×
20.04.2016
216.015.346d

Результат интеллектуальной деятельности: СПОСОБ СПУСКА ОТДЕЛЯЮЩЕЙСЯ ЧАСТИ СТУПЕНИ РАКЕТЫ КОСМИЧЕСКОГО НАЗНАЧЕНИЯ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к ракетно-космической технике и может быть использовано при спуске отделяющейся части ступени ракеты космического назначения (ОЧ РКН). ОЧ РКН содержит систему управления и навигации, топливный отсек, систему газификации жидких остатков топлива, 2 противоположно установленных друг другу сопла сброса, пиромембраны. Стабилизируют ОЧ в статически устойчивом положении, используют энергетику на основе газификации невыработанных остатков жидких компонентов ракетного топлива, обеспечивают угловое положение в пространстве, соответствующее минимальному углу атаки при входе в плотные слои атмосферы, совершают аэродинамический маневр, осуществляют управление движением центра масс и вокруг центра масс ОЧ путем раздельного сброса продуктов газификации (ПГ) из баков горючего и окислителя через регулируемые сопла газореактивной системы (ГС), осуществляют безмоментный сброс оставшихся продуктов газификации из баков через сопла сброса ГС. Изобретение позволяет повысить точность стабилизации ОЧ при штатных возмущениях, снизить массу и габариты системы утилизации ПГ, частоты колебаний ОЧ. 2 н.п. ф-лы, 4 ил., 2 табл.

Предлагаемые изобретения относятся к ракетно-космической технике и могут быть использованы для сокращения районов падения отделяющихся частей (ОЧ) ступеней ракет космического назначения (РКН).

Одной из основных проблем, связанных со снижением техногенного воздействия пусков РКН на окружающую среду, является наличие ОЧ, что приводит к необходимости выделять значительные территории для районов падения ОЧ, использованию энергетически неоптимальных схем выведения, а наличие невырабатываемых остатков жидкого топлива в баках ОЧ приводит к взрывам на орбитах и на атмосферном участке траектории спуска, проливам компонентов топлива в районах падения, увеличению разбросов фрагментов ОЧ и т.д.

Известен «Способ спуска отделяющейся части ступени ракеты космического назначения» (патент RU №2475429, МПК B64G 1/26, опубл. 20.02.2013), по которому программу управления работой газовых ракетных двигателей и движением ОЧ ступеней ракет космического назначения разделяют на внеатмосферный и атмосферный участки, которые разбивают на конечное число интервалов времени и определяют программу углового разворота и движения ОЧ на каждом интервале.

Наиболее близким к заявляемому является «Способ спуска отделяющейся части ракеты космического назначения на жидких компонентах топлива в заданный район падения и устройство для его осуществления» (патент RU №2414391, МПК B64G 1/26, B64C 15/14, опубл. 20.03.2011). Способ основан на стабилизации ОЧ положением двигательной установкой вперед, ориентации и управляемом движении ОЧ, после отделения ОЧ маневр спуска в заданный район падения осуществляют за счет энергетики, заключенной в невыработанных остатках компонентов жидкого топлива на основе их газификации и подачи в газовую ракетную двигательную установку (ГзРДУ) спуска, при этом управление движением центра масс и вокруг центра масс ОЧ осуществляют отклонениями камер ГзРДУ, а ОЧ на момент выключения ГзРДУ обеспечивают угловое положение в пространстве, соответствующее минимальному углу атаки при входе ее в плотные слои атмосферы, и закручивают ОЧ вокруг ее продольной оси. Величину невыработанных остатков жидкого топлива формируют с учетом спуска ОЧ в заданный район падения, а завершение активного участка маневра спуска осуществляют до входа в плотные слои атмосферы и сохранения управляемости ОЧ с помощью камер ГзРДУ.

Отделяющаяся часть ракеты космического назначения на жидких компонентах топлива включает в свой состав систему управления и навигации, систему газификации, причем на верхнем днище топливного отсека установлены четыре камеры, каждая из которых оснащена приводом, а система газификации имеет автономный газогенератор с мембранной системой подачи компонентов топлива, возбудители акустических колебаний, размещенные на штуцерах ввода теплоносителя в топливные баки.

К недостаткам известных технических решений относятся:

- наличие ГзРДУ, что требует использования тяжелых камер сгорания, каждая из которых устанавливается в одностепенный управляемый привод, масса ГзРДУ многократно больше, чем масса сопел ГРС из-за высокой температуры продуктов сгорания;

- ГзРДУ необходима при реализации импульсов спуска с орбиты, изменения точки падения (управление движением центра масс), но не эффективна в режиме стабилизации (управление относительно центра масс) при полете ОЧ на атмосферном участке траектории спуска (АУТС), т.к. конструкция приводов, углы прокачки, приводят к существенному утяжелению конструкции;

- при газификации топлива в баках состав продуктов газификации, поступающий из баков в ГзРДУ, переменный по времени, что приводит к тому, что процесс сгорания в камере носит неустойчивый характер с переменной скоростью истечения и, соответственно, переменной тягой;

- не используется возможность аэродинамического маневра, что, как показали проведенные оценки для данного класса траекторий входа и параметров смещения точек падения ОЧ, более эффективна, чем придание импульса центру масс ОЧ с помощью ГзРДУ.

Техническим результатом предлагаемого технического решения является устранение указанных недостатков, повышение точности стабилизации ОЧ при штатных возмущениях, снижение массы и габаритов системы утилизации ПГ и частоты колебаний ОЧ.

Указанный технический результат достигается тем, что в способе спуска отделяющейся части (ОЧ) ступени ракеты-носителя (РН) на жидких компонентах ракетного топлива (КРТ) в заданный район падения, основанном на стабилизации ОЧ в статически устойчивом положении, использовании энергетики, заключенной в невыработанных остатках жидкого КРТ на основе их газификации, обеспечении углового положения в пространстве, соответствующего минимальному углу атаки при входе ее в плотные слои атмосферы, согласно заявляемому изобретению, после отделения ОЧ управление спуском в заданный район падения осуществляют на атмосферном участке траектории спуска ОЧ за счет аэродинамического маневра, при этом управление движением центра масс и вокруг центра масс ОЧ осуществляют путем раздельного сброса продуктов газификации (ПГ) из баков горючего и окислителя через регулируемые сопла газореактивной системы (ГРС), после завершения маневра осуществляют безмоментный сброс оставшихся ПГ из баков через сопла сброса ГРС.

В части устройства для осуществления способа указанный технический результат достигается тем, что в ОЧ ракеты, включающей в свой состав систему управления и навигации, топливный отсек, систему газификации жидких остатков топлива, согласно заявляемому изобретению, в плоскости стабилизации тангажа (рыскания), крена на максимальном удалении от центра масс установлены по 2 сопла сброса противоположно друг другу, соединенные магистралями подачи ПГ через пиромембраны, регулируемые клапана с соответствующими баками.

Сущность технического решения поясняется чертежом, где

- на фиг. 1 поясняются действия способа;

- на фиг. 2 приведена схема работы ГРС в канале тангажа на примере ОЧ второй ступени РКН «Союз 2.1.в» (блок И);

- на фиг. 3 приведена схема работы ГРС в канале крена;

- на фиг. 4 приведены параметры траектории спуска на примере ОЧ первой ступени РКН типа «Союз-2.1.в».

Выведение РКН на активном участке траектории первой ступени 1 осуществляется по оптимальной программе тангажа. После отделения ОЧ первой ступени в точке траектории 2 в соответствии с прототипом осуществляется маневр ОЧ с помощью ГзРДУ, обеспечивающий дальнейший полет ОЧ по баллистической траектории спуска, состоящей из внеатмосферного участка 3, входа в атмосферу 4 и атмосферного участка 5 с падением ОЧ на поверхность Земли в заданной точке 6. Для обеспечения стабилизированного полета ОЧ при входе атмосферу в соответствии с прототипом обеспечивают закрутку ОЧ вокруг продольной оси.

В том случае, если не осуществлять маневр спуска ОЧ, то после отделения ОЧ в точке 2 она совершит спуск по номинальной баллистической траектории 7,8 с падением в точку 9, которая, как правило, при оптимальной программе выведения РКН, находится вне выделенного района падения, которому принадлежит заданная точка прицеливания 6.

В соответствии с предлагаемым способом маневр спуска ОЧ в заданную точку прицеливания 6 осуществляется с использованием сопел ГРС на атмосферном участке траектории спуска 10 за счет использования нормальной составляющей аэродинамической силы.

Раздельный сброс ПГ газификации из баков О, Г через сопла ГРС обусловлен следующим:

- минимизация массы магистралей подачи ПГ, т.к. сопла сброса ПГ находятся в непосредственной близости относительно баков О, Г;

- в соплах ГРС не предусмотрено химическое взаимодействие ПГ;

- для решения задачи стабилизации ОЧ при ее управляемом полете величины тяг сопел сброса ГРС достаточны;

- сброс ПГ через сопла ГРС начинается после достижения в баках О, Г заданного давления при подаче в бак горячих газов (выход системы газификации на заданный режим).

Безмоментный сброс ПГ из баков О, Г осуществляется исходя из следующих условий:

- обеспечение прочности конструкции баков при повышении давления;

- необходимость расходования токсичных ПГ до момента падения ОЧ на поверхность Земли.

В таблице 1 приведен сравнительный анализ двух способов спуска: приложения импульса к центру масс ОЧ с использованием ГзРДУ и аэродинамический маневр для ОЧ первой ступени с использованием ГРС на АУТС.

Из результатов сравнительного анализа, приведенного в таблице 1, следует, что для ОЧ первой ступени РКН, совершающей большую часть траектории движения в атмосфере, использование аэродинамического маневра с использованием ГРС предпочтительнее по сравнению с использованием ГзРДУ.

На ступени 11 в плоскости тангажа Х1ОY1 установлены сопла сброса 12, 13 продуктов газификации из бака (Г) и бака (О) 14, 15, обеспечивающие управляющие моменты относительно центра масс 16 для компенсации аэродинамических возмущающих моментов, прилагаемых к центру давления 17. Управление тягой сопел сброса продуктов газификации из бака (Г), (О) осуществляется регулируемыми клапанами 18, 19. Сопла сброса 20, 21 продуктов газификации из бака (О) в канале крена соединены через регулируемый клапан 22, а сопла сброса 23, 24 продуктов газификации из бака (Г) соединены через регулируемый клапан 25. Подача теплоносителя в баки (Г), (О) осуществляется из газогенераторов 26, 27.

После отделения ОЧ 11 в точке 2 траектории спуска, запускаются газогенераторы 26, 27 системы газификации. После достижения заданного давления в баках (О), (Г) вскрываются пиромембраны 28, 29, соответственно. Продукты газификации поступают через регулируемые клапаны 18, 19, 22, 25 из баков (Г), (О) на сопла сброса продуктов газификации 12, 13, 14, 15, 20, 21, 23, 24.

На ОЧ 11 на расстоянии LгрсГ от центра масс 16 установлены противоположно друг другу относительно продольной оси OX1 2 сопла сброса ПГ 12, 13 из бака (Г) и создают тяги перпендикулярно продольной оси OX1.

Управляющие моменты в канале тангажа от сопел сброса ПГ из бака (Г) будут:

Аналогично установлены сопла сброса ПГ из бака (О) 14, 15, создающие управляющие моменты в канале тангажа:

Эти управляющие моменты формируются одновременно с использованием ПГ из баков (О) и (Г), поэтому можно записать:

Регулирование величин управляющих моментов обеспечивается за счет изменения тяг сопел сброса ГРС:

путем изменения секундного расхода ПГ через сопла 12, 13, 14, 15 регулирующими клапанами 18, 19, в результате чего тяга каждого сопла может изменяться в интервале [0, Рмакс].

Сопла сброса ПС из бака (О) 20, 21 и регулирующий клапан 22 установлены противоположно соплам сброса ПС из бака (Г) 23, 24 с регулирующим клапаном 25 на расстояниях Rгрс от продольной оси ОХ1. Наиболее предпочтительное место расположения ГРС по крену с точки зрения минимизации подводящих газовых магистралей между баками (О) и (Г).

Управляющие моменты в канале крена формируются по аналогии с управляющими моментами в канале тангажа Mz1, а именно, путем сброса ПГ с баков (О), (Г):

Тяга сопел в канале крена регулируется с использованием регулируемых клапанов 22, 25 в диапазоне [0, Рмакс].

Управление в канале рыскания осуществляется тем же составом сопел сброса ПГ, при этом осуществляется разворот ОЧ вокруг продольной оси OX1 на 90°. Учитывая низкие частоты процесса стабилизационных колебаний (фиг. 4), возникает возможность использования маневра по крену и отказа от установки дополнительных 4 сопел сброса ПГ для управления в канале рыскания.

В общем случае возможна установка сопел сброса ПГ и в канале рыскания, конкретное решение о составе ГРС, т.е. дополнительной установке сопел сброса в канале рыскания, принимается в зависимости от динамических характеристик ОЧ (частоты и амплитуды стабилизационных колебаний ОЧ, которые определяются эффективностью управляющих органов , коэффициентами настроек автомата стабилизации (см., например, кн. 1 Разоренов Г.Н., Бахрамов Э.А., Титов Ю.Ф. Системы управления летательными аппаратами (баллистическими ракетами и их головными частями). М.: Машиностроение, 2003. - 583 с.) при движении на атмосферном участке спуска).

При предлагаемом способе спуска (использованием аэродинамического воздействия для смещения точки падения ОЧ) ГРС служит для формирования управляющего момента Му, который уравновешивает аэродинамический момент Ма при движении ОЧ с балансировочным углом атаки α, определяемым из условия смещения ОЧ в точку 6.

Система угловой стабилизации решает задачу отработки потребного угла атаки αП и формирует управляющий момент Му, который рассчитывается по формуле:

где:

- коэффициент нормальной составляющей аэродинамической силы,

q, S - скоростной напор и площадь миделя ОЧ, соответственно,

xD, xC - координаты центров масс и давления ОЧ,

kω, kα - коэффициенты усиления системы стабилизации по рассогласованию угловой скорости (ω-ωП) и угла отклонения (α-αП) от программной траектории.

Первое слагаемое обеспечивает программное значение угла атаки αП, второе и третье формируют обратную связь по скорости и рассогласованию от программной траектории, обеспечивая качество переходного процесса системы угловой стабилизации. При этом учитывается ограничение:

Для обеспечения программного значения угла атаки αП величина управляющего момента ГРС определяется в соответствии с (6), (7). Из-за ограничения на управляющий момент (7) действительный угол атаки α может быть меньше потребного αП.

На фиг. 4 приведены параметры траектории спуска на примере ОЧ первой ступени РКН типа «Союз-2.1.в», пунктиром - программные значения, сплошной - фактические: угол наклона траектории θ(t), угол тангажа ϑ(t), угловая скорость ω(t), действительный α(t) и потребный угол атаки αП(t), поперечная аэродинамическая сила Y1(t) при исходных данных, приведенных в табл. 2

Из приведенных результатов следует, что предложенный способ спуска и устройство для его реализации являя.тся работоспособными и эффективными для спуска ОЧ первой ступени РКН на АУТС:

- обеспечивают высокую точность стабилизации ОЧ при штатных возмущениях и, соответственно, малые отклонения точки падения от расчетной точки (0,18 км);

- позволяют обеспечивать смещение точки падения ОЧ (до 30 км, что соответствует 5% от начальной дальности), эту величину можно существенно увеличить (до 20%), для этого необходимо увеличить допустимый угол атаки, тягу сопел ГРС;

- частоты колебаний ОЧ малы, что позволяет использовать установку сопел ГРС только в одном канале (тангажа или рыскания);

- достигается снижение массы системы утилизации ПГ по сравнению с прототипом более чем на 20% за счет отсутствия магистрали подачи горючего в ГзРДУ, камер ГзРДУ и приводов, рамы крепления ГзРДУ и приводов.


СПОСОБ СПУСКА ОТДЕЛЯЮЩЕЙСЯ ЧАСТИ СТУПЕНИ РАКЕТЫ КОСМИЧЕСКОГО НАЗНАЧЕНИЯ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ СПУСКА ОТДЕЛЯЮЩЕЙСЯ ЧАСТИ СТУПЕНИ РАКЕТЫ КОСМИЧЕСКОГО НАЗНАЧЕНИЯ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ СПУСКА ОТДЕЛЯЮЩЕЙСЯ ЧАСТИ СТУПЕНИ РАКЕТЫ КОСМИЧЕСКОГО НАЗНАЧЕНИЯ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ СПУСКА ОТДЕЛЯЮЩЕЙСЯ ЧАСТИ СТУПЕНИ РАКЕТЫ КОСМИЧЕСКОГО НАЗНАЧЕНИЯ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ
Источник поступления информации: Роспатент

Показаны записи 161-161 из 161.
29.05.2018
№218.016.5565

Динамический гаситель колебаний

Изобретение относится к области машиностроения. Динамический гаситель колебаний содержит корпус. Инерционная масса расположена внутри корпуса в виде рабочей жидкости (6). Рабочая жидкость заключена в резинокордную оболочку (2) и сообщена с входными отверстиями инерционных трубок (3). Выходные...
Тип: Изобретение
Номер охранного документа: 0002654241
Дата охранного документа: 17.05.2018
Показаны записи 161-170 из 181.
17.02.2018
№218.016.2a78

Способ проведения лётно-конструкторских испытаний автономного стыковочного модуля для очистки орбит от космического мусора

Изобретение относится к ракетно-космической технике. Способ проведения летно-конструкторских испытаний (ЛКИ) автономного стыковочного модуля (АСМ) для очистки орбит от крупногабаритного космического мусора основан на выборе мишени из имеющихся на орбитах для их увода на орбиты утилизации,...
Тип: Изобретение
Номер охранного документа: 0002643020
Дата охранного документа: 29.01.2018
10.05.2018
№218.016.4b5b

Способ моделирования процесса газификации остатков жидкого компонента ракетного топлива в баках отработавшей ступени ракеты-носителя и устройство для его реализации

Изобретение относится к ракетно-космической технике. Способ и устройство моделирования процесса газификации остатков жидкого компонента ракетного топлива в баках отработавшей ступени (ОС) ракеты-носителя, основанный на введении в экспериментальную модельную установку (ЭМУ) теплоносителя (ТН),...
Тип: Изобретение
Номер охранного документа: 0002651645
Дата охранного документа: 23.04.2018
29.05.2018
№218.016.55b6

Способ газификации невырабатываемых остатков жидкого кислорода и керосина в баках ступени ракеты-носителя и устройство для его реализации

Группа изобретений относится к ракетно-космической технике. Способ газификации невырабатываемых остатков жидкого кислорода и керосина в баках ступени ракеты-носителя после выключения маршевого жидкостного ракетного двигателя основан на подаче теплоты в баки с остатками компонентов топлива в...
Тип: Изобретение
Номер охранного документа: 0002654235
Дата охранного документа: 17.05.2018
12.07.2018
№218.016.6fbf

Способ газификации остатков жидкого компонента топлива в баке отработавшей ступени ракеты-носителя и устройство для его реализации

Группа изобретений относится к ракетно-космической технике. Способ газификации остатков жидкого компонента топлива (КТ) в баке отработавшей ступени ракеты-носителя (РН) основан на подаче горячих газов (теплоносителя) в топливный бак и сбросе продуктов газификации (ПГ) по достижении заданного...
Тип: Изобретение
Номер охранного документа: 0002661047
Дата охранного документа: 11.07.2018
21.11.2018
№218.016.9f18

Способ минимизации зон отчуждения отделяемых частей ракеты-носителя

Изобретение относится к ракетно-космической технике и может быть использовано для сокращения районов падения отделяющихся частей ступеней ракет-носителей. Технический результат - снижение площадей зон отчуждения из-за отделяемых частей за счет обеспечения их полного сгорания на атмосферном...
Тип: Изобретение
Номер охранного документа: 0002672683
Дата охранного документа: 19.11.2018
29.12.2018
№218.016.ad23

Способ очистки орбит от объектов космического мусора

Изобретение относится к методам и средствам очистки орбит от космического мусора, главным образом отработанных ступеней (ОС) ракет-носителей. Способ включает выведение в область очистки космического аппарата-буксира (КАБ) (1) и автономного стыковочного модуля (АСМ) (2) на тросе (4). АСМ (2)...
Тип: Изобретение
Номер охранного документа: 0002676368
Дата охранного документа: 28.12.2018
24.01.2019
№219.016.b338

Способ моделирования процесса тепло- и массообмена при испарении жидкости и устройство для его реализации

Группа изобретений относится к ракетно-космической технике и может быть использована при проведении экспериментальных исследований при физическом моделировании процессов испарения остатков жидкого топлива в баках отделяющихся частей ступеней ракет-носителей. Раскрыт способ моделирования...
Тип: Изобретение
Номер охранного документа: 0002677868
Дата охранного документа: 22.01.2019
10.04.2019
№219.017.0744

Способ управления ракетами космического назначения

Изобретение относится к ракетно-космической технике и может быть использовано при расчете энергетически оптимальных программ управления выведением первых ступеней ракет космического назначения (РКН) исходя из снижения влияния ограничений, обусловленных обеспечением падения отделяющихся частей...
Тип: Изобретение
Номер охранного документа: 0002456217
Дата охранного документа: 20.07.2012
29.05.2019
№219.017.69f7

Способ увода космического мусора с орбит полезных нагрузок на основе использования отделившейся части ракеты-носителя, разгонного блока и устройство для его реализации

Изобретение относится к области космической техники и может быть использовано для очистки околоземного космического пространства от прекративших активное существование космических аппаратов, их обломков, отделившихся частей (ОЧ) последних ступеней ракет-носителей (РН) и разгонных блоков (РБ)....
Тип: Изобретение
Номер охранного документа: 0002462399
Дата охранного документа: 27.09.2012
04.06.2019
№219.017.72e2

Способ проведения лётно-конструкторских испытаний бортовой системы испарения остатков жидкого топлива в баке отработавшей ступени ракеты-носителя

Изобретение относится к автономной бортовой системе спуска (АБСС) отработавшей ступени (ОС) ракеты-носителя (РН) с маршевыми ЖРД. Способ включает испытания входящей в состав АБСС системы испарения остатков жидкого топлива в баке ОС в процессе пуска РН, исключая другие элементы АБСС. Перед...
Тип: Изобретение
Номер охранного документа: 0002690304
Дата охранного документа: 31.05.2019
+ добавить свой РИД