солью кальция или магния при следующем соотношении компонентов, мас.%:
Реферат Свернуть Развернуть

Изобретение относятся к области составов для химического закрепления почв и грунтов и может быть использовано в сельском хозяйстве для борьбы с водной и ветровой эрозией, а также при строительстве дорог и других земляных сооружения.

Известен состав для закрепления почв и грунтов на основе воды, полиэтиленимина (ПЭИ), полиакриловой кислоты (ПАК) и аммиака при следующем соотношении компонентов (мас.ч.):

ПАК 1
ПЭИ 1,5-2,5
аммиак 1,6-1,8

(А.С. СССР №642411, кл. Е01С 7/36, 1979).

Известен состав для закрепления почв и грунтов на основе гидролизованного полиакрилонитрила (ГИПАН), полидиметидиаллиламмоний хлорида (ПДМДААХ) и воды при следующем соотношении компонентов (мас.ч.):

ГИПАН 8-12
ПДМДААХ 8-12
вода остальное

(А.С. СССР №1507771, кл. С08L 33/00, 1989).

Наиболее близким к заявляемому является известный ранее предложенный нами состав для закрепления почв и грунтов на основе анионного полиэлектролита (ПЭ) и катионного ПЭ, водорастворимой соли (смеси солей щелочного металла или аммония с солью кальция или магния) и воды при следующем соотношении компонентов, вес.%:

анионный ПЭ 0,5-3,0
катионный ПЭ 0,5-3,0
соль щелочного металла или аммония 1,2-2,7
соль двухвалентного металла 0,3-1,0
вода остальное

(патент России №2142492, кл. С09K 17/00, 1999) - прототип.

Недостатками известного состава являются достаточно высокое содержание в нем соли и относительно высокая его норма расхода при обработке почвы (1-2 л/м2), что неизбежно приводит к засолению почвы.

Технической задачей изобретения является разработка состава для закрепления почв и грунтов с пониженным содержанием соли и пониженной нормой расхода.

Предварительно были проведены эксперименты с различными ПЭ и солями, в результате которых было выявлено, что указанный технический результат достигается только тогда, когда в известном составе для закрепления почв и грунтов на основе ПЭ, водорастворимой соли и воды в качестве ПЭ он содержит заряженный ПЭ, являющийся продуктом взаимодействия водосодержащих растворов катионного ПЭ и анионного ПЭ, выбранного из группы, включающей натриевую соль карбоксиметилцеллюлозы (натрий-КМЦ), соль щелочного металла или аммония ПАК или полиметакриловой кислоты (ПМАК), взятых в соотношении, при котором содержание заряженных звеньев одного ПЭ составляет от 5 до 50% от содержания заряженных звеньев другого ПЭ, а в качестве соли он содержит соль щелочного металла или аммония, или смесь такой соли с солью кальция или магния при следующем соотношении компонентов, мас.%:

продукт взаимодействия 0,91-9,91
водосодержащих растворов
катионного ПЭ и анионного ПЭ
водорастворимая соль 0,10-0,62
вода остальное

В предлагаемом техническом решении в качестве анионного ПЭ можно использовать любой водорастворимый анионный ПЭ, выбранный из группы, включающей натрий-КМЦ, натриевую соль ПАК (натрий-ПАК), калиевую соль ПАК (калий-ПАК), аммонийную соль ПАК (аммоний-ПАК), натриевую соль ПМАК (натрий-ПМАК), калиевую соль ПМАК (калий-ПМАК), аммонийную соль ПМАК (аммоний-ПМАК). В качестве катионного ПЭ можно использовать любой водорастворимый катионный ПЭ, например ПДМДААХ, полигексаметиленгуанидиний хлорид (ПГМГХ), алкилированный поли-N-винилпиридин и т.д. При этом молекулярная масса полимеров может варьироваться в широких пределах, например от одного килодальтона до нескольких тысяч килодальтон. Нерастворимые в воде полимеры не могут быть использованы в данном техническом решении.

Предлагаемый состав может быть получен путем смешения водосодержащих растворов анионного ПЭ и катионного ПЭ, и водорастворимой соли, при этом ПЭ смешивают при общей исходной их концентрации от 1 до 10 мас.% в соотношении, при котором содержание заряженных звеньев одного ПЭ составляет от 5 до 50% от содержания заряженных звеньев другого ПЭ, и исходной концентрации по крайней мере одной соли, выбранной из группы, включающей соль щелочного металла, соль аммония, соль кальция, соль магния, от 0,01 до 0,1 мас.%.

При получении заявляемого состава последовательность добавления отдельных компонентов принципиального значения не имеет. Можно к водосодержащему раствору анионного ПЭ добавлять водосодержащий раствор катионного ПЭ или наоборот. При этом водорастворимую соль в состав можно вводить в твердом состоянии или в виде ее водного раствора. Соль можно смешивать с водным раствором одного из ПЭ или смешивать соль с водным раствором каждого ПЭ, или добавлять ее в смесь водных растворов анионного ПЭ и катионного ПЭ.

В качестве водосодержащих растворов можно использовать воду или водные растворы солей. При этом может быть использована как обычная водопроводная, колодезная или артезианская вода, так и специальным образом подготовленная, например дистиллированная вода. Смешение сухих анионного ПЭ и катионного ПЭ или смешение суспензии этих компонентов в органических средах не приводит к образованию продукта.

В данном изобретении можно использовать продукт взаимодействия водосодержащих растворов анионного ПЭ и катионного ПЭ при экспериментально найденном оптимальном содержании заряженных звеньев одного ПЭ по отношению к содержанию заряженных звеньев другого ПЭ от 5 до 50%. При этом знак заряда полученного ПЭ принципиального значения не имеет, то есть в ПЭ могут преобладать как анионные звенья, так и катионные звенья. Массовую пропорцию между исходными анионным и катионным ПЭ можно определить расчетным путем, исходя из общей исходной их концентрации, требуемого соотношения противоположно заряженных звеньев ПЭ и молекулярной массы заряженных звеньев. Приводим пример расчета массовой пропорции для катионного полиэлектролита ПДМДААХ с молекулярной массой заряженного звена 162 дальтона и анионного полиэлектролита натрий-ПАК с молекулярной массой заряженного звена 94 дальтона. Для получения из них требуемого продукта с содержанием положительно заряженных звеньев ПДМДААХ 25% от содержания отрицательно заряженных звеньев натрий-ПАК необходимо брать ПДМДААХ и натрий-ПАК в соотношении (0,25×162)/94 соответственно, то есть 40,5/94. Таким образом, массовое содержание ПДМДААХ составит 40,5/(40,5+94)=40,5/134,5=0,301 или 30,1% от общей исходной массы ПЭ, а содержание натрий-ПАК будет составлять 69,9% от общей исходной массы ПЭ. Отсюда следует, что для получения, например, 10.000 г состава с 5%-ной исходной концентрацией ПЭ необходимо взять ПДМДААХ в количестве 500×0,301=150,5 г и натрий-ПАК в количестве 349,5 г. В ходе образования продукта взаимодействия водосодержащих растворов катионного ПЭ и анионного ПЭ в системе в результате взаимодействия высвобождающихся противоионов хлора и натрия будет образовываться соль NaCl. Количество этой соли будет равно массе ПЭ, звенья которого взяты в недостатке (150,5 г), умноженной на молекулярную массу NaCl (58,5 дальтона) и деленной на молекулярную массу заряженного звена этого ПЭ, то есть на 162 дальтона. Таким образом, в ходе получения состава образуется (150,5×58,5)/162=54,3 г NaCl или 0, 54 мас.%. Масса продукта взаимодействия водосодержащих растворов катионного ПЭ и анионного ПЭ будет равна общей исходной массе ПЭ за вычетом количества образовавшейся соли, то есть 500-54,3=445, 7 г или 4,46 мас.%. Если вышеуказанный состав получать при концентрации первоначально вводимой соли NaCl, например, 0,05 мас.%, то суммарное содержание соли в составе будет равно 0,54+0,05=0,59 мас.%. Таким образом, будет получено 10.000 г состава с содержанием продукта взаимодействия водосодержащих растворов катионного ПЭ и анионного ПЭ 4,46 мас.%, содержанием водорастворимой соли NaCl 0,59 мас.% и содержанием воды 94,95 мас.%. Для получения составов другой рецептуры необходимо произвести соответствующий расчет.

В формуле изобретения отличительный признак - соотношение заряженных звеньев взятых ПЭ введен в отличительную часть формулы. Правомерность такого введения обусловлена тем, что в известном техническом решении, выбранном в качестве прототипа, содержание заряженных звеньев одного ПЭ составляет от 7,2 до 100% от содержания звеньев другого ПЭ (перерасчет проведен аналогично описанию, данному в предыдущем абзаце), а в нашем - от 5 до 50%. Таким образом, экспериментально установленный нами оптимальный интервал выходит за рамки описанного в прототипе.

При содержании заряженных звеньев одного ПЭ менее 5% от содержания заряженных звеньев другого ПЭ резко ухудшаются структурообразующие свойства состава для закрепления почв и грунтов и возрастает норма расхода состава. При содержании заряженных звеньев одного ПЭ в продукте более 50% для сохранения гомогенности состава требуется дополнительно вводить в него больше водорастворимой соли, что неизбежно приводит к нежелательному засолению почв и грунтов.

В предлагаемом составе в качестве соли можно использовать водорастворимую соль щелочного металла или аммония, или смесь такой соли с водорастворимой солью кальция или магния, причем соль необходимо брать в экспериментально найденном количестве, составляющем 0,1-0,62 мас.% от предложенного состава. При содержании соли меньшем, чем указано в формуле, состав становится негомогенным, что приводит к формированию неоднородного по свойствам покрытия на обработанной поверхности почвы (грунта). Большее, чем указано в формуле, содержание соли в составе приводит к нежелательному засолению почв, ухудшению их плодородия и постепенному выводу из сульскохозяйственного оборота.

В предлагаемом техническом решении экспериментально было найдено оптимальное содержание продукта взаимодействия водосодержащих растворов анионного ПЭ и катионного ПЭ в составе от 0,91 до 9,91 мас.%. При меньшем, чем заявлено, содержании продукта мала эффективность закрепления, то есть состав не образует корку на поверхности почвы. При большем содержании продукта возрастает вязкость состава и увеличивается норма его расход для пропитки слоя почвы и достижения нужной эффективности закрепления.

Наличие в составе именно продукта взаимодействия водосодержащих растворов анионного ПЭ и катионного ПЭ, а не просто механической смеси растворенных вышеназванных полимеров подтверждается результатами следующих экспериментов. В соответствии с формулой изобретения готовят продукт взаимодействия водосодержащего анионного ПЭ и катионного ПЭ в водном растворе соли NaCl. Помещают полученный образец в ячейку ультрацентрифуги и подбирают скорость вращения ротора ультрацентрифуги таким образом, чтобы обеспечить количественное (полное) осаждение продукта. Убеждаются в том, что надосадочная жидкость (супернатант) не содержит ни свободного анионного ПЭ, ни свободного катионного ПЭ. После этого проводят два контрольных эксперимента: в первом центрифугируют раствор анионного ПЭ в водном растворе соли, во втором - водный раствор катионного ПЭ в водном растворе соли. Концентрации ПЭ в контрольных экспериментах берут равными концентрации этих компонентов при формировании продукта. Центрифугирование растворов по отдельности взятых ПЭ проводят при той же скорости вращения ротора, при которой наблюдалось полное осаждение продукта. При этом убеждаются, что в указанных условиях ни отдельно взятый анионный ПЭ, ни отдельно взятый катионный ПЭ не осаждаются из раствора. Совокупность полученных результатов однозначно свидетельствует о том, что смешение водосодержащих растворов анионного ПЭ и катионного ПЭ при заявленном в формуле изобретения соотношении противоположно заряженных звеньев ПЭ сопровождается образованием нового продукта, в который количественно входят оба ПЭ.

Данный продукт является интерполиэлектролитным комплексом, однако точно описать его строение не представляется возможным.

Особо следует отметить, что в данном изобретении мы заявляем истинный состав для закрепления почв и грунтов, а не перечень отдельных компонентов, необходимых для получения такого состава.

Предлагаемый состав наносят методом дождевания на поверхность почвы или грунта при норме расхода 0,5-0,8 л/м2. При высыхании на поверхности почвы или грунта образуется почвенно-полимерная корка, толщина которой определяется содержанием компонентов в составе, его расходом и соответственно глубиной проникания. Образцы почвы и грунта, обработанные предлагаемым составом и находящиеся в эрозионных лотках, были высушены и испытаны в аэродинамической установке при скорости потока воздуха 8,0-16,7 м/с. Эффективность закрепления почвы определяли по количеству почвы, вынесенной с поверхности образца.

Преимущества предложенного состава иллюстрируют следующие примеры.

Пример 1.

Смешивают 5 г NaCl с 3.995 г водного раствора анионного ПЭ натрий-КМЦ, содержащего 47,8 г полимера, затем полученный раствор смешивают с 6.000 г водного раствора катионного ПЭ поли-N-этил-4-винилпиридиний хлорида (ПЭПХ), содержащего 52,2 г полимера. При этом общая исходная концентрация ПЭ составляет 1 мас.%, и ПЭ взяты в соотношении, при котором содержание заряженных звеньев Na-КМЦ составляет 50% от содержания заряженных звеньев ПВПХ. Получают 10.000 г состава, в котором содержание заряженного ПЭ, являющегося продуктом взаимодействия водосодержащих растворов катионного ПЭ и анионного ПЭ, составляет 0,91 мас.%. Содержание водорастворимой соли NaCl равно 0,14 мас.% и содержание воды равно 98,95 мас.%. Полученный состав методом дождевания наносят на поверхность образцов супесчаной почвы, находящихся в эрозионных лотках, при норме расхода 0,8 л/м2 и испытывают в аэродинамической установке при скорости потока воздуха 8,0 м/с. Эффективность закрепления почвы составляет 96±1%. Образующееся на поверхности почвы покрытие обладает хорошей водостойкостью.

Пример 2.

Смешивают 100 г водного раствора СаСl2, содержащего 1,0 г соли, с 3.000 г водного раствора катионного полиэлектролита ПДМДААХ, содержащего 164 г полимера, затем полученный раствор смешивают с 6.900 г водного раствора анионного полиэлектролита натрий-ПАК, содержащего 636,0 г полимера. При этом общая исходная концентрация ПЭ составляет 8,0 мас.% и ПЭ взяты в соотношении, при котором содержание заряженных звеньев катионного ПЭ составляет 15% от содержания заряженных звеньев анионного ПЭ. Получают 10.000 г состава, в котором содержание заряженного ПЭ, являющегося продуктом взаимодействия водосодержащих растворов анионного ПЭ и катионного ПЭ, составляет 7,41 мас.%, содержание водорастворимой соли (смеси NaCl и СаСl2) равно 0,6 мас.% и содержание воды равно 91,99 мас.%. Полученный состав методом дождевания наносят на поверхность образцов грунта, взятого с пляжа нефелинового хвостохранилища и находящегося в эрозионных лотках, при норме расхода 0,5 л/м2. После высыхания образцов их испытывают в аэродинамической установке при скорости потока воздуха 16,7 м/с. Эффективность закрепления грунта составляет 95±1%. Образующееся на поверхности грунта покрытие обладает хорошей водостойкостью.

Пример 3.

Смешивают 900 г водного раствора анионного полиэлектролита аммоний-ПАК, содержащего 60,5 г полимера, и 9.000 г водного раствора катионного полиэлектролита ПДМДААХ, содержащего 439,5 г полимера, затем в полученную смесь добавляют 100 г водного раствора MgCl2, содержащего 5,0 г соли. При этом общая исходная концентрация ПЭ составляет 5,0 мас.% и ПЭ взяты в соотношении, при котором содержание заряженных звеньев анионного ПЭ составляет 25% от содержания заряженных звеньев катионного ПЭ. Получают 10.000 г состава, в котором содержание заряженного ПЭ, являющегося продуктом взаимодействия водосодержащих растворов катионного ПЭ и анионного ПЭ, составляет 4,64 мас.%, содержание водорастворимой соли (смеси NH4Сl и СаСl2) равно 0,41 мас.% и содержание воды равно 94,95 мас.%. Полученный состав методом дождевания наносят на поверхность образцов суглинистой почвы, находящихся в эрозионных лотках, при норме расхода 0,6 л/м2. После высыхания образцов их испытывают в аэродинамической установке при скорости потока воздуха 16,7 м/с. Эффективность закрепления почвы составляет 95±1%. Образующееся на поверхности почвы покрытие обладает хорошей водостойкостью.

Пример 4.

Смешивают 500 г водного раствора KСl, содержащего 1,0 г соли, с 5.500 г водного раствора катионного ПЭ поли-N-этил-4-винилпиридиний бромида (ПЭПБ), содержащего 544,2 г полимера. Затем смешивают 500 г водного раствора KСl, содержащего 1,0 г соли, с 3.500 г водного раствора анионного полиэлектролита калий-ПАК, содержащего 55,8 г полимера. После этого полученные растворы смешивают друг с другом. При этом общая исходная концентрация ПЭ составляет 6,0 мас.% и ПЭ взяты в соотношении, при котором содержание заряженных звеньев анионного ПЭ составляет 20% от содержания заряженных звеньев катионного ПЭ. Получают 10.000 г состава, в котором содержание заряженного ПЭ, являющегося продуктом взаимодействия водосодержащих растворов катионного ПЭ и анионного ПЭ, составляет 5,4 мас.%, содержание водорастворимой соли (смеси KСl и КВr) равно 0,62 мас.%, и содержание воды равно 93,98 мас.%. Полученный состав методом дождевания наносят на поверхность образцов суглинистой почвы, находящихся в эрозионных лотках, при норме расхода 0,7 л/м2. После высыхания образцов их испытывают в аэродинамической установке при скорости потока воздуха 10 м/с. Эффективность закрепления почвы составляет 95±1%. Образующееся на поверхности почвы покрытие обладает хорошей водостойкостью.

Пример 5.

Смешивают 500 г водного раствора катионного полиэлектролита ПДМДААХ, содержащего 25,0 г полимера, с 9.499 г водного раствора анионного полиэлектролита натрий-КМЦ, содержащего 975 г полимера. После этого полученную смесь смешивают с 1,0 г MgCl2. При этом общая исходная концентрация ПЭ составляет 10 мас.% и ПЭ взяты в соотношении, при котором содержание заряженных звеньев катионного ПЭ составляет 5% от содержания заряженных звеньев анионного ПЭ. Получают 10.000 г состава, в котором содержание заряженного ПЭ, являющегося продуктом взаимодействия водосодержащих растворов анионного ПЭ и катионного ПЭ, составляет 9,91 мас.%, содержание водорастворимой соли (смеси NaCl и MgCl2) равно 0,10 мас.%. Полученный состав методом дождевания наносят на поверхность образцов лесной почвы, находящихся в эрозионных лотках, при норме расхода 0,6 л/м2. После высыхания образцов их испытывают в аэродинамической установке при скорости потока воздуха 8,0 м/с. Эффективность закрепления почвы составляет 96±1%. Образующееся на поверхности почвы покрытие обладает хорошей водостойкостью.

Пример 6.

Смешивают 0,5 г MgCl2 с 4.999,5 г водного раствора катионного полиэлектролита ПГМГХ, содержащего 241,2 г полимера. Затем смешивают 0,5 г MgCl2 с 4.999,5 г водного раствора анионного полиэлектролита калий-ПМАК, содержащего 58,5 г полимера. После этого полученные растворы смешивают друг с другом. При этом общая исходная концентрация ПЭ составляет 3,0 мас.% и ПЭ взяты в соотношении, при котором содержание заряженных звеньев анионного ПЭ составляет 35% от содержания заряженных звеньев катионного ПЭ. Получают 10.000 г состава, в котором содержание заряженного ПЭ, являющегося продуктом взаимодействия водосодержащих растворов анионного ПЭ и катионного ПЭ, составляет 2,65 мас.%, содержание водорастворимой соли (смеси KСl и MgCl2) равно 0,36 мас.% и содержание воды равно 96,99 мас.%. Полученный состав методом дождевания наносят на поверхность образцов чернозема, находящихся в эрозионных лотках, при норме расхода 0,6 л/м2. После высыхания образцов их испытывают в аэродинамической установке при скорости потока воздуха 12,0 м/с. Эффективность закрепления чернозема составляет 96±1%. Образующееся на поверхности чернозема покрытие обладает хорошей водостойкостью.

Пример 7.

Опыт проводят аналогично примеру 6, однако вместо MgCl2 вводят CaCl2. Эффективность закрепления почвы составляет 95±1%.

Пример 8.

Смешивают 1.000 г водного раствора катионного полиэлектролита ПГМГХ, содержащего 76,0 г полимера, с 8.990 г водного раствора анионного полиэлектролита натрий-ПМАК, содержащего 940 г полимера, затем в полученную смесь добавляют 10,0 г NaCl. При этом общая исходная концентрация ПЭ составляет 10 мас.% и ПЭ взяты в соотношении, при котором содержание заряженных звеньев катионного ПЭ составляет 5% от содержания заряженных звеньев анионного ПЭ. Получают 10.000 г состава, в котором содержание заряженного ПЭ, являющегося продуктом взаимодействия водосодержащих растворов катионного ПЭ и анионного ПЭ, составляет 9,75 мас.%, содержание водорастворимой соли NaCl равно 0,35 мас.% и содержание воды равно 89,9 мас.%. Полученный состав методом дождевания наносят на поверхность образцов суглинистой почвы, находящихся в эрозионных лотках, при норме расхода 0,8 л/м2. После высыхания образцов их испытывают в аэродинамической установке при скорости потока воздуха 8,0 м/с. Эффективность закрепления почвы составляет 97±1%. Образующееся на поверхности почвы покрытие обладает хорошей водостойкостью.

Пример 9.

Смешивают 4.000 г водного раствора катионного полиэлектролита ПВПХ, содержащего 79,4 г полимера, с 5.998 г водного раствора анионного полиэлектролита аммоний-ПМАК, содержащего 120,6 г полимера, затем в полученную смесь добавляют 2,0 г NН4Сl. При этом общая исходная концентрация ПЭ составляет 2,0 мас.% и ПЭ взяты в соотношении, при котором содержание заряженных звеньев катионного ПЭ составляет 40% от содержания заряженных звеньев анионного ПЭ. Получают 10.000 г состава, в котором содержание заряженного ПЭ, являющегося продуктом взаимодействия водосодержащих растворов катионного ПЭ и анионного ПЭ, составляет 1,75 мас.%, содержание водорастворимой соли NH4Cl равно 0,27 мас.%, и содержание воды равно 97,98 мас.%. Полученный состав методом дождевания наносят на поверхность образцов дерново-подзолистой почвы, находящейся в эрозионных лотках, при норме расхода 0,6 л/м2. После высыхания образцов их испытывают в аэродинамической установке при скорости потока воздуха 10 м/с. Эффективность закрепления почвы составляет 95±1%. Образующееся на поверхности почвы покрытие обладает хорошей водостойкостью.

Пример 10.

Опыт проводят аналогично примеру 9, однако вместо NН4Сl в смесь водных растворов полиэлектролитов добавляют CaCl2. Эффективность закрепления почвы полученным составом составляет 96±1%.

Таким образом, из приведенных примеров видно, что предложенный состав действительно дает возможность эффективно закреплять почвы и грунт от ветровой эрозии и позволяет существенно снизить содержание соли с 1,5-3,7 мас.% (прототип) до 0,10-0,62 мас.%, а также уменьшить норму расхода состава с 1-2 л/м2 (прототип) до 0,5-0,8 л/м2.

Источник поступления информации: Роспатент

Показаны записи 1-10 из 12.
27.01.2013
№216.012.1ec7

Способ получения протонпроводящих мембран

Изобретение относится к способам получения протонпроводящих мембран, которые могут быть использованы в электрохимических источниках тока, например в среднетемпературных твердополимерных топливных элементах. Способ получения протонпроводящих мембран осуществляют путем обработки ортофосфорной...
Тип: Изобретение
Номер охранного документа: 0002473380
Дата охранного документа: 27.01.2013
10.04.2013
№216.012.3355

Способ получения состава для закрепления почв и грунтов

Изобретение относится к области способов химического закрепления почв и грунтов и может быть использовано в сельском хозяйстве для борьбы с водной и ветровой эрозией, а также при строительстве дорог и других земляных сооружений. Способ включает смешение водосодержащих растворов анионного...
Тип: Изобретение
Номер охранного документа: 0002478684
Дата охранного документа: 10.04.2013
20.08.2013
№216.012.605d

Способ получения состава для закрепления почв и грунтов

Изобретение относится к способу получения состава для химического закрепления почв и грунтов и может быть использовано в сельском хозяйстве для борьбы с водной и ветровой эрозией, а также при строительстве дорог и других земляных сооружений. Способ включает смешение водных растворов катионного...
Тип: Изобретение
Номер охранного документа: 0002490301
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.605e

Состав для закрепления почв и грунтов

Изобретение относится к составам для химического закрепления почв и грунтов и может быть использовано в сельском хозяйстве для борьбы с водной и ветровой эрозией, а также при строительстве дорог и других земляных сооружений. Предложенный водный состав для закрепления почв и грунтов содержит...
Тип: Изобретение
Номер охранного документа: 0002490302
Дата охранного документа: 20.08.2013
20.11.2013
№216.012.8347

Способ и устройство для скважинной спектральной шумометрии

Изобретение относится к области геофизики и может быть использовано при проведении каротажных работ. Предложен спектральный шумомер, содержащий акустический детектор, первый частотный канал с первым каскадом усиления, выполненный с возможностью усиления первой составляющей электрического...
Тип: Изобретение
Номер охранного документа: 0002499283
Дата охранного документа: 20.11.2013
20.02.2014
№216.012.a2ce

Способ электромагнитной дефектоскопии в многоколонных скважинах и электромагнитный скважинный дефектоскоп

Изобретение относится к области контроля технического состояния обсадных колонн, насосно-компрессорных труб и других колонн нефтяных и газовых скважин. Техническим результатом является повышение точности и достоверности выявления наличия и местоположения поперечных и продольных дефектов...
Тип: Изобретение
Номер охранного документа: 0002507393
Дата охранного документа: 20.02.2014
27.05.2014
№216.012.cb1c

Импульсная последовательность для измерения параметров самодиффузии методом ядерного магнитного резонанса

Использование: для измерения характеристик вещества методом ЯМР. Сущность: заключается в том, что для определения параметров самодиффузии исследуемого образца используют цикл импульсной последовательности, состоящий из заданного количества градиентных импульсов, длительность, форма, амплитуда и...
Тип: Изобретение
Номер охранного документа: 0002517762
Дата охранного документа: 27.05.2014
10.02.2016
№216.014.c486

Способ получения биоцидной композиции

Изобретение относится к способам получения биоцидных композиций, которые могут найти применение при создании покрытий с биоцидными свойствами, например, на полимерах, стеклах, металлах, бумаге, строительных материалах и т.д. В способе получения биоцидной композиции осуществляют смешение...
Тип: Изобретение
Номер охранного документа: 0002574759
Дата охранного документа: 10.02.2016
20.04.2016
№216.015.3620

Биоцидная композиция для получения покрытий

Изобретение относится к биоцидным композициям для получения покрытий, которые могут найти применение при создании покрытий с биоцидными свойствами, например, на полимерах, стеклах, металлах, бумаге, строительных материалах и т.д. Биоцидная композиция для получения покрытий состоит из...
Тип: Изобретение
Номер охранного документа: 0002581866
Дата охранного документа: 20.04.2016
13.01.2017
№217.015.778f

Способ измерения скорости потока флюида в скважине и автономный скважинный термоанемометр для его осуществления

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при проведении геофизических исследований в горизонтальных и наклонно-направленных действующих нефтяных скважинах. Техническим результатом является повышение точности измерений. Способ измерения скорости потока...
Тип: Изобретение
Номер охранного документа: 0002599740
Дата охранного документа: 10.10.2016
Показаны записи 1-8 из 8.
10.04.2013
№216.012.3355

Способ получения состава для закрепления почв и грунтов

Изобретение относится к области способов химического закрепления почв и грунтов и может быть использовано в сельском хозяйстве для борьбы с водной и ветровой эрозией, а также при строительстве дорог и других земляных сооружений. Способ включает смешение водосодержащих растворов анионного...
Тип: Изобретение
Номер охранного документа: 0002478684
Дата охранного документа: 10.04.2013
10.02.2016
№216.014.c486

Способ получения биоцидной композиции

Изобретение относится к способам получения биоцидных композиций, которые могут найти применение при создании покрытий с биоцидными свойствами, например, на полимерах, стеклах, металлах, бумаге, строительных материалах и т.д. В способе получения биоцидной композиции осуществляют смешение...
Тип: Изобретение
Номер охранного документа: 0002574759
Дата охранного документа: 10.02.2016
20.04.2016
№216.015.3620

Биоцидная композиция для получения покрытий

Изобретение относится к биоцидным композициям для получения покрытий, которые могут найти применение при создании покрытий с биоцидными свойствами, например, на полимерах, стеклах, металлах, бумаге, строительных материалах и т.д. Биоцидная композиция для получения покрытий состоит из...
Тип: Изобретение
Номер охранного документа: 0002581866
Дата охранного документа: 20.04.2016
25.08.2017
№217.015.caeb

Способ получения иммобилизованных бислойных везикул

Изобретение относится к области биохимии и биотехнологии. Предложен способ получения иммобилизованных бислойных везикул путем обработки катионного носителя суспензией анионных бислойных везикул в водосодержащей среде. В предложенном способе носитель и/или иммобилизуемые везикулы содержат...
Тип: Изобретение
Номер охранного документа: 0002620077
Дата охранного документа: 22.05.2017
26.08.2017
№217.015.e76d

Способ получения иммобилизованных бислойных везикул

Изобретение относится к области биохимии, биотехнологии, биоаналитики и касается способа получения иммобилизованных бислойных везикул. Обрабатывают носитель, содержащий ковалентно связанный полимер и поверхностный отрицательный заряд, суспензией катионных бислойных везикул в водосодержащей...
Тип: Изобретение
Номер охранного документа: 0002627157
Дата охранного документа: 03.08.2017
10.04.2019
№219.016.ff3e

Способ очистки почв и грунтов от радионуклидов и тяжелых металлов

Изобретение относится к способам очистки почв и грунтов промзон АЭС, металлургических и радиохимических производств или территорий, подвергшихся загрязнению в результате техногенных аварий и катастроф. В соответствии с предлагаемым способом снимают загрязненный слой почвы и грунта, отделяют...
Тип: Изобретение
Номер охранного документа: 0002275974
Дата охранного документа: 10.05.2006
06.06.2019
№219.017.7480

Способ получения полиакрилата золота, проявляющего противоопухолевую активность

Изобретение относится к способу получения полиакрилата золота. Способ включает взаимодействие водных растворов полиакриловой кислоты и золотохлористоводородной кислоты. Перед введением в реакцию исходную полиакриловую кислоту подвергают проточному диализу и последующей лиофильной сушке. Водные...
Тип: Изобретение
Номер охранного документа: 0002690536
Дата охранного документа: 04.06.2019
13.12.2019
№219.017.ecd6

Применение полиакрилата золота в качестве ингибитора роста клеток меланомы человека

Изобретение относится к области медицинской химии и онкологии. Предложено применение полиакрилата золота (полимера полиакриловой кислоты, содержащего ионы золота (III)) в качестве цитотоксического средства для химиотерапии меланомы. Технический результат: полиакрилат золота обладает высокой...
Тип: Изобретение
Номер охранного документа: 0002708626
Дата охранного документа: 10.12.2019
+ добавить свой РИД