×
10.04.2016
216.015.2e56

Результат интеллектуальной деятельности: СПОСОБ БЕСКОНТАКТНОГО ИЗМЕРЕНИЯ ОТКЛОНЕНИЙ ОТ НОМИНАЛЬНОГО ЗНАЧЕНИЯ ВНУТРЕННИХ РАЗМЕРОВ МЕТАЛЛИЧЕСКИХ ИЗДЕЛИЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технике неразрушающего контроля изделий, а именно к устройствам для бесконтактного измерения отклонений от номинального значения внутренних размеров металлических изделий с использованием электромагнитного излучения СВЧ-диапазона, и может быть применено в машиностроительной, трубопрокатной и химической промышленности. Для решения данной задачи предложены способ для его осуществления, а также устройство, содержащее автодинный СВЧ-генератор, связанный с блоком выделения автодинного сигнала и первым плечом трехплечего циркулятора, первую и вторую приемо-передающие антенны, причем ко второму плечу трехплечего циркулятора подключена первая приемопередающая антенна, диаграмма излучения которой направлена на первую локальную область контроля внутренней поверхности изделия, а к третьему плечу трехплечего циркулятора - вторая приемо-передающая антенна, диаграмма излучения которой направлена на вторую локальную область контроля внутренней поверхности изделия, противолежащую первой локальной области. Технический результат - повышение точности измерения внутренних размеров изделий. 2 н. и 2 з.п. ф-лы, 2 ил.

Изобретение относится к технике неразрушающего контроля изделий, а именно к устройствам для бесконтактного измерения отклонений от номинального значения внутренних размеров металлических изделий с использованием электромагнитного излучения СВЧ-диапазона, и может быть применено, в частности, в машиностроительной, трубопрокатной и химической промышленности.

Известен способ измерения внутреннего диаметра металлических труб, основанный на использовании электромагнитного излучения СВЧ-диапазона (см., например, SU 1298538 A1, 19.04.1987 [1]; Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат, 1989. С. 71-77 [2]). Согласно этому способу в полости трубы при помощи коаксиальной линии, имеющей измерительный участок в виде отрезков линии с различным сечением, возбуждают стоячие волны СВЧ-излучения и определяют их резонансную частоту, по которой судят о внутреннем диаметре трубы.

Известно устройство для контроля внутренних размеров круглых волноводов, содержащее СВЧ-генератор и соединенный с ним циркулятор (см. SU 637683, 15.12.1978 [3]). Работа устройства основана на резонансном возбуждении в круглом волноводе волны H01, приеме отраженного излучения от помещенного в волновод измерительного зонда и анализе положения резонансов на зоне генерации клистрона, по которым судят о размерах круглого волновода.

Известен датчик для контроля внутренних размеров труб, выполненный с возможностью перемещения вдоль оси контролируемой металлической трубы (см. SU 1355916 A1, 30.11.1987 [4]). Приемо-передающая аппаратура, выполняющая посредством СВЧ-излучения зондирование внутренней поверхности трубы и измерение ее внутреннего диаметра, соединяется с датчиком коаксиальной линией. Датчик выполнен так, что полость коаксиальной линии (пространство между внутренней и внешней поверхностями) плавно выворачивается относительно общей оси в сторону внутренней поверхности трубы под углом 90 градусов. В плоскости сечения трубы, где заканчивается полость коаксиальной линии, формируется радиальное СВЧ-излучение с круговым фронтом волны. Отраженное от внутренней поверхности трубы СВЧ-излучение возвращается в полость коаксиальной линии и далее по этой линии следует к приемному устройству, где путем балансировки двойного T-моста вручную выполняется измерение отклонения эффективного (усредненного по сечению) диаметра трубы от номинального значения.

Недостатками известных способа и устройств являются:

невозможность измерения внутренних размеров труб большой длины (более двух-трех метров) вследствие больших потерь в коаксиальном кабеле (не менее 10 дБ/м на частоте 10 ГГц), которые снижают чувствительность аппаратуры и точность измерений;

сложность приемо-передающей аппаратуры, предназначенной для возбуждения и регистрации резонанса в известном способе или регистрации изменений картины стоячей волны в линии в известном датчике;

трудоемкость процесса измерения, обусловленная поиском резонансной частоты стоячей волны на отрезке коаксиальной линии или положения узла картины стоячей волны при балансировке двойного T-моста;

большие затраты времени на проведение измерений.

Известно также устройство для контроля внутренних размеров металлических труб, содержащее автодинный СВЧ-генератор, в цепь питания которого подключен резистор для выделения автодинного сигнала (см. RU 2052796 C1, 20.01.1996, [5]). Электромагнитное излучение из коаксиального резонатора автодинного СВЧ-генератора возбуждает в рабочем зазоре между внешней поверхностью датчика и внутренней поверхностью трубы поле с круговым фронтом волны. Отраженное от внутренней поверхности трубы СВЧ-излучение возвращается в полость резонатора автодинного СВЧ-генератора, в цепи питания которого с помощью резистора выделяется автодинный сигнал, обеспечивающий возможность регистрировать отклонение диаметра трубы от номинального значения.

К общим недостаткам рассмотренных выше способа и устройств следует отнести невозможность использования их для определения овальности полости трубы и ее разностенности, поскольку из-за формирования по всему сечению трубы поля с круговым фронтом волны происходит усреднение результата измерения диаметра трубы. Кроме того, данный датчик не пригоден для контроля внутренних размеров труб иного сечения, например прямоугольного.

Наиболее близким аналогом (прототипом) по технической сущности, принципу действия и достигаемому положительному эффекту является устройство для бесконтактного контроля внутренних размеров изделий, содержащее автодинный СВЧ-генератор, в цепь питания которого подключен блок выделения автодинного сигнала, первую и вторую антенны и трехплечий циркулятор, к первому плечу которого подключен автодинный СВЧ-генератор (см. Носков В.Я. Автодинный СВЧ-датчик для бесконтактного контроля внутренних размеров изделий // 23-я Международная Крымская конференция «СВЧ-техника и телекоммуникационные технологии» (КрыМиКо′2013): материалы конференции в 2 т. (Севастополь, 8-13 сент. 2013 г.) Севастополь: Вебер, 2013. Т. 1. С. 1051-1052 [6]).

Датчик содержит две измерительные головки, выполненные на основе H-тройников, которые связаны с автодинным СВЧ-генератором посредством третьего H-тройника. Эти головки предназначены для сравнения внутренних размеров отверстий контролируемого изделия с размерами образцового изделия. Однако каждая из головок при измерении внутренних размеров отверстий может функционировать автономно, поэтому рассмотрим принцип действия датчика на примере одной из них.

Принцип действия датчика основан на том, что генерируемые электромагнитные колебания автодинного СВЧ-генератора в виде первичного СВЧ-излучения делят поровну с помощью H-тройника, направляют эти излучения одновременно на две локальные области контроля противолежащих внутренних поверхностей изделия, отраженное от этих областей излучения суммируют в главном плече H-тройника, смешивают отраженное излучение в резонаторе автодинного СВЧ-генератора с первичным СВЧ-излучением, полученную смесь излучений преобразуют в автодинном СВЧ-генераторе в автодинный сигнал, затем по величине отклонения сигнала от номинального значения выходного сигнала определяют величину отклонения внутреннего размера изделия.

К общему недостатку способа-прототипа и устройства, его реализующего, следует отнести наличие погрешности измерения при несоосном расположении (рабочих) плеч H-тройника измерительной головки и измеряемого отверстия. Различие длин плеч H-тройника, вызванное данным несовпадением осей, в соответствии с принципом его действия (см. Лебедев И.В. Техника и приборы СВЧ. М.: Высшая школа. 1970. С. 163-169 [7]) является причиной появления дополнительного фазового смещения возвращенного в резонатор СВЧ-излучения, которое преобразуется в автодинный сигнал и вызывает погрешность отсчета. Данная составляющая погрешности измерений накладывает высокие требования к установке контролируемого изделия на измерительную головку, что является не всегда приемлемым.

Таким образом, задача, на решение которой направлено заявляемое изобретение, состоит в том, чтобы повысить точность измерения внутренних размеров изделий за счет исключения погрешности, вызванной несоосностью рабочего органа датчика и контролируемого отверстия. Дополнительными целями изобретения являются сохранение возможности определения датчиком овальности полости трубы, ее разностенности, а также пригодности его для контроля внутренних размеров изделий не только круглого и овального сечения, но и иных, например, прямоугольных.

Поставленная задача решена за счет разработки способа бесконтактного измерения отклонения от номинального значения внутренних размеров металлических изделий, заключающегося в том, что генерируемые электромагнитные колебания автодинного СВЧ-генератора в виде первичного СВЧ-излучения направляют на первую локальную область контроля внутренней поверхности изделия, отраженное от первой локальной области внутренней поверхности изделия излучение отделяют от облучающего ее излучения и направляют на вторую локальную область контроля внутренней поверхности изделия, противолежащую первой локальной области, отраженное от второй локальной области внутренней поверхности изделия излучение отделяют от облучающего ее излучения, полученное таким образом вторичное отраженное излучение направляют в резонатор автодинного СВЧ-генератора, смешивают его в резонаторе автодинного СВЧ-генератора с первичным СВЧ-излучением, полученную смесь преобразуют в автодинный сигнал, затем по величине отклонения сигнала от номинального значения определяют величину отклонения внутреннего размера изделия от номинального значения.

Для реализации заявленного способа разработано устройство для измерения отклонения от номинального значения внутренних размеров металлических изделий, содержащее автодинный СВЧ генератор, связанный с блоком выделения автодинного сигнала и первым плечом трехплечего циркулятора, первую и вторую приемо-передающие антенны, причем ко второму плечу трехплечего циркулятора подключена первая приемо-передающая антенна, диаграмма излучения которой направлена на первую локальную область контроля внутренней поверхности изделия, а к третьему плечу трехплечего циркулятора - вторая приемо-передающая антенна, диаграмма излучения которой направлена на вторую локальную область контроля внутренней поверхности изделия, противолежащую первой локальной области.

Предлагаемое техническое решение обладает новизной, поскольку автору не известны способы и устройства, содержащие признаки, которые фигурируют в предлагаемом изобретении в качестве отличительных признаков.

Изменение пути следования СВЧ-излучения, при котором отраженное от первой локальной области контроля излучение отделяется от облучающего, направляется на вторую локальную область контроля внутренней поверхности изделия, противолежащую первой локальной области, отраженное от второй локальной области контроля внутренней поверхности изделия излучение отделяется от облучающего ее излучения, полученное таким образом вторичное отраженное излучение направляется в резонатор автодинного СВЧ-генератора, обеспечило получение суммарного набега фазы отраженного излучения независящим от несоосности рабочего органа измерительной головки и контролируемого отверстия. Техническим результатом изобретения является исключение погрешности измерения за счет указанного фактора.

Локализация областей облучения внутренней поверхности изделия позволяет измерять внутренний диаметр отверстия в зависимости от угла поворота датчика. Таким образом, можно определять овальность и при известных внешних размерах трубы - ее разностенность, а также некоторые механические дефекты, например, раковины, вмятины, трещины.

Предложенное устройство при придании ему формы, соответствующей форме внутреннего сечения полости изделия, с возможностью помещения его внутри этой полости, обеспечивает возможность измерения внутренних размеров не только круглой ее формы, как это обеспечивается прототипом и аналогами, но и любой иной, например овальной, прямоугольной или в виде многогранников.

Сущность изобретения поясняется чертежами, где на фиг. 1 представлена структурная схема устройства, реализующего предложенный способ; на фиг. 2 приведены эпюры, поясняющие принцип преобразования изменений внутреннего размера Δl изделий в выходной сигнал α(Δl) автодинного СВЧ-генератора.

Определение внутренних размеров металлических изделий по предложенному способу будет рассмотрено ниже при описании работы устройства.

Устройство содержит (см. фиг. 1) автодинный СВЧ-генератор 1, выполненный, например, в виде приемо-передающего модуля на основе диода Ганна (см. Воторопин С.Д., Носков В.Я. Приемо-передающие модули на слаботочных диодах Ганна для автодинных систем // Электронная техника. Серия 1. СВЧ-техника. 1993. №4 (458). С. 70-72. [8]), связанный с блоком 2 выделения автодинного сигнала, выполненный, например, в соответствии с одной из схем, представленных в упомянутой статье [8], трехплечий циркулятор 3 (см. Лебедев И.В. Техника и приборы СВЧ. - М.: Высшая школа. 1970. С. 290-294. [7]), к первому плечу 4 которого подключен автодинный СВЧ генератор 1, ко второму плечу 5 подключена первая приемо-передающая антенна 6, диаграмма излучения которой направлена на первую локальную область 7 контроля внутренней поверхности изделия 8, к третьему плечу 9 циркулятора 3 подключена вторая приемо-передающая антенна 10, диаграмма излучения которой направлена на вторую локальную область 11 контроля внутренней поверхности изделия 8, противолежащую первой локальной области 7 контроля.

Автодинный СВЧ-генератор 1 может быть выполнен со стабилизацией частоты генерации, например, внешним высокодобротным резонатором (см. описание прототипа [6]). Данное решение обеспечивает долговременную стабильность работы устройства и повышение точности измерений.

Для локализации областей облучения внутренних поверхностей изделий могут быть использованы, например, следующие технические решения:

Первая 6 и вторая 10 приемо-передающие антенны могут быть выполнены в виде открытого конца волновода (см. описание прототипа [6]).

Вокруг первой 6 и второй 10 приемо-передающих антенн на внешней поверхности автодинного датчика может быть реализован принцип устройства «дроссельного фланца», имеющего кольцевую канавку глубиной приблизительно в четверть длины волны в свободном пространстве (см. рис. 8.2. Лебедев И.В. Техника и приборы СВЧ. - М.: Высшая школа. 1970. С. 236 [7]). При этом расстояние от канавки до середины широкой стенки волновода должно быть также приблизительно равно четверти длины волны в свободном пространстве.

Внешняя поверхность автодинного датчика, за исключением областей раскрыва первой 6 и второй 10 приемо-передающих антенн, может быть покрыта слоем радиопоглощающего полимерного материала, выполненного, например, на основе наполнителя из микросфер карбонильного железа или феррита (см. Радиопоглощающие материалы и покрытия, http://ru.wikipedia.org [9]).

Устройство работает следующим образом.

При подаче напряжения от источника питания (на фиг. 1 не показан) в автодинном СВЧ-генераторе 1 возникают СВЧ колебания, которые в виде электромагнитного СВЧ-излучения, следуя волноводным трактом по пути: первое плечо 4 циркулятора 3 - второе плечо 5 циркулятора 3, поступают в первую приемо-передающую антенну 6. Первая приемо-передающая антенна 6 формирует излучение, которое облучает первую локальную область 7 на внутренней поверхности изделия 8 с одной его стороны. Отраженное от первой локальной области 7 СВЧ-излучение возвращается в первую приемо-передающую антенну 6 и далее, благодаря развязывающему свойству циркулятора 3, отделяется от облучающего излучения, следуя волноводным трактом по пути: второе плечо 5 циркулятора 3 - третье плечо 9 циркулятора 3, поступает во вторую приемо-передающую антенну 10. Вторая приемо-передающая антенна 10 формирует СВЧ-излучение, которое облучает вторую локальную область 11 на внутренней поверхности изделия 8, но с противоположной стороны отверстия относительно первой локальной области 7. Отраженное от второй локальной области 11 СВЧ-излучение возвращается во вторую приемо-передающую антенну 10 и далее, благодаря развязывающему свойству циркулятора 3, отделяется от облучающего излучения, следуя волноводным трактом по пути: третье плечо 9 циркулятора 3 - первое плечо 4 циркулятора 3, поступает в резонатор автодинного СВЧ генератора 1.

Полученная в резонаторе автодинного СВЧ- генератора 1 смесь вторичного отраженного излучения и собственных СВЧ-колебаний в виде первичного излучения на нелинейности активного элемента автодинного СВЧ генератора 1 преобразуется в изменения амплитуды и частоты колебаний, а также, вследствие известного явления автодинного детектирования, в изменения смещения (тока или напряжения) активного элемента (диода Ганна, лавинно-пролетного диода, СВЧ-транзистора и др.). Данные изменения описываются следующими выражениями (см. формулы (3), (4), (6) статьи: Носков В.Я. Анализ автодинного СВЧ датчика для бесконтактного измерения и контроля размеров изделий // Измерительная техника. 1992. №3. С. 24-26. [10]):

,

,

,

где α0, α1, Δω - относительные изменения смещения активного элемента, амплитуды и частоты колебаний соответственно;

Г1, Г2 - коэффициенты отражения (по амплитуде) СВЧ-излучения от первой 7 и второй 11 локальных областей на внутренней поверхности изделия 8;

W - амплитудный коэффициент затухания излучения при его распространении волноводным трактом по пути: автодинный СВЧ-генератор 1 - первая локальная область отражения 7 на внутренней поверхности изделия 8 - вторая локальная область 11 отражения на внутренней поверхности изделия 8 - автодинный СВЧ-генератор 1;

K0, K1, L1 - коэффициенты автодетектирования, автодинного усиления и девиации частоты, зависящие от внутренних параметров автодинного СВЧ-генератора 1;

l - общее расстояние, пройденное СВЧ излучением по пути: автодинный СВЧ-генератор 1 - первая локальная область 7 отражения на внутренней поверхности изделия 8 - вторая локальная область 11 отражения на внутренней поверхности изделия 8 - автодинный СВЧ-генератор 1;

ψ0, ψ1, θ - углы фазового смещения соответствующих автодинных изменений, зависящие от внутренних параметров автодинного СВЧ-генератора 1;

λ - длина волны излучения в волноводном тракте.

Изменения смещения α0 активного элемента, амплитуды αt или частоты Δω колебаний автодинного СВЧ-генератора 1 преобразуются в выходной сигнал устройства с помощью блока 2 выделения автодинного сигнала. Альтернативные технические решения блока 2 выделения автодинного сигнала широко известны. Например, при регистрации изменений смещения α0 активного элемента, выполненного на диоде Ганна, блок 2 выделения может быть выполнен в виде резистора в цепи питания диода Ганна (см. патент RU 2052796 C1, 20.01.1996. [5]) или в соответствии с одной из схем, представленных в статье: Носков В.Я., Смольский С.М. Регистрация автодинного сигнала в цепи питания генераторов на полупроводниковых диодах СВЧ. (Обзор) // Техника и приборы СВЧ. 2009. №1. С. 14-26. [11]. При регистрации изменений амплитуды α1 колебаний в качестве выходного сигнала датчика обычно используется детекторный диод, помещенный в резонатор автодинного СВЧ-генератора (см., например, фиг. 2 патента: RU 2295911 C1, 27.03.2007. [12]). При регистрации изменений Δω частоты колебаний автодинного СВЧ-генератора 1 блок 2 выделения может быть выполнен, например, на основе частотного детектора, связанного с автодинным СВЧ-генератором 1 через автодинный преобразователь частоты и усилитель сигналов промежуточной частоты (см. рис. 2 статьи: Воторопин С.Д., Носков В.Я., Смольский С.М. Современные гибридно-интегральные автодинные генераторы микроволнового и миллиметрового диапазонов и их применение. Часть 3. Функциональные особенности автодинов // Успехи современной радиоэлектроники. 2007. №11 С. 25-49. [13]).

Как видно из представленных выше выражений, все функции, описывающие зависимость выходных сигналов α0, α1, Δω от расстояния l являются гармоническими и отличаются лишь углами относительного фазового смещения ψ0, ψ1, θ. Поэтому выражение для обобщенного выходного сигнала α(l) блока 2 выделения запишем в виде:

,

где Am1Г2WK - амплитуда изменений автодинного сигнала; K, ψ - обобщенные коэффициент передачи и угол фазового смещения автодинного сигнала на выходе блока 2 выделения.

На фиг. 2, поясняющей принцип преобразования изменений внутреннего размера Δl изделия в выходной сигнал α(Δl), представлен вид этой функции. В окрестности рабочей точки D данная функция, имеющая смысл дискриминационной характеристики автодинного датчика, обеспечивает наибольшую крутизну преобразования Sпр, которая определяется как первая производная функции α(l) в этой точке и зависит от амплитуды Am изменений автодинного сигнала: Sпр=2πAm/λ. При использовании автодинного датчика необходимо учитывать, что максимальный диапазон изменения контролируемых размеров Δlm относительно рабочей точки D (см. фиг. 2) составляет Δlm=λ/8.

Перед проведением измерений внутренних размеров изделий находят положение рабочей точки D и выполняют калибровку датчика.

Для нахождения положения рабочей точки D устройство вводят в полость образцового изделия с номинальными значениями внутренних размеров и выполняют регулировку электрической длины волноводного тракта между автодинным СВЧ-генератором 1 и первым плечом 4 циркулятора 3, что достигается изменением его физической протяженности или введением в этот тракт регулируемого фазовращателя. Данную регулировку выполняют до нахождения такой электрической длины волноводного тракта, при которой выходной сигнал блока 2 выделения обеспечивает свое среднее значение αD на дискриминационной характеристике, соответствующее рабочей точке D (см. фиг. 2).

При калибровке устройство вводят в полость изделия с известной величиной отклонения его внутреннего размера от номинального значения Δlкал и выполняют отсчет αкал выходного сигнала калиброванного изделия. При этом необходимо учитывать, что данное отклонение Δlкал размера должно быть, по крайней мере, в три раза меньше максимального диапазона изменений контролируемых размеров Δlm. При таком условии обеспечивается практически линейное преобразование отклонения измеряемого размера от номинального значения в выходной сигнал датчика. Делением полученного отклонения величины выходного сигнала Δαкалкал - αD на величину отклонения размера Δlкал получают численное значение крутизны преобразования Sпр=Δαкал/Δlкал автодинного датчика.

Данная калибровка обеспечивает исключение влияния на результат измерений непостоянства крутизны преобразования Sпр, которое может быть вызвано следующими причинами:

разбросом коэффициентов отражения Г1 и Г2 для различных изделий из-за различия качества обработки поверхности;

изменениями амплитудного коэффициента затухания W излучения, вызванными, например, появлением пыли в волноводном тракте датчика;

изменениями коэффициентов передачи К автодинного СВЧ- генератора 1 и длины волны излучения λ, вызванных, например, изменением температуры окружающей среды.

При измерении отклонения внутренних размеров от номинального значения Δlизм устройство помещают в полость контролируемого изделия. Полученное значение отклонения выходного сигнала Δαизмизм - αD от среднего значения αD умножают на рассчитанную в результате калибровки величину крутизны преобразования Sпр и получают искомый результат отклонения внутреннего размера изделия от номинального значения: Δlизм=ΔαизмSпр.

Вращая устройство вокруг своей оси внутри круглого отверстия контролируемого изделия, получают значения отсчетов отклонения размера от номинального в зависимости от угла поворота. По полученным значениям отсчетов судят об овальности этих отверстий, а при известном внешнем диаметре трубы - о ее разностенности.

Устройство, реализующее предложенный способ измерения, может иметь различные технические решения и быть изготовленным различной формы с возможностью его помещения в полость контролируемого изделия. При этом форма этой полости не имеет значения и может быть, например, овальной, прямоугольной, в виде многогранников. Данное расширение функциональных возможностей датчика является дополнительным преимуществом предлагаемого устройства.

ЛИТЕРАТУРА

1. Авт. свид. №1298538 A1 (СССР). Способ измерения внутреннего диаметра металлической трубы. МКИ4 G01B 15/02. Опубл. 19.04.1987., Б.И. №/ А.С. Совлуков.

2. Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат, 1989. 208 с.(С. 71-77).

3. Авт. свид. №637683 (СССР). Устройство для контроля внутренних размеров круглого волновода. МКИ2 G01R 29/08. Опубл. 19.12.1978., Б.И. №46. / А.Д. Олейников.

4. Авт. свид. №1355916 A1 (СССР). Датчик для контроля внутренних размеров металлических труб. МКИ4 G01B 22/00. Опубл. 30.11.1987., Б.И. №44. / И.Е. Куров, П.А. Путилов, В.В. Потапов, В.В. Козлов, М.И. Гуревич, Г.П. Путилова, С.В. Перельман, Л.Ф. Циферблат.

5. Патент №2052796 C1 (РФ). Устройство для контроля внутренних размеров металлических труб. МКИ6 G01N 22/00, G01B 7/16. Опубл. 20.01.1996., Б.И. №2. / И.Е. Куров, Е.М. Гершензон, П.А. Путилов, Г.П. Путилова, В.В. Потапов, В.В. Козлов.

6. Носков В.Я. Автодинный СВЧ-датчик для бесконтактного контроля внутренних размеров изделий // 23-я Международная Крымская конференция «СВЧ-техника и телекоммуникационные технологии» (КрыМиКо′2013): материалы конф. в 2 т.(Севастополь, 8-13 сент. 2013 г.) Севастополь: Вебер, 2013. Т. 1. С. 1051-1052.

7. Лебедев И.В. Техника и приборы СВЧ. М.: Высшая школа. 1970. 439 с.

8. Воторопин С.Д., Носков В.Я. Приемо-передающие модули на слаботочных диодах Ганна для автодинных систем // Электронная техника. Серия 1. СВЧ-техника. 1993. №4 (458). С. 70-72.

9. Радиопоглощающие материалы и покрытия // Интернет http://ru.wikipedia.org

10. Носков В.Я. Анализ автодинного СВЧ датчика для бесконтактного измерения и контроля размеров изделий // Измерительная техника. 1992. №3. С. 24-26.

11. Носков В.Я., Смольский С.М. Регистрация автодинного сигнала в цепи питания генераторов на полупроводниковых диодах СВЧ. (Обзор) // Техника и приборы СВЧ. 2009. №1. С. 14-26.

12. Патент №2295911 C1 (РФ). Способ дистанционного контроля физиологических параметров жизнедеятельности организма. МПК A61B 5/05. Опубл. 27.03.2007., Бюл. №9. / Д.А. Усанов, Ал.В. Скрипаль, Ан.В. Скрипаль, Ал.В. Абрамов, А.Э. Постельга, А.С. Боголюбов.

13. Воторопин С.Д., Носков В.Я., Смольский С.М. Современные гибридно-интегральные автодинные генераторы микроволнового и миллиметрового диапазонов и их применение. Часть 3. Функциональные особенности автодинов // Успехи современной радиоэлектроники. 2007. №11 С. 25-49.


СПОСОБ БЕСКОНТАКТНОГО ИЗМЕРЕНИЯ ОТКЛОНЕНИЙ ОТ НОМИНАЛЬНОГО ЗНАЧЕНИЯ ВНУТРЕННИХ РАЗМЕРОВ МЕТАЛЛИЧЕСКИХ ИЗДЕЛИЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ БЕСКОНТАКТНОГО ИЗМЕРЕНИЯ ОТКЛОНЕНИЙ ОТ НОМИНАЛЬНОГО ЗНАЧЕНИЯ ВНУТРЕННИХ РАЗМЕРОВ МЕТАЛЛИЧЕСКИХ ИЗДЕЛИЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 41-50 из 110.
10.02.2015
№216.013.2254

Сталь для изготовления кованых прокатных валков

Изобретение относится к области металлургии, а именно к инструментальным сталям, используемым для изготовления кованых прокатных валков для горячей прокатки металла, например, профилей и труб. Сталь содержит компоненты при следующем соотношении, мас.%: углерод (С) 1,2-1,4, кремний (Si) 0,2-0,5,...
Тип: Изобретение
Номер охранного документа: 0002540241
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.22a0

Способ переработки алюминиевого шлака

Изобретение относится к вторичной металлургии, в частности, к способу переработки алюминиевого шлака. Способ включает измельчение алюминиевого шлака, выделение металлического алюминия, смешивание остатка после выделения металлического алюминия с компонентом, содержащим окислы железа, спекание,...
Тип: Изобретение
Номер охранного документа: 0002540317
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.2773

Система предотвращения аварий карьерного автомобиля

Изобретение относится к системам повышения безопасности движения карьерных автомобилей. Система предотвращения аварий карьерного автомобиля с антиблокировочной системой тормозов содержит две штанги, установленные на горизонтальном кронштейне кузова с возможностью поворота в вертикальное и...
Тип: Изобретение
Номер охранного документа: 0002541556
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2a0c

Способ получения цилиндрической заготовки в виде прутка из металлического армированного композиционного материала

Изобретение относится к области металлургии, а именно к методам получения заготовок типа прутков из композиционных материалов литейными технологиями. Способ включает размещение в цилиндрической емкости проволоки из упрочняющего металлического материала, расплавление металла матрицы, заполнение...
Тип: Изобретение
Номер охранного документа: 0002542221
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2b16

Способ определения содержания грамотрицательных патогенных бактерий в анализируемой среде

Изобретение относится к электрохимическим методам анализа, а именно к иммуноанализу, в частности к определению содержания патогенных микроорганизмов в различных объектах и средах. Изобретение может быть использовано в микробиологии, медицине, экологии для мониторинга содержания микроорганизмов...
Тип: Изобретение
Номер охранного документа: 0002542487
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2ba8

Лазерный толщиномер и способ его калибровки

Изобретение относится к измерительной технике, а именно к калибровке лазерных толщиномеров, построенных по методу лазерной триангуляции, при котором пучки излучения направлены с двух сторон перпендикулярно к контролируемой поверхности, а принятый оптический сигнал фиксируется многоэлементным...
Тип: Изобретение
Номер охранного документа: 0002542633
Дата охранного документа: 20.02.2015
27.02.2015
№216.013.2e4c

Применение 2-морфолино-5-фенил-6н-1,3,4-тиадизин, гидробромида в качестве средства, изменяющего суммарную мощность спектра вариабельности сердечного ритма и обладающего антибрадикардическими свойствами

Изобретение относится к области профилактической медицины, отдельных специальных разделов клинической медицины и к области биологически активных соединений. Предложено применение гидробромида 2-морфолино-5-фенил-6H-1,3,4-тиадизина в качестве средства, изменяющего суммарную мощность спектра...
Тип: Изобретение
Номер охранного документа: 0002543320
Дата охранного документа: 27.02.2015
10.04.2015
№216.013.391f

Способ получения фенацетина

Изобретение относится к способу получения фенацетина. Способ осуществляют путем восстановления п-этоксинитробензола, проводимым в изопропиловом спирте при перемешивании с катализатором Ni-Ренея под давлением водорода 2-4 атм при 60-70°C в присутствии уксусного ангидрида, ацилирования...
Тип: Изобретение
Номер охранного документа: 0002546111
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3b7c

Способ определения профиля поперечного распределения примеси германия в жиле и оболочке кремниевых стекловолокон

Использование: для определения профиля поперечного распределения примеси германия в жиле и оболочке кремниевых стекловолокон. Сущность изобретения заключается в том, что изготавливают из эпоксидной смолы таблетку-держатель с образцами анализируемых стекловолокон и проводят последующий анализ...
Тип: Изобретение
Номер охранного документа: 0002546716
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.419b

Когерентный супергетеродинный спектрометр электронного парамагнитного резонанса

Изобретение относится к технической физике и может быть использовано при изготовлении спектрометров электронного парамагнитного резонанса (ЭПР). Спектрометр содержит сигнальный 1 и гетеродинный 2 генераторы СВЧ, измерительный аттенюатор 3, смесители опорного 4 и сигнального 5 каналов,...
Тип: Изобретение
Номер охранного документа: 0002548293
Дата охранного документа: 20.04.2015
Показаны записи 41-50 из 163.
20.01.2014
№216.012.97f5

Способ получения люминофора в виде аморфной пленки диоксида кремния с ионами селена на кремниевой подложке

Изобретение к способу получения люминофора в виде аморфной пленки диоксида кремния с ионами селена, расположенной на кремниевой подложке. Способ включает имплантацию ионов селена с энергией ионов 300±30 кэВ при флюенсе 4÷6·10 ион/см в указанную пленку и первый отжиг при температуре 900÷1000°C...
Тип: Изобретение
Номер охранного документа: 0002504600
Дата охранного документа: 20.01.2014
20.01.2014
№216.012.98c3

Одномодовый двухслойный кристаллический инфракрасный световод

Изобретение относится к волоконно-оптическим системам связи, а именно к одномодовым двухслойным кристаллическим инфракрасным (ИК) световодам для спектрального диапазона от 2 до 50 мкм. Световод включает сердцевину и оболочку. Сердцевина диаметром 10-250 мкм выполнена из кристаллов на основе...
Тип: Изобретение
Номер охранного документа: 0002504806
Дата охранного документа: 20.01.2014
27.01.2014
№216.012.9b84

Способ получения трифенилена

Изобретение относится к области органического синтеза полиядерных углеводородов. Предлагается способ синтеза трифенилена путем взаимодействия на первой стадии циклогексанона последовательно с NaOH, полифосфосфорной кислотой с получением додекагидротрифенилена, который на второй стадии...
Тип: Изобретение
Номер охранного документа: 0002505518
Дата охранного документа: 27.01.2014
27.01.2014
№216.012.9b86

Солнечная установка для выработки спирта и сопутствующих материалов

Изобретение относится к установке для выработки спирта и сопутствующих материалов, содержащей источник тепловой энергии, подключенный к бродильному чану с подготовленной биомассой, к брагоперегонному агрегату с ректификационной колонной, соединенным циркуляционным насосом. Установка...
Тип: Изобретение
Номер охранного документа: 0002505520
Дата охранного документа: 27.01.2014
27.01.2014
№216.012.9b8c

Способ получения анестезина

Изобретение относится к способу получения этилового эфира n-аминобензойной кислоты (анестезина) формулы который обладает местным анестезирующим действием и является полупродуктом в синтезе новокаина. Способ заключается в восстановлении этилового эфира n-нитробензойной кислоты с последующим...
Тип: Изобретение
Номер охранного документа: 0002505526
Дата охранного документа: 27.01.2014
27.01.2014
№216.012.9be4

Способ извлечения благородных металлов из растворов

Изобретение относится к металлургии благородных металлов, в частности к извлечению благородных металлов из растворов. Способ извлечения благородных металлов из растворов включает контактирование раствора с сорбентом, нанесенным на носитель с развитой поверхностью. В качестве сорбента используют...
Тип: Изобретение
Номер охранного документа: 0002505614
Дата охранного документа: 27.01.2014
27.01.2014
№216.012.9c3e

Термоэнергетическая ветроустановка

Изобретение относится к ветроэнергетике и может быть использовано для получения механической или электрической энергии. Ветроустановка содержит неподвижный несущий корпус, вертикальную ось, соединенную с ротором в верхней части, электрогенератором и побудителем тяги в основании корпуса,...
Тип: Изобретение
Номер охранного документа: 0002505704
Дата охранного документа: 27.01.2014
27.01.2014
№216.012.9c69

Способ заброски твердого топлива на неподвижную колосниковую решетку для сжигания в плотном слое

Изобретение относится к области сжигания твердого топлива в плотном слое на неподвижной колосниковой решетке с ручным обслуживанием и может быть использовано в топках твердотопливных теплогенераторов, печей, паровых и водогрейных котлов. Сущность предлагаемого способа заброски твердого топлива...
Тип: Изобретение
Номер охранного документа: 0002505747
Дата охранного документа: 27.01.2014
27.01.2014
№216.012.9c9b

Способ определения коэффициента трения при пластической деформации

Изобретение относится к области изучения трения при обработке металлов давлением, предпочтительно в технологиях ковки. Сущность: осуществляют изготовление испытуемого образца, фиксацию его начальных геометрических параметров, осадку с уменьшением толщины образца, фиксацию геометрических...
Тип: Изобретение
Номер охранного документа: 0002505797
Дата охранного документа: 27.01.2014
10.02.2014
№216.012.9de8

Способ изготовления труб

Изобретение относится к области машиностроения и может быть использовано при изготовлении труб из металлических и композиционных материалов. Осуществляют формовку листа пластической деформацией вблизи кромок на оправке с получением загнутых боковых кромок, его обжим в трубу и последующее...
Тип: Изобретение
Номер охранного документа: 0002506132
Дата охранного документа: 10.02.2014
+ добавить свой РИД