×
10.04.2016
216.015.3210

ИМПУЛЬСНЫЙ ЛАЗЕР С ОПТИКО-МЕХАНИЧЕСКИМ ЗАТВОРОМ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к лазерной технике. Импульсный лазер с оптико-механическим затвором включает корпус, активный элемент и резонатор, состоящий из двух зеркал. Одно из зеркал закреплено неподвижно относительно корпуса, второе снабжено приводом и имеет возможность вращения таким образом, чтобы в рабочем положении зеркала были параллельны. Вращающееся зеркало в исходном положении развернуто относительно рабочего положения на угол φ, привод представляет собой гибкий стержень с электрозависимой кривизной, один конец которого закреплен на корпусе, второй имеет возможность перемещения. Гибкий стержень поверхностью связан с вращающимся зеркалом так, чтобы при поперечной деформации стержня зеркало могло вращаться, перемещаясь до рабочего положения. Стержень подключен своими электрическими контактами через ключ к источнику электропитания, а угол , где W - заданная угловая скорость вращающегося зеркала в момент наивысшей добротности резонатора, J - момент инерции вращения зеркала, M - вращающий момент, создаваемый гибким стержнем на вращающемся зеркале при замкнутом положении ключа. Технический результат заключается в повышении надежности и быстродействия лазера. 6 з.п. ф-лы, 3 ил.
Реферат Свернуть Развернуть

Изобретение относится к технике лазеров, а именно к лазерам с модуляцией добротности лазерного резонатора изменением положения одного из его зеркал.

Известны лазеры для формирования гигантских лазерных импульсов [1] путем включения добротности лазерного резонатора с помощью модуляторов добротности (затворов). Все они имеют те или иные недостатки - большую себестоимость, высокие управляющие напряжения, недостаточную надежность и эксплуатационную стойкость.

Наиболее близким по технической сущности к предлагаемому изобретению является лазер с резонатором, состоящим из двух зеркал, одно из которых закреплено неподвижно, а второе снабжено приводом и имеет возможность вращения таким образом, чтобы в одном из положений вращающееся и неподвижное зеркала резонатора становились параллельными [2]. В этом положении зеркал обеспечивается высокая добротность резонатора, достаточная для развития лазерной генерации. Скорость вращения зеркала в момент высокой добротности резонатора должна быть достаточной для возникновения лавинообразной генерации гигантского импульса. Оптимальная скорость вращения зеркала для разных типов лазеров составляет 10-20 тыс. об/мин. В качестве вращающегося зеркала обычно используют призму полного внутреннего отражения, обладающую высокими отражательными характеристиками и некритичную к наклонам оси вращения. В известном устройстве [2] приводом призмы является высокооборотный электродвигатель. Недостатки этого решения - относительно высокие габариты и недостаточная надежность существующих двигателей, а также создаваемые ими электрические и магнитные помехи. Последнее особенно недопустимо при наличии в составе системы, включающей лазер, чувствительных к таким помехам устройств, например электронного компаса.

Задачей изобретения является повышение надежности и быстродействия и снижение электрических и магнитных помех и наводок при минимальных габаритах и минимальной себестоимости лазера.

Эта задача решается за счет того, что в известном лазере, включающем корпус, активный элемент и резонатор, состоящий из двух зеркал, одно из которых закреплено неподвижно относительно корпуса, а второе снабжено приводом и имеет возможность вращения таким образом, чтобы в рабочем положении зеркала были параллельны, вращающееся зеркало в исходном положении развернуто относительно рабочего положения на угол φ, привод представляет собой гибкий стержень с электрозависимой кривизной, один конец которого закреплен на корпусе, а второй имеет возможность перемещения, а своей боковой поверхностью гибкий стержень связан с вращающимся зеркалом так, чтобы при поперечной деформации стержня зеркало могло вращаться, перемещаясь до рабочего положения, причем гибкий стержень подключен своими электрическими контактами через ключ к источнику электропитания, а угол ,

где W0 - заданная угловая скорость вращающегося зеркала в момент наивысшей добротности резонатора,

J - момент инерции вращения зеркала,

M - вращающий момент, создаваемый гибким стержнем на вращающемся зеркале при замкнутом положении ключа.

Гибкий стержень может быть выполнен в виде консоли, первый конец которой закреплен на корпусе, а второй конец боковой поверхностью связан с вращающимся зеркалом, причем стержень сориентирован так, чтобы направление электрозависимой деформации совпадало с направлением вращения зеркала в сторону его рабочего положения.

Гибкий стержень может быть выполнен в виде дуги, концы которой опираются на корпус параллельно вращающемуся зеркалу, а средняя часть связана с вращающимся зеркалом, причем стержень сориентирован так, чтобы направление электрозависимой деформации совпадало с направлением вращения зеркала в сторону его рабочего положения.

Концы гибкого стержня могут быть связаны с корпусом через качающееся звено.

Гибкий стержень может быть выполнен в виде биметаллической ленты, своими концами подключенной через ключ к источнику питания.

Гибкий стержень может быть выполнен в виде композиции по крайней мере двух слоев, из которых один представляет собой металл, а другой - диэлектрик, например стекло.

Гибкий стержень может быть выполнен из пьезоэлектрической ленты, на боковые грани которой нанесены металлические обкладки, подключенные через ключ к источнику питания.

На чертеже фиг. 1 представлена схема лазера. Фиг. 2 поясняет принцип устройства с консольным креплением стержня (фиг. 2а) и его опорой на два конца (фиг. 2б, в). На фиг. 3 показана геометрия бокового изгиба стержня и основные расчетные соотношения.

Устройство (фиг. 1) состоит из резонатора, образованного подвижным 1 и вращающимся 2 зеркалами, между которыми размещен активный элемент лазера 3. Вращающееся зеркало снабжено приводом 4 в виде стержня с электрозависимой кривизной, связанным с источником электропитания 5 через ключ 6. Стержень 4 выполнен в виде консоли 4 (фиг. 2а) одним концом соединенной с корпусом 7, а другим - с вращающимся зеркалом на расстоянии r от его оси вращения. В исходном положении стержень удерживает вращающееся зеркало 2 под углом φ к рабочему положению, в котором вращающееся зеркало параллельно неподвижному зеркалу 1. В варианте фиг. 2б) стержень выполнен в виде дуги, опертой концами на корпус 7. На фиг. 2в) второй конец стержня опирается на качающееся звено 8.

Лазер работает следующим образом.

В исходном состоянии вращающееся зеркало 2 расположено под углом φ к неподвижному зеркалу 1. При этом добротность резонатора, образуемого этими зеркалами, недостаточна для возникновения лазерной генерации. При замыкании ключа 6 через гибкий стержень в виде консоли 4 (фиг. 2а) или дуги (фиг. 2б, в) начинает протекать ток, вызывающий его нагревание. Вследствие температурной боковой деформации стержня его подвижный конец давит на зеркало 2 (фиг. 2а), вызывая вращение зеркала. Если стержень оперт на корпус двумя концами (фиг. 2б, в), то при нагревании стержня давление на зеркало 2 оказывает его средняя часть. Когда приводимое таким образом во вращение зеркало становится параллельным неподвижному зеркалу, добротность резонатора возрастает до уровня, достаточного для возникновения генерации гигантского лазерного импульса. Скорость возрастания добротности резонатора должна быть соизмерима со скоростью развития генерации, известной для каждого типа лазеров. Это налагает соответствующие требования к скорости W вращения зеркала 2, которая в положении высокой добротности должна быть порядка 500-2000 рад/сек.

Гибкий стержень с электрозависимой кривизной может представлять собой биметаллическую, металлостеклянную или металлокерамическую композицию. При нагревании токопроводящего слоя протекающим через него током кривизна двухслойного стержня k, то есть величина, обратная радиусу изгиба стержня, изменяется согласно зависимости [3]

где ε=(α12)ΔT;

E1 и E2 - модуль упругости материалов 1 и 2;

h1 и h2 - толщина материалов 1 и 2;

α1 и α2 - коэффициент теплового расширения материалов 1 и 2;

ΔТ - разность температур до и после нагревания гибкого стержня.

В исходном состоянии стержню может быть придана предварительная кривизна. Ее величина определяется комплексными требованиями по величине продольного перемещения стержня, развиваемом при этом ускорении вращающегося зеркала и предельно допустимой температуре стержня при минимальном расходе энергии на его нагрев.

Расчет гибкого стержня в виде пьезоэлектрической балки приведен в [4].

Механический расчет стержня содержится в [5].

Объем гибкого стержня должен быть минимальным для его быстрого разогрева и снижения энергозатрат. С этой целью при заданной длине он должен иметь минимальное поперечное сечение.

Если вращающееся зеркало выполнено в виде призмы полного внутреннего отражения с равными сторонами ее гипотенузной грани, то справедливы следующие расчетные соотношения [6].

Момент инерции вращения призмы J=Jx~ma2/10, где а - сторона гипотенузной грани призмы; m=ρ·а3/4 - масса призмы; ρ - плотность материала призмы.

Угловое ускорение E призмы под действием вращающего момента M=Fr:E=M/J, где F - сила; r - плечо (фиг. 2).

Линейное ускорение точки приложения силы A=Er.

Угловая скорость W=Eτ призмы через время τ после начала воздействия силы F.

Линейное перемещение S=Aτ2/2 точки приложения силы F, оказываемой стержнем 4 при его изгибе.

Угловое перемещение φ=arctg(S/r) точки приложения силы F.

Пример 1

В качестве вращающегося зеркала использована призма полного внутреннего отражения с характеристиками ρ=2550 кг/м3; а=2·10-3 м. В этом случае

m=ρa3/4=2550·8·10-9/4~5·10-6 кг.

Jx~ma2/10=5·10-6·4·10-6/10~2·10-12 кгм2.

Пусть F=0,02 Н; r=2·10-3 м.

Тогда М=4·10-5 Нм.

Е=4·10-5/2·10-12=2·107 рад/с2.

Линейное ускорение точки приложения силы A=Er=2·107·2·10-3=4·104 м/с2.

При τ=10-4 с.

W=Eτ=2·107·10-4=2·103 рад/с.

Эквивалентная частота вращения w=W/6,28, ~320 об/с, ~20000 об/мин.

S=2·104·10-8/2=10-4 м = 0,1 мм.

φ=arctg(S/r)=arctg(0,1/2)~2,9°.

Прогиб, то есть боковое смещение стержня v при его изгибе (стрелка дуги), определяется при помощи выражения ,

где r=1/k - радиус изгиба стержня (1);

l - длина стержня.

В варианте фиг. 2а) боковое смещение конца стержня v1=2v.

Пример 2

Гибкий стержень представляет собой металлостеклянную ленту (пирекс + нихром) длиной L=20 мм с характеристиками.

1) Исходное положение ΔT=20°.

k1=0,002 1/мм. Радиус изгиба r1=1/k1=500 мм.

Угол θ, охватываемый дугой, θ1=L/r1=20/500=0,04 рад.

Хорда C1=2r1sin(θ1/2)=19,998 мм.

2) Рабочее положение ΔT=200°.

k2=0,02 1/мм. Радиус изгиба r2=1/k2=50 мм.

Угол θ, охватываемый дугой, θ2=L/r2=20/50=0,4 рад.

Хорда C2=2r2sin(θ2/2)=19,87 мм.

Продольное смещение Sп=C1-C2=0,13 мм.

Прогиб v=r2(1-cos((θ/2))=50(1-0,98)~1 мм.

Указанная величина прогиба на порядок превышает требуемое значение 0,1 мм, полученное в примере 1. Этот конструктивный запас позволяет уменьшить температуру нагрева стержня ΔТ, его длину l либо время разгона τ - в зависимости от ограничений по условиям применения.

Энергия ET=βmΔT, необходимая для нагрева стержня,

где β - теплоемкость;

mTTVT - масса стержня;

ρT - плотность материала стержня;

VT - объем стержня.

Пример 3

Гибкий стержень представляет собой металлостеклянную ленту с характеристиками токопроводящего слоя.

α=18·10-6 1/град (нихром); L=20 мм; ΔТ=200°.

Пусть габариты металлостеклянного стержня 0,01×0,01×2 см. Объем VT=2·10-4 см3.

Плотность нихрома ρT=7,94 г/см3; β=0,48 Дж/(кгК) при 25°C; 0,76 Дж/(кгК) при 800°C. В среднем для температуры 25+250=275°C теплоемкость β=0,57 Дж/(кгК). Масса стержня mTT·VT=7,94·2·10-4=1,6·10-3 г=1,6·10-6 кг.

ET=βmTΔT=0,57·1,6·10-6·200=0,18 мДж.

Характеристики источника питания

Потребляемая стержнем мощность

PT=ET/τ.

Для рассматриваемого примера

PT=ET/τ=0,18 мДж/0,1 мс=1,8 Вт.

Мощность, выделяемая в проводнике сопротивлением RT

Сопротивление RTRLT/ST~10-6·2·10-2/(0,1·0,1)·10-6=2 Ом,

где ρR ~ 1 мкОм·м - удельное сопротивление нихрома, LT=0,02 м - длина стержня; ST - поперечное сечение стержня.

Потребляемый ток

IT=(PT/RT)0,5=(1,8/2)0,5=0,95 А.

Напряжение источника

UTТ/IT=1,8/0,95~1,9 В.

Средняя потребляемая мощность PсрT·fизл, где fизл - частота излучений лазера.

При fизл=1 с-1 средняя потребляемая мощность составляет 1,8 мВт.

Механическую прочность стержня под воздействием рабочей нагрузки можно оценить по величине прогиба под действием реакции вращающегося зеркала F [5].

Прогиб v консоли длиной l под действием силы F

,

где E - модуль упругости стержня;

Jx - момент инерции поперечного сечения стержня;

для прямоугольного стержня Jx=bh3/12;

b и h - соответственно ширина и высота стержня.

Максимальный прогиб стержня, опертого на два конца

.

Пример 4

Прогиб опертого на два конца нихромового (E=105 Н/мм2) стержня длиной l=10 мм и габаритами поперечного сечения b×l=0,1 мм × 0,2 мм при F=10-2 Н

.

При таком «отрицательном» прогибе необходимое рабочее поперечное смещение стержня обеспечивается при заданных параметрах и имеющемся конструктивном запасе.

Согласно приведенным результатам, предлагаемый лазер с оптико-механическим затвором обладает минимальными габаритами механических составных частей и минимальной потребляемой мощностью при максимальном быстродействии: время разгона вращающегося зеркала составляет 0,1 мс и менее, тогда как ближайший аналог [2] имеет время разгона не менее 30 мс. Простота и низкое энергопотребление устройства обеспечивают его высокую надежность. Время от подачи управляющего импульса до момента излучения лазера минимально. По этим параметрам предлагаемый лазер превосходит ближайший и другие известные аналоги. Низкое напряжение питания и отсутствие трущихся контактов и магнитных элементов обеспечивают минимальный уровень паразитных электрических воздействий на другие элементы лазера и комплексной системы с ним.

Таким образом, предлагаемое устройство обеспечивает решение поставленной задачи, а именно повышение надежности и быстродействия и снижение электрических и магнитных помех и наводок при минимальных габаритах и минимальной себестоимости лазера.

Источники информации

1. В.А. Волохатюк и др. Вопросы оптической локации. Под ред. P.P. Красовского. Изд. «Советское радио», М., 1971 г., стр. 196.

2. «Справочник по лазерной технике». Под ред. Ю.В. Байбородина, Л.З. Криксунова, О.Н. Литвиненко. Изд. «Техника», Киев, 1978 г., стр. 152-154. - Прототип.

3. Clyne T.W. «Residual stresses in surface coatings and their effects on interfacial debonding.» Key Engineering Materials (Switzerland). Vol. 116-117, pp. 307-330. 1996.

4. A.B. Наседкин. Некоторые примеры конечно-элементного моделирования систем пьезоэлектрических датчиков и объектов контроля с вязкоупругими свойствами. http://www.pandia.ru/text/78/014/6789.php.

5. Биргер И.А., Мавлютов Р.Р. Сопротивление материалов. М.: Наука. Гл. ред. физ.-мат. лит., 1986 г. - 560 с.

6. Сивухин Д.В. Общий курс физики. Т. 1. Механика. 3-е изд. М.: Наука, 1989, §53 (http://genphys.phys.msu.ru/rus/lab/mech/opis7/i2.htm).


ИМПУЛЬСНЫЙ ЛАЗЕР С ОПТИКО-МЕХАНИЧЕСКИМ ЗАТВОРОМ
ИМПУЛЬСНЫЙ ЛАЗЕР С ОПТИКО-МЕХАНИЧЕСКИМ ЗАТВОРОМ
ИМПУЛЬСНЫЙ ЛАЗЕР С ОПТИКО-МЕХАНИЧЕСКИМ ЗАТВОРОМ
ИМПУЛЬСНЫЙ ЛАЗЕР С ОПТИКО-МЕХАНИЧЕСКИМ ЗАТВОРОМ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 48.
20.01.2013
№216.012.1d80

Лазерный измеритель дальности (варианты)

Лазерный измеритель дальности содержит передающий канал для формирования пучка зондирующего излучения и направления его на цель. Передающий канал включает лазерный излучатель и передающую оптическую систему. Параллельный ему приемный канал для приема отраженного целью сигнала включает...
Тип: Изобретение
Номер охранного документа: 0002473046
Дата охранного документа: 20.01.2013
20.02.2013
№216.012.27c6

Лазерный дальномер (варианты)

Лазерный дальномер содержит передающий канал для формирования пучка зондирующего излучения и направления его на цель, включающий лазерный излучатель и передающую оптическую систему. Параллельный ему приемный канал для приема отраженного целью сигнала включает фотоприемное устройство и приемный...
Тип: Изобретение
Номер охранного документа: 0002475702
Дата охранного документа: 20.02.2013
27.09.2013
№216.012.70d1

Генератор импульсов тока

Изобретение относится к технике формирования импульсов тока, в частности к устройствам питания импульсных газонаполненных ламп накачки твердотельных лазеров с разрядом через лампу накопительного конденсатора. Достигаемый технический результат - повышение надежности и сокращение массо-габаритных...
Тип: Изобретение
Номер охранного документа: 0002494532
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.70d2

Способ оптической накачки лазера

Изобретение относится к технике формирования импульсов тока в устройствах оптической накачки лазеров, например в источниках светодиодной накачки или в источниках питания импульсных газонаполненных ламп накачки с разрядом через лампу накопительного конденсатора. Достигаемый технический результат...
Тип: Изобретение
Номер охранного документа: 0002494533
Дата охранного документа: 27.09.2013
10.10.2013
№216.012.719a

Фармацевтические композиции, содержащие ипидакрин и их применение для лечения нарушений потенции и других форм половой активности

Изобретение относится к области медицины и химико-фармацевтической промышленности, а именно к применению ипидакрина в качестве средства для лечения нарушений потенции. Фармацевтическая композиция ипидакрина представляет собой таблетку, в том числе таблетку пролонгированного действия, либо...
Тип: Изобретение
Номер охранного документа: 0002494739
Дата охранного документа: 10.10.2013
10.02.2014
№216.012.9f87

Приемник импульсных оптических сигналов

Изобретение относится к технике приема импульсного оптического излучения, преимущественно к приемникам импульсных лазерных дальномеров и подобных устройств для измерения временных интервалов между оптическими импульсами. Приемник импульсных оптических сигналов, содержащий фотоприемник с...
Тип: Изобретение
Номер охранного документа: 0002506547
Дата охранного документа: 10.02.2014
10.04.2014
№216.012.b12a

Приемник импульсного оптического излучения

Изобретение относится к технике приема импульсного оптического излучения, преимущественно к приемникам импульсных лазерных дальномеров и подобных устройств для измерения временных интервалов между оптическими импульсами. Приемник импульсного оптического излучения, содержащий фотоприемник с...
Тип: Изобретение
Номер охранного документа: 0002511069
Дата охранного документа: 10.04.2014
20.05.2014
№216.012.c4e6

Лазерный дальномер

Изобретение относится к лазерной технике к аппаратуре лазерной дальнометрии. Лазерный дальномер содержит приемное устройство и передающее устройство, включающее объектив излучателя и лазерный излучатель, эквивалентное тело свечения которого габаритами А×В расположено в фокальной плоскости...
Тип: Изобретение
Номер охранного документа: 0002516165
Дата охранного документа: 20.05.2014
10.06.2014
№216.012.ce51

Лазерный дальномер

Изобретение относится к лазерной дальнометрии. Лазерный дальномер содержит приемное устройство и передающее устройство, включающее объектив излучателя и лазерный излучатель, эквивалентное тело свечения которого габаритами А×В расположено в фокальной плоскости объектива излучателя. Объектив...
Тип: Изобретение
Номер охранного документа: 0002518588
Дата охранного документа: 10.06.2014
10.04.2015
№216.013.36b1

Способ определения погрешностей инерциальных измерительных приборов при испытаниях на ударные и вибрационные воздействия

Изобретение относится к измерительной технике и может быть использовано для определения погрешностей инерциальных измерительных приборов, в частности лазерных гироскопов и маятниковых акселерометров, при стендовых испытаниях на ударные и вибрационные воздействия. Технический результат -...
Тип: Изобретение
Номер охранного документа: 0002545489
Дата охранного документа: 10.04.2015
Показаны записи 1-10 из 93.
20.01.2013
№216.012.1d80

Лазерный измеритель дальности (варианты)

Лазерный измеритель дальности содержит передающий канал для формирования пучка зондирующего излучения и направления его на цель. Передающий канал включает лазерный излучатель и передающую оптическую систему. Параллельный ему приемный канал для приема отраженного целью сигнала включает...
Тип: Изобретение
Номер охранного документа: 0002473046
Дата охранного документа: 20.01.2013
20.02.2013
№216.012.27c6

Лазерный дальномер (варианты)

Лазерный дальномер содержит передающий канал для формирования пучка зондирующего излучения и направления его на цель, включающий лазерный излучатель и передающую оптическую систему. Параллельный ему приемный канал для приема отраженного целью сигнала включает фотоприемное устройство и приемный...
Тип: Изобретение
Номер охранного документа: 0002475702
Дата охранного документа: 20.02.2013
27.09.2013
№216.012.70d1

Генератор импульсов тока

Изобретение относится к технике формирования импульсов тока, в частности к устройствам питания импульсных газонаполненных ламп накачки твердотельных лазеров с разрядом через лампу накопительного конденсатора. Достигаемый технический результат - повышение надежности и сокращение массо-габаритных...
Тип: Изобретение
Номер охранного документа: 0002494532
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.70d2

Способ оптической накачки лазера

Изобретение относится к технике формирования импульсов тока в устройствах оптической накачки лазеров, например в источниках светодиодной накачки или в источниках питания импульсных газонаполненных ламп накачки с разрядом через лампу накопительного конденсатора. Достигаемый технический результат...
Тип: Изобретение
Номер охранного документа: 0002494533
Дата охранного документа: 27.09.2013
10.10.2013
№216.012.719a

Фармацевтические композиции, содержащие ипидакрин и их применение для лечения нарушений потенции и других форм половой активности

Изобретение относится к области медицины и химико-фармацевтической промышленности, а именно к применению ипидакрина в качестве средства для лечения нарушений потенции. Фармацевтическая композиция ипидакрина представляет собой таблетку, в том числе таблетку пролонгированного действия, либо...
Тип: Изобретение
Номер охранного документа: 0002494739
Дата охранного документа: 10.10.2013
10.02.2014
№216.012.9f87

Приемник импульсных оптических сигналов

Изобретение относится к технике приема импульсного оптического излучения, преимущественно к приемникам импульсных лазерных дальномеров и подобных устройств для измерения временных интервалов между оптическими импульсами. Приемник импульсных оптических сигналов, содержащий фотоприемник с...
Тип: Изобретение
Номер охранного документа: 0002506547
Дата охранного документа: 10.02.2014
10.04.2014
№216.012.b12a

Приемник импульсного оптического излучения

Изобретение относится к технике приема импульсного оптического излучения, преимущественно к приемникам импульсных лазерных дальномеров и подобных устройств для измерения временных интервалов между оптическими импульсами. Приемник импульсного оптического излучения, содержащий фотоприемник с...
Тип: Изобретение
Номер охранного документа: 0002511069
Дата охранного документа: 10.04.2014
20.05.2014
№216.012.c4e6

Лазерный дальномер

Изобретение относится к лазерной технике к аппаратуре лазерной дальнометрии. Лазерный дальномер содержит приемное устройство и передающее устройство, включающее объектив излучателя и лазерный излучатель, эквивалентное тело свечения которого габаритами А×В расположено в фокальной плоскости...
Тип: Изобретение
Номер охранного документа: 0002516165
Дата охранного документа: 20.05.2014
10.06.2014
№216.012.ce51

Лазерный дальномер

Изобретение относится к лазерной дальнометрии. Лазерный дальномер содержит приемное устройство и передающее устройство, включающее объектив излучателя и лазерный излучатель, эквивалентное тело свечения которого габаритами А×В расположено в фокальной плоскости объектива излучателя. Объектив...
Тип: Изобретение
Номер охранного документа: 0002518588
Дата охранного документа: 10.06.2014
10.04.2015
№216.013.36b1

Способ определения погрешностей инерциальных измерительных приборов при испытаниях на ударные и вибрационные воздействия

Изобретение относится к измерительной технике и может быть использовано для определения погрешностей инерциальных измерительных приборов, в частности лазерных гироскопов и маятниковых акселерометров, при стендовых испытаниях на ударные и вибрационные воздействия. Технический результат -...
Тип: Изобретение
Номер охранного документа: 0002545489
Дата охранного документа: 10.04.2015
+ добавить свой РИД