×
20.04.2016
216.015.35af

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ СИСТЕМЫ ОХЛАЖДЕНИЯ ЭЛЕКТРОННОГО И МИКРОЭЛЕКТРОННОГО ОБОРУДОВАНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области микроструктурных технологий. Способ включает нанесение множества наноструктурных областей с гидрофобными свойствами на поверхность 2 микроканала. Наноструктурные области выполняют в виде гидрофобных полос 1 шириной L. Наносят наноструктурные области поперек течения на гладкую поверхность микроканала на расстоянии В друг от друга при отношении L/B≥1. Значения L и В определяют исходя из свойств жидкости и поверхности. Обеспечивается эффективное снижение сопротивления при движении однофазного или двухфазного потока в микроканалах с гладкой поверхностью. 1 ил.
Основные результаты: Способ изготовления системы охлаждения электронного и микроэлектронного оборудования, содержащей микроканалы, включающий нанесение на поверхность микроканала наноструктурных областей с гидрофобными свойствами, отличающийся тем, что на гладкую поверхность микроканала наносят наноструктурные области с гидрофобными свойствами в виде гидрофобных полос шириной L поперек течения однофазного или двухфазного потока охлаждающей жидкости на расстоянии B друг от друга при отношении L/B≥1.

Изобретение относится к области микроструктурных технологий.

В последние десятилетия существенное развитие в технике и технологиях получило использование микроканалов. В целом ряде практических приложений могут использоваться достаточно протяженные микроканалы. Одним из таких приложений являются системы охлаждения электронного и микроэлектронного оборудования. Особенностью таких систем является локальность тепловыделения, т.е. когда жидкость сначала транспортируется к месту тепловыделения по адиабатической секции или участку системы. В ряде случаев поток жидкости в микроканале может охлаждать сразу несколько электронных компонентов, между которыми находятся адиабатические секции. Чаще всего в силу конструктивных особенностей мини- и микросистем размер канала должен оставаться неизменным на всем протяжении системы.

Одним из важнейших препятствий на пути внедрения и распространения микросистем с протяженными микроканалами являются значительные перепады давления вдоль канала. Значительные перепады давления вдоль канала, прежде всего, возникают из-за требования прокачивать строго определенное количество жидкости для обеспечения отвода определенного количества тепла. Часто в микросистемах (в системах охлаждения) используют кипящие среды, двухфазные потоки или пленочные течения. Однако проблема значительных перепадов давления вдоль канала остается для любых микросистем с участием не диспергированной жидкости. Сегодня эту проблему решают за счет использования покрытий с наноструктурными или микроструктурными областями, канавками или сквозными отверстиями. Во всех этих случаях приходится обрабатывать поверхность, что исключает использование этих способов на гладких поверхностях.

Задачей изобретения является создание эффективного способа снижения сопротивления при движении однофазного или двухфазного потока в микроканалах с гладкой поверхностью.

Известен способ и устройство для управления сопротивлением при движении потока жидкости на наноструктурированных или микроструктурированных поверхностях (патент US 2005069458, 2005 г., B01L 3/00; В81В 1/00; В81В 7/04; В82В 1/00; В82В 3/00; F15C 1/00; F15C 1/04; (IPC1-7): B01L 3/00), при котором для снижения сопротивления при движении потока жидкости на поверхность наносят множество наноструктурных или микроструктурных областей по заранее определенному шаблону. Наноструктурные или микроструктурные области представляют собой ячейки. Параметры областей можно менять для достижения желаемого уровня сопротивления при движении потока жидкости.

Известен способ микроканального охлаждения (патент ЕР 1662852 (A1), 2006 г., H01L 23/473; Н05К 7/20), при котором для снижения сопротивления при движении потока жидкости на поверхность микроканала наносят множество наноструктурных областей с гидрофобным покрытием. Наноструктурные области представляют собой выступающие структуры. Параметры наноструктурных областей, а также расстояние между ними определяют из свойств жидкости и поверхности.

Недостатками этих технических решений являются:

1) невозможность использования на гладких поверхностях;

2) высокие энергетические затраты на прокачку теплоносителя.

Наиболее близким к заявляемому является способ крепления микропузыря на поверхности пластины (патент US 20100166964, 2008 г., B05D 5/08), при котором для снижения сопротивления при движении потока жидкости на поверхности формируют множество канавок, в которых формируются пузыри, при этом канавки обрабатывают материалом с гидрофобными свойствами. В другом варианте для снижения сопротивления при движении потока жидкости на поверхности формируют множество сквозных отверстий, обработанных материалом с гидрофобными свойствами, где также образуются пузыри. Размер канавок и отверстий в диапазоне 1-1000 мкм.

Недостатком этого способа является невозможность его использования на гладких поверхностях, т.к. при формировании канавок или отверстий происходит повреждение поверхности.

Задачей изобретения является создание способа изготовления системы охлаждения электронного и микроэлектронного оборудования, при котором обеспечивается снижение сопротивления при движении однофазного или двухфазного потока в микроканалах с гладкой поверхностью.

Поставленная задача решается тем, что в способе изготовления системы охлаждения электронного и микроэлектронного оборудования, содержащей микроканалы, при котором на поверхность микроканала наносят наноструктурные области с гидрофобными свойствами, согласно изобретению на гладкую поверхность микроканала наносят наноструктурные области с гидрофобными свойствами в виде гидрофобных полос шириной L поперек течения однофазного или двухфазного потока охлаждающей жидкости на расстоянии В друг от друга при отношении L/В≥1.

Гидрофобные полосы чередуются с необработанной поверхностью микроканала, которая обычно обладает гидрофильными свойствами. Мелкие пузырьки газа, которые обычно имеются в технических и технологических системах, осаждаются на гидрофобных полосах. Пузырьки коагулируют и образовывают «пузырьковый слой», который удерживается за счет контрастной смачиваемости на поверхности микроканала. При необходимости микро- или макропузырьки газа или воздуха могут быть специально добавлены в систему. При определенных условиях «пузырьковый слой» может превращаться в сплошной газовый слой. Известно, что вязкость газа на несколько порядков меньше, чем жидкостей, что и обеспечивает значительное снижение сопротивления при движении потока и, как следствие, снижение перепада давления вдоль микроканала, а значит снижение энергетических затрат на прокачку теплоносителя.

Гидрофобные полосы наносят практически, не повреждая гладкую поверхность микроканала.

На фиг. 1 представлен общий вид поверхности микроканала с нанесенными гидрофобными полосами.

1 - гидрофобные полосы, 2 - необработанная поверхность микроканала, 3 - источник тепловыделения.

Способ осуществляется следующим образом.

Гидрофобные полосы наносят поперек течения на гладкую поверхность микроканала. Гидрофобные полосы чередуются с необработанной поверхностью микроканала, которая обычно бывает гидрофильной. Мелкие пузырьки газа, которые обычно имеются в технических и технологических системах, осаждаются на гидрофобных полосах. Граница контрастного смачивания удерживает пузырьки и препятствует их распространению вдоль потока. Данный факт подтвержден экспериментально для условий земной гравитации, микрогравитации и гипергравитации до 1.8×g0 (Kabov О.A., Cheverda V., Biondi F., Zaytsev D., Chikov S., Queeckers P., Marengo M., Araneo L., Rioboo R., de Coninck J., Glushchuk A., Bykovskaya E., Iorio C, Bourdon В., and Memoli M., Dynamics and Boiling Incipience in Microgravity, pp 61, Results of ESA Parabolic Flights Experiments, Fifth International Topical Team Workshop on Two-Phase Systems for Ground and Space Applications, Kyoto, Japan, September 26-29, Book of Abstracts, 2010). В качестве рабочей жидкости использовалась вода в качестве поверхности - кремниевая подложка. Эксперименты показывают, что для условий земной гравитации гидрофобная зона покрыта пузырями размером, не превышавшим, как правило, 1 мм. Область пузырей четко ограничена границей контрастного смачивания.

Пузырьки могут коагулировать и образовывать «пузырьковый слой», который удерживается за счет контрастной смачиваемости на поверхности микроканала. При необходимости микро- или макропузырьки газа или воздуха могут быть специально добавлены в систему. При определенных условиях «пузырьковый слой» может превращаться в сплошной газовый слой. Предполагается, что пузыри имеют форму сфероидов, причем их высота намного меньше основания. Пузыри перекрывают только незначительную часть сечения микроканала и практически не повышают сопротивления. Размер основания и высота пузыря могут регулироваться статическим контактным углом смачивания, обеспечиваемым наноструктурным покрытием (гидрофобными полосами), а также шириной этих полос.

Для получения гидрофобных полос часть поверхности микроканала обрабатывается химическим способом (нанесением монослоя молекул другого вещества) так, чтобы на поверхности появилась область с наноразмерной шероховатостью и более высоким значением контактного угла смачивания. Области поверхности с нанесенными на нее наноструктурами являются гидрофобными относительно остальной поверхности. Толщина наноструктур может составлять порядка 1 нм, в зависимости от типа поверхности, и не является принципиальным параметром, т.е. заметным термическим сопротивлением и заметным сужением канала. Разница между контактными углами смачивания на гидрофобных полосах и полосах с необработанной поверхностью должна составлять от 20-40 градусов и более.

Известно, что вязкость газа на несколько порядков меньше, чем жидкостей, что и обеспечивает значительное снижение сопротивления при движении потока и, как следствие, снижение перепада давления вдоль канала, а значит снижение энергетических затрат на прокачку теплоносителя. Снижение трения будет пропорционально отношению ширины гидрофобных полос к ширине полос необработанной поверхности канала, т.е. L/B. При значении L/B>>1 ожидается снижение сопротивления канала в 2 и более раз. Предполагается, что минимальная ширина полос необработанной поверхности канала по технологическим требованиям не может быть менее 100-300 мкм. Ширина гидрофобных полос определяется размерами основания пузыря, а также условиями их коагуляции и может составлять до 5000 мкм и более. Таким образом, условие L/B>>1 реально может быть достигнуто в предложенной системе.

Способ изготовления системы охлаждения электронного и микроэлектронного оборудования, содержащей микроканалы, включающий нанесение на поверхность микроканала наноструктурных областей с гидрофобными свойствами, отличающийся тем, что на гладкую поверхность микроканала наносят наноструктурные области с гидрофобными свойствами в виде гидрофобных полос шириной L поперек течения однофазного или двухфазного потока охлаждающей жидкости на расстоянии B друг от друга при отношении L/B≥1.
СПОСОБ ИЗГОТОВЛЕНИЯ СИСТЕМЫ ОХЛАЖДЕНИЯ ЭЛЕКТРОННОГО И МИКРОЭЛЕКТРОННОГО ОБОРУДОВАНИЯ
СПОСОБ ИЗГОТОВЛЕНИЯ СИСТЕМЫ ОХЛАЖДЕНИЯ ЭЛЕКТРОННОГО И МИКРОЭЛЕКТРОННОГО ОБОРУДОВАНИЯ
Источник поступления информации: Роспатент

Показаны записи 31-40 из 96.
20.04.2016
№216.015.3422

Способ охлаждения электронного оборудования с использованием конденсатора-пленкоформирователя

Изобретение относится к теплотехнике и может быть использовано при охлаждении электронного и микроэлектронного оборудования. Способ охлаждения электронного и микроэлектронного оборудования реализуется за счет использования конденсатора пара в качестве пленкоформирователя, обеспечивающего...
Тип: Изобретение
Номер охранного документа: 0002581522
Дата охранного документа: 20.04.2016
27.05.2016
№216.015.42c6

Вихревая топка

Изобретение относится к теплоэнергетике, а именно к топочным устройствам, работающим, в том числе, на низкосортном пылеугольном топливе, и может быть использовано в котельных установках на тепловых электростанциях. Вихревая топка содержит горизонтальную вихревую камеру горения с направляющим...
Тип: Изобретение
Номер охранного документа: 0002585347
Дата охранного документа: 27.05.2016
27.08.2016
№216.015.4d95

Способ оптимизации процесса сжигания угольного топлива в вихревой топке энергетической установки

Изобретение относится к теплоэнергетике, а более конкретно к способу оптимизации процесса сжигания угольного топлива в вихревой топке энергетической установки. Способ включает использование в режиме запуска энергетической установки угля микропомола с размерами частиц не более 10 мкм,...
Тип: Изобретение
Номер охранного документа: 0002595304
Дата охранного документа: 27.08.2016
12.01.2017
№217.015.57bd

Способ синтеза наночастиц диоксида титана

Изобретение может быть использовано в химической промышленности. Для получения наночастиц диоксида титана проводят откачивание вакуумной камеры, наполнение ее инертным газом, зажигание электрической дуги постоянного тока между графитовым электродом и металл-углеродным композитным электродом....
Тип: Изобретение
Номер охранного документа: 0002588536
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.629a

Устройство для формирования ручейкового течения жидкости в микро- и мини-каналах (варианты)

Изобретение относится к области электроники, в частности к микромасштабным охлаждающим устройствам таким, как микроканальные теплообменники, которые обеспечивают высокие значения коэффициента теплопередачи при течении жидкостей в относительно небольших объемах. В устройстве для формирования...
Тип: Изобретение
Номер охранного документа: 0002588917
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.6ca0

Способ синтеза порошка суперпарамагнитных наночастиц feo

Изобретение может быть использовано при получении контрастирующих веществ в магниторезонансной диагностике, суспензий для магнитной сепарации белков и фрагментов молекул ДНК и РНК, для адресной доставки лекарственных средств. Синтез порошка суперпарамагнитных наночастиц FeOпроводят в два этапа....
Тип: Изобретение
Номер охранного документа: 0002597093
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.73cc

Сетчатый комбинированный термоприемник и способ измерения температурного поля газового потока в каналах

Изобретение относится к области измерительной техники и может быть использовано для измерения температуры движущихся газовых сред на выходе из реакторов и теплообменных аппаратов с различной структурой теплообменных поверхностей. Предложен сетчатый комбинированный термоприемник, содержащий...
Тип: Изобретение
Номер охранного документа: 0002597956
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.899e

Способ визуализации ограниченных (замкнутых) нестационарных вихревых течений

Изобретение относится к контрольно-измерительной технике и позволяет исследовать ограниченные (замкнутые) вихревые потоки жидкости. Изобретение может использоваться в фундаментальных и прикладных исследованиях в экспериментальной гидродинамике. Возможно применение в экологии, технологиях...
Тип: Изобретение
Номер охранного документа: 0002602495
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.9b5b

Триангуляционный способ измерения отклонения объекта и определения его ориентации в пространстве

Триангуляционный способ измерения отклонения объекта и определения его ориентации в пространстве содержит этап, на котором источник излучения формирует на поверхности исследуемого объекта световое пятно в виде двух пересекающихся световых линий за счет освещения исследуемого объекта засветкой в...
Тип: Изобретение
Номер охранного документа: 0002610009
Дата охранного документа: 07.02.2017
25.08.2017
№217.015.ab29

Способ ввода пучка электронов в среду с повышенным давлением

Изобретение относится к способу ввода пучка электронов в среду с повышенным давлением, при котором подачу газа осуществляют через систему напуска в сопловой блок, состоящий из двух кольцевых сопел (внутреннего и внешнего, по оси внутреннего кольцевого сопла имеется отверстие для прохождения...
Тип: Изобретение
Номер охранного документа: 0002612267
Дата охранного документа: 03.03.2017
Показаны записи 31-40 из 67.
20.04.2016
№216.015.3422

Способ охлаждения электронного оборудования с использованием конденсатора-пленкоформирователя

Изобретение относится к теплотехнике и может быть использовано при охлаждении электронного и микроэлектронного оборудования. Способ охлаждения электронного и микроэлектронного оборудования реализуется за счет использования конденсатора пара в качестве пленкоформирователя, обеспечивающего...
Тип: Изобретение
Номер охранного документа: 0002581522
Дата охранного документа: 20.04.2016
27.05.2016
№216.015.42c6

Вихревая топка

Изобретение относится к теплоэнергетике, а именно к топочным устройствам, работающим, в том числе, на низкосортном пылеугольном топливе, и может быть использовано в котельных установках на тепловых электростанциях. Вихревая топка содержит горизонтальную вихревую камеру горения с направляющим...
Тип: Изобретение
Номер охранного документа: 0002585347
Дата охранного документа: 27.05.2016
27.08.2016
№216.015.4d95

Способ оптимизации процесса сжигания угольного топлива в вихревой топке энергетической установки

Изобретение относится к теплоэнергетике, а более конкретно к способу оптимизации процесса сжигания угольного топлива в вихревой топке энергетической установки. Способ включает использование в режиме запуска энергетической установки угля микропомола с размерами частиц не более 10 мкм,...
Тип: Изобретение
Номер охранного документа: 0002595304
Дата охранного документа: 27.08.2016
12.01.2017
№217.015.57bd

Способ синтеза наночастиц диоксида титана

Изобретение может быть использовано в химической промышленности. Для получения наночастиц диоксида титана проводят откачивание вакуумной камеры, наполнение ее инертным газом, зажигание электрической дуги постоянного тока между графитовым электродом и металл-углеродным композитным электродом....
Тип: Изобретение
Номер охранного документа: 0002588536
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.629a

Устройство для формирования ручейкового течения жидкости в микро- и мини-каналах (варианты)

Изобретение относится к области электроники, в частности к микромасштабным охлаждающим устройствам таким, как микроканальные теплообменники, которые обеспечивают высокие значения коэффициента теплопередачи при течении жидкостей в относительно небольших объемах. В устройстве для формирования...
Тип: Изобретение
Номер охранного документа: 0002588917
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.6ca0

Способ синтеза порошка суперпарамагнитных наночастиц feo

Изобретение может быть использовано при получении контрастирующих веществ в магниторезонансной диагностике, суспензий для магнитной сепарации белков и фрагментов молекул ДНК и РНК, для адресной доставки лекарственных средств. Синтез порошка суперпарамагнитных наночастиц FeOпроводят в два этапа....
Тип: Изобретение
Номер охранного документа: 0002597093
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.73cc

Сетчатый комбинированный термоприемник и способ измерения температурного поля газового потока в каналах

Изобретение относится к области измерительной техники и может быть использовано для измерения температуры движущихся газовых сред на выходе из реакторов и теплообменных аппаратов с различной структурой теплообменных поверхностей. Предложен сетчатый комбинированный термоприемник, содержащий...
Тип: Изобретение
Номер охранного документа: 0002597956
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.899e

Способ визуализации ограниченных (замкнутых) нестационарных вихревых течений

Изобретение относится к контрольно-измерительной технике и позволяет исследовать ограниченные (замкнутые) вихревые потоки жидкости. Изобретение может использоваться в фундаментальных и прикладных исследованиях в экспериментальной гидродинамике. Возможно применение в экологии, технологиях...
Тип: Изобретение
Номер охранного документа: 0002602495
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.9b5b

Триангуляционный способ измерения отклонения объекта и определения его ориентации в пространстве

Триангуляционный способ измерения отклонения объекта и определения его ориентации в пространстве содержит этап, на котором источник излучения формирует на поверхности исследуемого объекта световое пятно в виде двух пересекающихся световых линий за счет освещения исследуемого объекта засветкой в...
Тип: Изобретение
Номер охранного документа: 0002610009
Дата охранного документа: 07.02.2017
25.08.2017
№217.015.ab29

Способ ввода пучка электронов в среду с повышенным давлением

Изобретение относится к способу ввода пучка электронов в среду с повышенным давлением, при котором подачу газа осуществляют через систему напуска в сопловой блок, состоящий из двух кольцевых сопел (внутреннего и внешнего, по оси внутреннего кольцевого сопла имеется отверстие для прохождения...
Тип: Изобретение
Номер охранного документа: 0002612267
Дата охранного документа: 03.03.2017
+ добавить свой РИД