×
10.04.2016
216.015.2faf

Результат интеллектуальной деятельности: СПОСОБ ИНИЦИИРОВАНИЯ СВЕТОЧУВСТВИТЕЛЬНОГО ВЗРЫВЧАТОГО ВЕЩЕСТВА СВЕТОВЫМ ИМПУЛЬСОМ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ

Вид РИД

Изобретение

Аннотация: Способ инициирования светочувствительного взрывчатого вещества световым импульсом лазерного излучения может использоваться в области физики взрыва, методов и средств неконтактного подрыва промышленных взрывчатых веществ (ВВ). Способ включает формирование светового импульса лазерного излучения (ЛИ), подачу сформированного импульса ЛИ на инициируемое светочувствительное ВВ, исходящий от источника ЛИ импульс при помощи коллиматора, разделяют на отдельные, по крайней мере, 4 луча, диаметр которых превышает критический диаметр детонации светочувствительного ВВ. Диаметры ⌀ сформированных коллиматором лучей ЛИ и расстояние x между ними связаны с минимальной энергией Q светового импульса ЛИ, инициирующего детонацию светочувствительного ВВ, и временем t до возбуждения детонации ВВ математической зависимостью t=f(Q, x, ⌀). Сформированные коллиматором лучи ЛИ подают в направлении, перпендикулярном поверхности инициируемого светочувствительного ВВ и симметрично относительно геометрического центра коллиматора. Изобретение обеспечивает минимальный уровень энергии возбуждения детонации с одновременным уменьшением времени до возбуждения детонации. 2 з.п. ф-лы, 1 ил., 2 табл.

Предлагаемое изобретение относится к области методов и средств неконтактного подрыва промышленных взрывчатых веществ (ВВ) и может быть использовано для инициирования светочувствительных ВВ лазерным излучением.

Из предшествующего уровня техники известен способ неконтактного инициирования ВВ (патент РФ №2387949, МПК F42C 13/02, опубл. 27.04.2010 г.), согласно которому осуществляют формирование светового импульса лазерного излучения (ЛИ) в виде двух световых пучков, подачу сформированного импульса ЛИ на дистанционно удаленное инициируемое светочувствительное ВВ, корректировка направленности световых пучков с учетом скорости перемещения боеприпаса, снаряженного ВВ, и скорости перемещения цели, что позволяет произвести точный подрыв ВВ в заданный момент времени и в прогнозируемой точке пространства.

В качестве прототипа заявляемого способа инициирования светочувствительного взрывчатого вещества световым импульсом лазерного излучения известен способ (патент РФ №2107256, МПК F42D 3/04, опубл. 20.03.1998 г.), согласно которому формируют импульс светового лазерного излучения (ЛИ), транслируемого по каналу в виде оптического волокна от выхода лазера к заряду ВВ для возбуждения детонации подрываемого заряда, при этом мощность лазерного импульса увеличивают при помощи подключаемых промежуточных лазеров с пиротехнической накачкой.

К недостаткам известных способов относится отсутствие условий для одновременного уменьшения времени до возбуждения детонации и снижения уровня энергии возбуждения детонации.

Задачей авторов изобретения является разработка эффективного способа инициирования светочувствительного взрывчатого вещества световым импульсом лазерного излучения, обеспечивающего минимальный уровень энергии возбуждения детонации с одновременным уменьшением времени до возбуждения детонации.

Новый технический результат, обеспечиваемый при использовании предлагаемого способа по сравнению с прототипом, заключается в обеспечении минимального уровня энергии возбуждения детонации с одновременным уменьшением времени до возбуждения детонации.

Указанные задача и новый технический результат обеспечиваются тем, что в отличие от известного способа инициирования светочувствительного взрывчатого вещества световым импульсом лазерного излучения, включающего формирование светового импульса лазерного излучения (ЛИ), подачу сформированного импульса ЛИ на инициируемое светочувствительное ВВ, согласно предлагаемому способу исходящий от источника поток ЛИ разделяют на отельные, по крайней мере, 4 луча, диаметр которых превышает критический диаметр детонации светочувствительного ВВ, с использованием коллиматора, при этом диаметры сформированных коллиматором лучей ЛИ и расстояние между ними связаны математической зависимостью с минимальной энергией светового импульса ЛИ, инициирующего детонацию светочувствительного ВВ, и временем до возбуждения детонации ВВ t=F (Q, x, ⌀), сформированные коллиматором лучи ЛИ подают в направлении, перпендикулярном поверхности инициируемого светочувствительного ВВ и симметрично относительно геометрического центра коллиматора.

Кроме того, в способе в качестве коллиматора используют перфорированные пластины, по крайней мере, с 4-мя отверстиями из непрозрачного для ЛИ материала с диаметром, равным диаметру выходящего из коллиматора луча ЛИ, и размещенными с шагом от 1-4 диаметров выходящего из коллиматора луча ЛИ, расположенными симметрично относительно геометрического центра коллиматора.

Кроме того, в способе в качестве коллиматора используют пучок световодов, состоящий, по крайней мере, из 4-х световодов с диаметром, равным диаметру выходящего из коллиматора луча ЛИ, и размещенных с шагом от 1-4 диаметров выходящего из коллиматора луча ЛИ, при этом все световоды размещают перпендикулярно поверхности инициируемого светочувствительного ВВ и симметрично относительно геометрического центра коллиматора.

Предлагаемый способ поясняется следующим образом. Инициирование образца светочувствительного ВВ осуществляется путем пропускания потока ЛИ через перфорированную диафрагму с регулярно расположенными отверстиями (каналами), в которой происходит деление потока на составляющие лучи, независимо выходящие каждый из соответствующего канала.

Первоначально готовят элемент из светочувствительного ВВ из группы нитросодержащего соединения и размещают его в устройстве для испытаний зарядов ВВ на расчетном расстоянии и навстречу направлению распространения светового импульса ЛИ. Затем формируют импульс ЛИ, который подают сначала на коллиматор, выполненный в виде пластины с, по меньшей мере, 4-мя отверстиями, за счет чего осуществляют разделение потока ЛИ на отдельные, по крайней мере, 4 луча, диаметр которых превышает критический диаметр детонации светочувствительного ВВ.

При этом диаметры сформированных коллиматором лучей ЛИ и расстояние между ними связаны математической зависимостью с минимальной энергией светового импульса ЛИ, инициирующего детонацию светочувствительного ВВ, и временем до возбуждения детонации ВВ t=F (Q, x, ⌀).

Сформированные коллиматором лучи ЛИ подают в направлении, перпендикулярном поверхности инициируемого светочувствительного ВВ и симметрично относительно геометрического центра коллиматора. В качестве коллиматора в предлагаемом способе используют перфорированные пластины, по крайней мере, с 4-мя отверстиями из непрозрачного для ЛИ материала с диаметром, равным диаметру выходящего из коллиматора луча ЛИ, и размещенными с шагом от 1-4 диаметров выходящего из коллиматора луча ЛИ, расположенными симметрично относительно геометрического центра коллиматора.

Кроме того, в качестве коллиматора используют пучок световодов, состоящий, по крайней мере, из 4-х световодов с диаметром, равным диаметру выходящего из коллиматора луча ЛИ, и размещенных с шагом от 1-4 диаметров выходящего из коллиматора луча ЛИ, при этом все световоды размещают перпендикулярно поверхности инициируемого светочувствительного ВВ и симметрично относительно геометрического центра коллиматора.

При пропускании через коллиматор сформированного потока ЛИ обеспечивается снижение энергии возбуждения и одновременно оптимально минимизируем время до возбуждения детонации.

Под воздействием ЛИ на ВВ в облученной области образуется макроочаг самоподдерживающейся реакции, распространяющейся с дозвуковой скоростью. Если энергия, выделяющаяся при распространении макроочага, обеспечивает разгон процесса до сверхзвуковой скорости, то формируется детонационный режим. Если подведенной энергии недостаточно, чтобы обеспечить энерговыделение из макроочага, необходимое для разгона процесса до сверхзвуковой скорости, то под действием разгрузки он затухнет. Если имеется два таких макроочага, то в области их взаимодействия формируется реагирующая зона, которая в направлении инициирования распространяется с большей скоростью, чем каждый из очагов (как результирующая из векторного сложения скоростей границ макроочагов в предположении сферических фронтов).

В условиях не затухающих очагов:

- если скорость распространения очагов увеличивается, то в зоне взаимодействия распространение будет идти с большим ускорением, чем в макроочагах;

- если скорость распространения очагов постоянна, то в этой зоне распространение будет идти с ускорением.

В условиях затухающих очагов, если градиент скорости распространения каждого из очагов не слишком велик, то эта зона в области их взаимодействия также будет распространяться с ускорением.

Чем ближе расположены макроочаги, тем короче ускоряющий импульс от зоны их взаимодействия, но тем меньше градиент скорости при их затухании.

Выявленная экспериментально взаимосвязь указанных параметров позволяет оптимизировать процесс инициирования и подобрать соответствующие условия его эффективной реализации.

Таким образом:

- если энергии ЛИ, подведенной к каждому макроочагу, достаточно для установления в нем ускоряющегося сверхзвукового процесса, выходящего в последующем в детонационный режим, то создание двух и более очагов позволит добиться уменьшения времени до возбуждения детонации;

- если энергии ЛИ, подведенной к каждому макроочагу, недостаточно, то использование эффекта увеличения скорости распространения самоподдерживающегося процесса в зоне взаимодействия двух и более макроочагов позволяет при определенном соотношении энергии ЛИ, возбуждающего исходные макроочаги, и расстояния между ними сформировать в этой зоне ускоряющийся сверхзвуковой процесс, выходящий в последующем в детонационный режим. То есть при подводе ЛИ по двум и более каналам можно возбуждать в инициируемом элементе детонацию при энергии ЛИ, меньшей, чем при подвое по одному каналу.

- при оптимизации соотношения энергии ЛИ и расстояния между каналами подвода ЛИ можно добиться минимальной энергии, возбуждающей детонацию в инициируемом элементе, и минимального времени до ее возбуждения.

В предлагаемом способе инициирование светочувствительного взрывчатого вещества импульсом лазерного излучения осуществляется путем последовательного формирования импульса лазерного излучения (ЛИ) с последующей подачей сформированного импульса ЛИ на инициируемое светочувствительное ВВ, при этом исходящий от источника поток ЛИ разделяют на отдельные, по крайней мере, 4 луча, диаметр которых превышает критический диаметр детонации светочувствительного ВВ, с использованием коллиматора. Диаметры сформированных коллиматором лучей ЛИ и расстояние между ними связаны математической зависимостью с минимальной энергией светового импульса ЛИ, инициирующего детонацию светочувствительного ВВ, и временем до возбуждения детонации ВВ t=F (Q, x, ⌀), сформированные коллиматором лучи ЛИ подают в направлении, перпендикулярном поверхности инициируемого светочувствительного ВВ и симметрично относительно геометрического центра коллиматора.

Результаты экспериментальных исследований по установлению оптимальных условий, необходимых для достижения заявленного технического результата, приведены в таблицах 1, 2.

В случае реализации способа прототипа, когда потоки ЛИ, подаваемые от заданного числа промежуточных лазеров с пиротехнической накачкой, пропускаются через независимые каналы оптических волокон, увеличение уровня потребляемой для возбуждения детонации энергии ЛИ достигается сложным как в технологическом, так и в конструкционном плане путем.

В случае инициирования ВВ традиционным методом фокусировки ЛИ на меньшую площадь (пятно) обеспечивается большая плотность энергии, благодаря чему достигается надежное инициирование при минимальной энергии излучения, пропорциональной отношению облучаемых поверхностей. Однако экономический эффект ограничен возможностями фокусирующей системы.

Таким образом, при использовании предлагаемого способа инициирования светочувствительного взрывчатого вещества импульсом ЛИ, прошедшего через диафрагму с регулярной перфорацией, обеспечивается возможность формирования минимального уровня энергии возбуждения детонации с одновременным уменьшением времени до возбуждения детонации.

Возможность промышленной реализации предлагаемого способа подтверждается следующими примерами.

Пример 1. В лабораторных условиях предлагаемый способ был опробован на светочувствительном ВВ, для чего был выбран состав, представляющий собой смесь 93% масс., бензотрифураксана (БТФ) и 7% масс. Al, σ=0.95 г/см3; из которого был изготовлен заряд п. 1 (фиг. 1, а) диаметром 5 мм, высота заряда 10 мм. Инициирование заряда проводилось лазерным лучом через алюминиевый коллиматор п. 2 (фиг. 1), с помощью которого осуществлялось разделение потока ЛИ на отдельные, по крайней мере, 4 луча. Диаметр этих лучей превышает критический диаметр детонации светочувствительного ВВ. Сформированные коллиматором 4 луча ЛИ подают в направлении, перпендикулярном поверхности инициируемого светочувствительного ВВ п. 3 и симметрично относительно геометрического центра коллиматора.

Были измерены энергии потока ЛИ, прошедшего через коллиматор п. 2 с отверстием диаметром 1 мм и расстоянием между ними 1 мм.

Эти параметры определены по математической формуле

Q=F (t, x, ⌀) (1)

и приведены в таблицах 1, 2.

Пример 2. В условиях примера 1 предлагаемый способ был осуществлен с использованием в качестве коллиматора кварцевого оптоволокна диаметром 1 мм (фиг. 1, б).

Пример 3. В условиях примера 1 предлагаемый способ был осуществлен с использованием в качестве коллиматора полимерного оптоволокна диаметром 1 мм.

Результаты приведены в таблице 1 (где представлены данные измерений энергии ЛИ от луча ⌀5 мм, передаваемой через коллиматор).

Прошедшая через коллиматор энергия ~1/25 входящей энергии, т.е пропорциональна отношению площадей областей, на которые воздействует ЛИ. Причина снижения выходной энергии через оптоволокно по сравнению с диафрагмой может быть связана с потерями на входных и выходных границах. Погрешность определения времени задержки детонации ±0,1 мкс.

В таблице 2 приведены данные о временах задержки детонации при инициировании через коллиматор.

Как это показали примеры, при реализации предлагаемого способа обеспечивается упрощение, возможность получения минимального уровня энергии возбуждения детонации с одновременным уменьшением времени до возбуждения детонации.


СПОСОБ ИНИЦИИРОВАНИЯ СВЕТОЧУВСТВИТЕЛЬНОГО ВЗРЫВЧАТОГО ВЕЩЕСТВА СВЕТОВЫМ ИМПУЛЬСОМ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 601-610 из 663.
10.07.2019
№219.017.af5e

Устройство коммутации и связи

Изобретение может быть использовано для обработки и преобразования информации в узлах коммутации данных. Технический результат заключается в расширении функциональных возможностей за счет преобразования цифровой информации с помощью увеличенного количества алгоритмов обработки цифровых данных....
Тип: Изобретение
Номер охранного документа: 0002429562
Дата охранного документа: 20.09.2011
23.07.2019
№219.017.b718

Программно-аппаратный комплекс "тонкий клиент"

Изобретение относится к области вычислительной техники. Техническим результатом является обеспечение обмена данными между сервером и удаленными оконечными устройствами, в которых отсутствуют накопители информации, предназначенные для постоянного хранения информации, с очисткой всех видов памяти...
Тип: Изобретение
Номер охранного документа: 0002695055
Дата охранного документа: 18.07.2019
03.08.2019
№219.017.bbce

Способ растворения диоксида плутония с получением концентрированного раствора

Изобретение относится к способу растворения диоксида плутония или смешанных оксидов актиноидов, содержащих диоксид плутония, любых других оксидов с окислительно-восстановительным потенциалом положительнее потенциала пары Ag/Ag(-1,98 В). Способ включает загрузку в электролизер с пульсационной...
Тип: Изобретение
Номер охранного документа: 0002696475
Дата охранного документа: 01.08.2019
12.08.2019
№219.017.bf09

Диэлектрический стержневой излучатель

Изобретение относится к антенной технике миллиметрового диапазона длин волн и может быть использовано в зондирующих устройствах радиоинтерферометров для измерения кинематических параметров движения поверхностей в диагностируемых замкнутых объемах, а также в качестве облучателей длиннофокусных...
Тип: Изобретение
Номер охранного документа: 0002696661
Дата охранного документа: 05.08.2019
20.08.2019
№219.017.c1b2

Система ультразвукового контроля надзонного пространства ядерного реактора

Изобретение относится к атомной технике. Система ультразвукового контроля надзонного пространства ядерного реактора с жидкометаллическим теплоносителем включает отражатель ультразвука и сканирующий ультразвуковой механизм с приводами, включающий несущую штангу с герметичными ультразвуковыми...
Тип: Изобретение
Номер охранного документа: 0002697664
Дата охранного документа: 16.08.2019
01.09.2019
№219.017.c5b2

Способ дистанционного определения термодинамической температуры быстропротекающего процесса, развивающегося в радиопрозрачном объекте, устройство для его осуществления, способы калибровки устройства и генератора шума в составе этого устройства

Изобретение относится к технике радиофизических измерений и может быть использовано для измерения в миллиметровом участке спектра собственного теплового излучения разнообразных быстропротекающих газодинамических процессов, развивающихся в радиопрозрачных объектах. Заявлен способ...
Тип: Изобретение
Номер охранного документа: 0002698523
Дата охранного документа: 28.08.2019
06.09.2019
№219.017.c7da

Дифференциальный измерительный преобразователь

Изобретение относится к области измерительной техники, а именно к измерительным преобразователям с частотной формой выходных сигналов. Техническим результатом является обеспечение проверки работоспособности частотозадающих элементов и всего измерительного преобразователя по значению выходной...
Тип: Изобретение
Номер охранного документа: 0002699255
Дата охранного документа: 04.09.2019
08.09.2019
№219.017.c91c

Способ динамического преобразования данных при хранении и передаче

Изобретение относится к области преобразования двоичной информации при ее хранении и передаче. Техническим результатом является обеспечение многопоточной обработки информации для ее последующей передачи и хранения. Способ заключается в том, что преобразование данных осуществляют с...
Тип: Изобретение
Номер охранного документа: 0002699589
Дата охранного документа: 06.09.2019
08.09.2019
№219.017.c935

Многоканальный блок трансформаторной развязки

Изобретение относится к области схемотехники, а именно к устройствам гальванической развязки, и может быть использовано для передачи цифровых сигналов между гальванически развязанными устройствами. Технический результат заключается в повышении стойкости к воздействующим факторам за счет...
Тип: Изобретение
Номер охранного документа: 0002699588
Дата охранного документа: 06.09.2019
02.10.2019
№219.017.ce53

Устройство для электрического соединения внутрикамерных компонентов с вакуумным корпусом термоядерного реактора

Изобретение относится устройству для электрического соединения внутрикамерных компонентов с вакуумным корпусом термоядерного реактора. Устройство выполнено в виде монолитного блока с токопроводящими элементами и фасонными прорезями. Токопроводящие элементы имеют профилированные утолщения между...
Тип: Изобретение
Номер охранного документа: 0002700923
Дата охранного документа: 24.09.2019
Показаны записи 481-487 из 487.
09.06.2019
№219.017.7c0c

Способ определения асимметрии движущейся поверхности

Изобретение относится к области измерительной техники, а именно к измерению параметров движущихся поверхностей. Инициируют заряд взрывчатого вещества с помощью линзы или детонационного распределителя по поверхности, которую разгоняют продукты взрыва до скорости, вызывающей свечение ударной...
Тип: Изобретение
Номер охранного документа: 0002364834
Дата охранного документа: 20.08.2009
20.06.2019
№219.017.8d3a

Способ получения соединения антифрикционного сплава со сталью сваркой взрывом

Изобретение может найти применение при изготовлении многослойной конструкции подшипников скольжения, в частности, состоящих из стального основания и плакирующего слоя из антифрикционного сплава бронзы, содержащей свинец, например оловянно-свинцовой бронзы. Устанавливают пластину из...
Тип: Изобретение
Номер охранного документа: 0002692009
Дата охранного документа: 19.06.2019
31.07.2019
№219.017.ba52

Способ спектрометрического анализа газообразных продуктов разложения взрывчатых веществ

Данное изобретение относится к области методов анализа механизмов поведения взрывчатых веществ (ВВ) при термических воздействиях и может быть использовано для исследования продуктов терморазложения ВВ. Сущность изобретения заключается в том, что в отличие от известного способа анализа...
Тип: Изобретение
Номер охранного документа: 0002695954
Дата охранного документа: 29.07.2019
31.07.2019
№219.017.ba6a

Способ сварки взрывом металлических листов

Изобретение может быть использовано для получения крупнотолщинных биметаллических деталей сваркой взрывом. Листовую заготовку из бронзы толщиной не менее 30 мм разделяют по меньшей мере на два фрагмента вдоль площади их соприкосновения. Оуществляют сборку пакета из листовой заготовки из...
Тип: Изобретение
Номер охранного документа: 0002695855
Дата охранного документа: 29.07.2019
29.02.2020
№220.018.073e

Способ изготовления взрывчатого наноструктурированного материала

Способ изготовления наноструктурированного взрывчатого материала включает помещение навески порошкообразного взрывчатого вещества (ВВ) из группы индивидуальных азотсодержащих органических ВВ, имеющих упругость паров не ниже 10 Па, в тигель с крышкой, имеющей коническую внутреннюю полость, в...
Тип: Изобретение
Номер охранного документа: 0002715195
Дата охранного документа: 25.02.2020
22.04.2023
№223.018.5117

Способ изготовления смесевого взрывчатого вещества

Изобретение относится к области технологии изготовления смесевых взрывчатых веществ. Для изготовления смесевого взрывчатого вещества осуществляют подготовку и смешение исходных компонентов, производят введение технологических добавок. Смешению подвергают сначала порошкообразный тэн и...
Тип: Изобретение
Номер охранного документа: 0002794210
Дата охранного документа: 12.04.2023
16.06.2023
№223.018.7bdb

Термопластичный взрывчатый состав и способ его изготовления

Группа изобретений относится к области технологий получения смесевых термопластичных взрывчатых материалов. Термопластичный взрывчатый состав в качестве взрывчатых компонентов содержит диаминодинитроэтилен, 3,4-бис-(4-нитрофуразан-3-ил)-фуразан, а в качестве инертной добавки -...
Тип: Изобретение
Номер охранного документа: 0002756081
Дата охранного документа: 27.09.2021
+ добавить свой РИД