×
20.02.2016
216.014.cdb1

Результат интеллектуальной деятельности: СПОСОБ ЭЛЕКТРОХИМИЧЕСКОГО СТЕРЕОСЕЛЕКТИВНОГО α-ГИДРОКСИАЛКИЛИРОВАНИЯ ГЛИЦИНА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области органической химии и электрохимии, конкретно к способу стереоселективного α-гидроксиалкилирования глицина путем введения его в виде основания Шиффа в координационную сферу комплекса Ni(II) с хиральным лигандом ((S)-2N-(N′-бензилпролил)аминобензофеноном), после чего осуществляют взаимодействие с реагентом. При этом в качестве реагента и растворителя используют алифатический спирт и проводят one-pot электрохимический процесс путем гальваностатического электролиза вышеуказанной смеси в присутствии КОН. Целевые продукты выделяют известными методами. Предлагаемый способ позволяет технологично и удобно получать целевые оптически активные β-гидрокси-α-аминокислоты с использованием более дешевых и доступных реагентов. 1 з.п. ф-лы, 8 пр.

Область техники

Изобретение относится к области органической химии и электрохимии, конкретно к химии аминокислот, а именно к способу электрохимического стереоселективного α - гидроксиалкилирования глицина (Gly) - наиболее доступной аминокислоты - после введения его в виде основания Шиффа в координационную сферу комплекса никеля с хиральным лигандом ((S)-2N-(N'-бензилпролил)аминобензофеноном) {далее - [(<S)-BPB-Gly] Ni (II) комплекс} с целью получения ценных (S)- и (R)-β-гидрокси-α-аминокислот в оптически чистом виде, которые являются важными компонентами физиологически активных пептидов, циклических пептидов (Vancomycin, Cyclosporine) и ингибиторов ферментов, a (S)-серин и (5)-треонин также используются в составе аминокислотных смесей для парентерального питания.

Уровень техники

Стереоселективная функционализация природных α-аминокислот является важной синтетической задачей, поскольку такие соединения представляют большой практический интерес, в первую очередь как медицинские и биологически активные препараты. Известен способ решения этой задачи путем введения аминокислоты в координационную сферу металлокомплекса с хиральным лигандным окружением. Введение аминокислоты в координационную сферу комплекса Ni(II) позволяет осуществить ее функционализацию, поскольку повышает кислотность α-протонов, отщепление которых требуется в ходе реакции [Yu. N. Belokon', A.G. Bulychev, S.V. Vitt. General Method of Diastereo- and Enantioselective Synthesis of β-Hydroxy-α-amino Acids by Condensation of Aldehydes and Ketones with Glycine II J. Am. Chem. Soc, 1985, V. 107, P. 4252-4259]. Наличие хирального центра в непосредственной близости от места функционализации позволяет обеспечить ее строго определенную стереонаправленность.

До настоящего времени не известны примеры прямого стереоселективного электросинтеза с участием вышеуказанных хиральных комплексов. Способы создания новых хиральных центров в условиях электросинтеза до сих пор разработаны недостаточно, большинство из них приводит к невысоким оптическим выходам [Т. Nonaka, Т. Fuchigami, Stereochemistry of Organic Electrode Processes.// Organic Electrochemistry 4th ed. (ed. by H. Lund and O. Hammerich), New York: Marcel Dekker, Inc., 2001, p. 1051-1102].

Известен способ получения оптически чистых β-гидрокси-α-аминокислот, который включает взаимодействие хирального комплекса [(S)-BPB-Gly] Ni (II) с алифатическими альдегидами под действием метилата натрия, реакцию проводят при нагревании (40-50°С) в течение 2-3 часов [V.A. Soloshonok, D.V. Avilov, V.P. Kukhar', V.I. Tararov, T.F. Savereva, T.D. Churkina, N.S. Ikonnikov, K.A. Kochetkov, S.A. Orlova, A.P. Pysarevsky, Yu. T.Strachkov, N. I. Raevsky, Yu. N. Belokon1, Asymmetric Aldol Reactions of Chirai Ni(II)-Complex of Glycine with Aliphatic Aldehydes. Stereodivergent Synthesis of syn-(2S)- and syn-(2R)-β-Alkylserines//Tetrahedron: Asymmetry, 1995, V. 6, P. 1741-1756].

Известен способ получения оптически активной β-гидрокси-α-аминокислоты - (S)-серина (Ser) [А.С. Сагиян, С.М. Джамгарян, Б.С. Арутюнян, Ю.Н. Белоконь, М.Г. Рыжов, Оганесян А.Х. Способ получения серина, Авт. свид. СССР №1555324 (1990), С07С 229/00, опубл. 07.04.90. Бюл. №13], который включает образование хелатного комплекса глицина с (S)-2-N-(N'-бензилпролил)аминобензофеноном и нитратом никеля [(S)-ВРВ-Gly] Ni(II), его выделение и α-гидроксиметилирование глицинового фрагмента этого комплекса формальдегидом в присутствии метилата натрия, в результате образуется диастереомерная смесь новых хелатных комплексов [(S)-BPB-Ser] Ni (II), ее выделяют из реакционной смеси и затем разделяют комплексы серина. Выделение хелатного комплекса глицина и диастереомерной смеси комплексов серина осуществляют осаждением из разбавленных водой растворов при соотношении реакционная смесь: вода, равном 1:(20-25), на стадии выделения комплекса глицина и 1:(26-31) - на стадии выделения смеси комплексов серина, а разделение смеси комплексов S-серина и R-серина осуществляют дробной кристаллизацией из ацетона, взятого в массовом отношении к смеси комплексов (0.8-1):1. Полученную смесь комплексов серина [в соотношении (S):(R)=95:5] кристаллизуют из ацетона, выделяя комплекс S -энантиомера серина с выходом 86.8%. Выход целевого продукта S-серина на стадии разложения комплекса 96.2%.

Известен способ получения β-гидрокси-α-аминокислот [Yu. N. Belokon, К.А. Kochetkov, N.S. Ikonnikov, T.V. Strelkova, S.R. Harutyunyan A.S. Saghiyan, A new synthesis of enantiomerically pure syn-(S)-b-hydroxy-a-amino acids via asymmetric aldol reactions of aldehydes with a homochiral Ni(II)-glycine: (S)-BPB Schiff base complex, Tetrahedron Asymmetry, 2001, V. 12, P. 481-485], в котором глицин в виде основания Шиффа вводят в координационную сферу комплекса никеля с хиральным лигандом ((S)-2N-(N'-бензилпролил)аминобензофеноном), получают комплекс [(S)-BPB-Gly] Ni (II), затем осуществляют стереоселективное α-гидроксиалкилирование глицинового фрагмента этого комплекса путем его взаимодействия с альдегидом, причем в качестве основания используют гидрид натрия в тетрагидрофуране и реакцию проводят при комнатной температуре, в результате после осаждения получают комплексы целевых β-гидрокси-α-аминокислот с высокими выходами 70-96%. Выход аминокислоты на последующей стадии разложения комплекса 81-99%. Этот способ по совокупности существенных признаков наиболее близок к заявляемому способу и был выбран в качестве прототипа.

Все известные способы-аналоги и способ-прототип имеют ряд существенных недостатков: необходимость использования в качестве гидроксилирующих агентов достаточно дорогих и малоустойчивых альдегидов, а в качестве основания - дорогих и опасных метилата натрия или гидрида натрия. Альдегиды - активные реагенты, которые легко подвергаются окислению или вступают в другие побочные реакции. Кроме того, применение пожароопасного растворителя тетрагидрофурана является нежелательным. Все эти недостатки увеличивают стоимость целевых продуктов - β-гидрокси-α-аминокислот, а также тормозят внедрение способа-прототипа в промышленность, где приоритетными являются безотходные производства медицинских и биологически активных препаратов. В связи с этим разработка нового способа α-гидроксиалкилирования аминокислот, где в качестве исходных соединений используют не карбонильные соединения, а их предшественники - спирты, которые являются более доступными и дешевыми веществами, и в качестве основания используют дешевые и доступные щелочи, имеет большое практическое значение.

Задачей настоящего изобретения является разработка электрохимического способа α-гидроксиалкилирования глицина в составе комплекса [(S)-BPB-Gly] Ni(II) для получения β-гидрокси-α-аминокислот из доступного дешевого сырья.

Сущность изобретения

Поставленная задача решена заявляемым способом электрохимического стереоселективного α-гидроксиалкилирования глицина, включающим введение глицина в виде основания Шиффа в координационную сферу комплекса никеля с хиральным лигандом ((S)-2N-(N'-бензилпролил)аминобензофеноном) [(S)-BPB-Gly] Ni (II), α-гидроксиалкилирование глицинового фрагмента полученного комплекса путем взаимодействия с алифатическим спиртом в присутствии КОН с образованием диастереомерной смеси комплексов целевых β-гидрокси-α-аминокислот, выделение и разделение указанных комплексов известными приемами, при этом гидроксиалкилирование осуществляют как one-pot электрохимический процесс путем гальваностатического электролиза смеси комплекса [(S)-BPB-Gly] Ni (II), алифатического спирта и КОН. В качестве алифатического спирта можно использовать также этиленгликоль.

Подробное описание изобретения

Разработан новый удобный электросинтетический способ стереоселективного α-гидроксиалкилирования глицина путем введения оксиалкильных групп в глициновый фрагмент комплекса [(S)-BPB-Gly] Ni (II) с получением новых комплексов и выделением в качестве целевых продуктов β-гидрокси-α-аминокислот, при этом в качестве исходных реагентов используют соответствующие спирты.

Способы получения комплекса [(S)-BPB-Gly] Ni (II), основного исходного соединения, хорошо отработаны и известны. Так, Ni (II) комплекс основания Шиффа глицина с хиральными производными (S)-2-N-(N'-бензилпропил)аминобензофенона [(S)-ВРВ- Gly] Ni (II) получают в щелочной среде в инертной атмосфере при 40-50°С в смеси метанол - диметилформамид (в объемном соотношении 85-60:15-40) и мольном соотношении компонентов [(S)-ВРВ]: Ni (II): Gly=(3-4):(1-2):1 с выходами более 95% [Рыжов М.Г., Лысова Л.А., Казика А.И., Носова Н.А., Мишин В.И., Белоконь Ю.Н., Способ получения никель (II) - комплексов основания Шиффа глицина с хиральными производными (S) или (R)-2-N-(N'-бензилпропил) аминобензофенона, Авторское свидетельство СССР №2027720 (1995), C07F 15/04. Опубл. 27.01.1995. Бюлл №3].

В комплексе [(S)-BPB- Gly] Ni (II) в мягких условиях происходит образование карбаниона [Y.N. Belokon', A.G. Bulychev, S.V. Vitt, General Method of Diastereo- and Enantioselective Synthesis of β-Hydroxy-α-amino Acids by Condensation of Aldehydes and Ketones with Glycine, J. Am. Chem. Soc, 1985, V. 107, 4252-4259], вступающего во взаимодействие с карбонильными соединениями (которые в нашем случае образуются путем электрохимического окисления спиртов и вступают в реакцию in situ). Термодинамическая энантиоселективность процесса обусловливается несвязывающим взаимодействием боковой цепи аминокислотного фрагмента (R)-конфигурации с бензильным фрагментом реагента, что приводит к диастереомерному избытку комплекса с (S)-аминокислотой. После кислотного гидролиза комплексов выделяют исходный хиральный реагент и энантиомерно обогащенную (S)-аминокислоту. При использовании (R)-хирального реагента получают соответственно (R)-аминокислоту. Способ универсален, т.к. варьируя природу электрофила, можно получать разнообразные β-гидрокси-α-аминокислоты.

Заявляемый способ отличается аппаратурной простотой и высокой эффективностью. Электролиз проводят при комнатной температуре в электрохимической ячейке с неразделенным электродным пространством в гальваностатическом режиме, в спиртовом растворе, в присутствии гидроксида калия, одновременно выполняющего роль основания и фонового электролита. Суммарный выход целевых комплексов практически количественный. После хроматографического разделения и очистки реакционной смеси на силикагеле выделяют два новых диастереомерных комплекса никеля с β-гидрокси-α-аминокислотами с общим выходом более 90%. Соотношение диастереомеров зависит от условий электросинтеза и может быть проконтролировано, что позволяет получить преимущественно тот или иной диастереомерный комплекс с (S)- или (R)-аминокислотой (см. ниже). Полученные диастереомерно чистые комплексы в результате сольволиза 1 М НСl в метаноле по стандартной методике дают соответствующие (S) или (R)-β-гидрокси-α-аминокислоты и регенерированный хиральный реагент (S)-ВРВ с практически количественным выходом.

Механизм электрохимического превращения можно представить следующим образом. В щелочной среде происходит депротонирование не только комплекса [(S)-ВРВ-Gly] Ni (II), но и спирта, с образованием соответствующего алкоголята в равновесной концентрации. Алкоголят легко окисляется на аноде с образованием соответствующего альдегида. На примере метанола образование альдегида на аноде выглядит следующим образом:

Генерируемый в растворе альдегид in situ реагирует по механизму нуклеофильного присоединения с депротонированным исходным комплексом [(S)-BPB-Gly] Ni (II), что приводит к его функционализации с образованием новых изомерных комплексов II и III, содержащих остаток β-гидрокси-α-аминокислоты. Таким образом, реакцию функционализации комплекса удается провести как one-pot процесс [термином «one-pot» обозначают одностадийный процесс, проводимый в одном сосуде, см. В.А. Смит, А.Д. Дильман. Основы современного органического синтеза, Бином. Лаборатория знаний, Москва, 2009, стр. 6].

В реакцию могут быть введены любые первичные алифатические спирты, за исключением тех, которые после окисления способны давать в щелочной среде устойчивые гидраты (например, полифторированные спирты; так, CF3CH2OH, для которого происходит дезактивация генерируемого in situ трифторацетальдегида вследствие взаимодействия с гидроксид-ионом и образования устойчивого гидрата, не вступает в реакцию), а также этиленгликоль. Строение продуктов реакции доказано спектральными методами (ЯМР 1Н, 13С, включая двумерные корреляционные спектры COSY и HMQC с полным отнесением сигналов, а также масс-спектрометрия высокого разрешения).

Для проведения электросинтеза подходит простейшая электрохимическая ячейка любой формы с неразделенным анодным и катодным пространством. В качестве рабочего электрода может быть использована платина или графит. Реакция может быть проведена как в потенциостатическом, так и в гальваностатическом режиме, однако в последнем случае процесс более прост и технологичен.

Преимущества по сравнению с прототипом и аналогами

Предлагаемый способ электрохимического стереоселективного α-гидроксиалкилирования глицина имеет ряд существенных преимуществ по сравнению с прототипом и аналогами.

Во-первых, вместо дорогостоящих альдегидов в реакцию вводят их прекурсоры - спирты, которые являются гораздо более дешевыми реагентами и более технологичны в использовании. Это позволяет избежать применения альдегидов, расширить ассортимент целевых продуктов за счет получения аминокислотных комплексов, которые ранее не были синтезированы.

Во-вторых, реакцию α-гидроксиалкилирования глицина проводят как технологичный one-pot процесс, поскольку альдегиды генерируются путем анодного гальваностатического окисления спиртов, используемых одновременно и в качестве растворителя (при этом также исключается использование пожароопасного тетрагидрофурана), и тем самым вводятся в реакцию in situ, что уменьшает вероятность характерных для них побочных процессов и позволяет снизить отходы при сохранении высокого выхода целевых комплексов II и III.

В третьих, в данном способе используется дешевая щелочь, в отличие от дорогого и огнеопасного гидрида натрия. Варьируя концентрацию КОН (который одновременно выполняет роль основания и фонового электролита) от 0.35 M до 0.1 M и время выдерживания реакционной смеси, полученной после пропускания заданного количества электричества, перед нейтрализацией щелочи (от 5 мин до 20 часов), можно широко варьировать соотношение образующихся изомеров с (S) или (R) конфигурацией α-аминокислотного центра (от 5:95 до 98:2). Меньшее количество щелочи и создание нейтральной рН сразу после окончания электролиза позволяет стереоселективно получать комплексы (S)-β-гидрокси-α-аминокислот. Увеличение рН и времени выдерживания реакционной смеси после электролиза приводит преимущественно к комплексам (R)-β-гидрокси-α-аминокислот. Дальнейшее увеличение количества щелочи ограничено ее растворимостью в спиртах, уменьшение количества щелочи <0.1 M уменьшает конверсию. Разложение комплексов по стандартной методике (пример 8) позволяет получать оптически чистые (S) и (R)- β-гидрокси-α-аминокислоты с выходами более 90%.

В ходе исследования были установлены оптимальные условия получения гидроксиалкилированных глициновых комплексов Ni (II) (примеры 1-7), выходы которых достигают 90%.

Заявляемое изобретение иллюстрируется следующими ниже примерами, которые не ограничивают объем настоящего изобретения.

Пример 1. Получение сериновых комплексов и их выделение

В двухэлектродную ячейку с неразделенным электродным пространством объемом 50 мл (рабочий электрод - пластина из стеклоуглерода площадью 300 мм2, вспомогательный электрод - платиновая пластина, размером 100 мм2) помещают раствор 900 мг (16 ммоль) гидроксида калия и 200 мг (0.4 ммоль) комплекса [(S)-ВРВ- Gly] Ni (II) в 30 мл метанола. Раствор продувают аргоном. Электролиз проводят в гальваностатическом режиме (при плотности тока J=5 мА/см2) в течение 2,5 ч в токе аргона при перемешивании магнитной мешалкой (пропускают 135 Кл электричества, 3.5 F/моль комплекса). К полученному после электролиза раствору добавляют 700 мкл (11.2 ммоль) ледяной уксусной кислоты и оставляют смесь на 20 часов. На следующий день добавляют еще 300 мкл ледяной уксусной кислоты (4.8 ммоль), раствор выливают в 80 мл воды и экстрагируют бензолом (3×30 мл). Объединенные бензольные фракции промывают водой и упаривают на роторном испарителе. Сухой остаток сушат в течение ночи в вакуум-эксикаторе над оксидом фосфора (V). Затем полученную смесь диастереомеров хроматографически разделяют на колонке с силикагелем (элюент - ацетон), выделяя две фракции. После упаривания растворителя и высушивания комплексов в вакууме над оксидом фосфора (V) из первой фракции получают 186 мг (88%) комплекса, содержащего фрагмент (R)-серина и 20 мг (9%) комплекса (S)-серина.

HRMS: m/z 528.1426 (М+Н+, вычислено для C28H28N3NiO4: 528.1432); 550.1252 (M+Na+, вычислено для C28H27N3NiO4Na: 550.1252).

Диастереомерный комплекс Ni(II)c (R)-серином

ЯМР 1H (CDCl3 δ, м.д.): 8.49 (дц, J=8.7, 1.1 Гц, 1Н (Н-8)), 8.10-8.05 (м, 2Н (Н-17,21)), 7.60-7.43 (м, 6Н (18,19,20,24,25,26)), 7.26 (ддд, J=8.7, 6.8, 1.8 Гц, 1Н (Н-7)), 7.22-7.18 (м, 1Н (Н-27)), 7.09-7.04 (м, 1H (Н-23)), 6.77 (дд, J=8.3, 1.8 Гц, 1H (Н-5)), 6.70 (ддд, J=8.3, 6.8, 1.2 Гц, 1H (Н-6)), 4.45 (д, J=13.0 Гц, 1H (Bn Н-15)), 4.18-4.09 (м, 1H (Pro Н-14)), 3.94 (дд, J=7.3, 4.6 Гц, 1H (Ser Н-2)), 3.76 (ддд, J=10.1, 7.3, 3.6 Гц, 1H (Ser β-СН2)), 3.63 (дд, J=9.6, 4.3 Гц, 1H (Pro Н-11)), 3.62-3.57 (м, 1H (Ser β-СН2)), 3.55 (д, J=13.0 Гц, 1Н (Вn Н-15)), 2.86 (дц, J=8.8, 3.6 Гц, 1H (Ser ОН)), 2.66-2.54 (м, 2Н (Pro Н-13,14)), 2.31-2.15 (м, 2Н (Pro Н-12)), 1.99-1.89 (м, 1Н (Pro Н-13)). (лит ЯМР 1Н [5]).

ЯМР 13С-{1Н} (CDCl3 δ, м.д.): 182.26, 179.52, 172.90, 143.10, 134.05, 133.94, 133.80, 132.86,131.74, 130.03, 129.40, 129.27, 128.96, 128.63, 128.33, 126.67, 125.84, 123.94, 120.91, 71.27, 69.42, 64.50, 62.28, 59.01, 30.68, 23.50.

Диастереомерный комплекс Ni(II) с (S)-серином

ЯМР 1H (CDCl3 δ, м.д.): 8.12 (дд, J=8.7, 1.1 Гц, 1H (Н-8)), 8.09-8.05 (м, 2Н (Н-17,21)), 7.53-7.42 (м, 3Н (Н-24,25,26)), 7.39-7.34 (м, 2Н (Н-18,20)), 7.26-7.23 (м, 1Н (Н-27)), 7.23-7.18 (м, 1Η (Η-19)), 7.14 (ддд, J=8.7, 6.6, 2.1 Гц, 1H (Н-7)), 7.02-6.98 (м, 1Н (Н-23)), 6.66 (ддд, J=8.3, 6.6,1.1 Гц, 1Н (Н-6)), 6.62 (дд, J=8.3,2.0 Гц, 1H (Н-5)), 4.35 (д, J=12.6 Гц, 1H (Вn Н-15)), 3.99 (т, J=4.5 Гц, 1H (Ser Н-2)), 3.84-3.72 (м, 3Н (Ser β-СН2, Pro Н-13)), 3.55 (д, J=12.6 Гц, 1H (Вn Н-15)), 3.49-3.45 (м, 1Н (Pro Н-14)), 3.45 (дц, J=11.1, 5.6 Гц, 1Н (Pro Н-11)), 2.98 (дд, J=7.0, 5.0 Гц, 1Н (Ser -ОН)), 2.80-2.71 (м, 1Н (Pro Н-12)), 2.54-2.42 (м, 1Н (Pro Н-12)), 2.15-2.06 (м, 1Н (Pro Н-13)), 2.05-1.97 (м, 1H (Pro Н-14)). (лит. ЯМР 1Н [5]).

ЯМР 13С-{1Н} (CDCl3 δ, м.д.): 180.55, 178.59, 171.64, 142.60, 133.84, 133.45, 133.40, 132.41, 131.66, 130.00, 129.22, 129.18, 129.07, 129.03, 127.88, 127.06, 126.71, 123.99, 120.84, 72.10,70.51,64.70,63.22, 57.38, 30.85,23.63.

Пример 2. Получение сериновых комплексов и их выделение

В двухэлектродную ячейку с неразделенным электродным пространством объемом 10 мл (рабочий электрод - платиновая пластина площадью 100 мм2, вспомогательный электрод - графитовая ткань марки «Урал», размером 10 мм×30 мм) помещают раствор 180 мг (3.2 ммоль) гидроксида калия и 40 мг (0.08 ммоль) комплекса [(S)-ВРВ- Gly] Ni (II) в 10 мл метанола. Раствор продувают аргоном. Электролиз проводят в гальваностатическом режиме (при плотности тока 5 мА/см2) в течение 1,5 ч в токе аргона при перемешивании магнитной мешалкой (пропущено 27 Кл электричества, 3.5 F/моль комплекса). К полученному в результате электролиза раствору сразу добавляют 200 мкл (3,2 ммоль) ледяной уксусной кислоты. Раствор упаривают, добавляют ацетон (10 мл), осадок ацетата калия отделяют фильтрованием. Суммарный выход целевых комплексов практически количественный. Реакционную смесь хроматографически разделяют на колонке с силикагелем (элюент - ацетон), выделяя две фракции. После упаривания растворителя из первой фракции получают 14 мг (33%) комплекса, содержащего фрагмент (R)-серина и 15 мг (35%) комплекса (S)-серина.

HRMS: m/z 528.1426 (М+Н+, вычислено для C28H28N3NiO4: 528.1432); 550.1252 (M+Na+, вычислено для C28H27N3NiO4Na: 550.1252).

Пример 3. Получение сериновых комплексов

В условиях, аналогичных условиям, описанным в примере 2, за исключением того, что вместо платиновой пластины в качестве рабочего электрода использовали графитовую ткань марки «Урал», получают 15 мг (35%) комплекса, содержащего фрагмент (R)-серина и 15 мг (35%) комплекса (S)-серина.

Пример 4. Получение комплекса с (S)серином.

В условиях, аналогичных условиям, описанным в примере 2, за исключением того, что при проведении электролиза 20 мг (0.04 ммоль) [(S)-BPB-Gly] Ni (II) в тех же условиях, но с меньшим количеством щелочи (56 мг (1.0 ммоль) КОН), получают практически только один продукт - (S)-диастереомер комплекса с (S)-серином (11 мг, выход 55%, выход в пересчете на прореагировавший [(S)-ВРВ- Gly] Ni (II) составляет 98%), соотношение комплексов с (S) и (R)-серином, определенное из спектра ЯМР 1Н, составляет 98:2.

Пример 5. Получение треониновых β-метилсериновых) комплексов и их выделение.

В ячейку с неразделенным электродным пространством помещают раствор 300 мг (5.4 ммоль) гидроксида калия и 20 мг (0.04 ммоль) комплекса [(S)-ВРВ- Gly] Ni (II) в 10 мл этанола. Раствор продувают аргоном. Электролиз проводили в гальваностатическом режиме (J=5 мА/см2) в течение 45 мин при перемешивании магнитной мешалкой (пропускают 13.5 Кл электричества, 3.5 F/моль комплекса). Затем к раствору добавляют 400 мкл (6.4 ммоль) ледяной уксусной кислоты. Раствор упаривают, добавляют четыреххлористый углерод (10 мл), осадок ацетата калия отделяют фильтрованием. Суммарный выход неразделенных диастереомерных комплексов составляет 95%, соотношение комплексов с (S) и (R)-треонином, определенное из спектра ЯМР 1Н, составляет 3:10. Реакционную смесь после фильтрования хроматографически разделяют на колонке с силикагелем (элюент - ацетон). Получают две фракции. После упаривания растворителя из первой фракции получают 13,2 мг (61%) комплекса, содержащего фрагмент (2R, 3S)-треонина и 6,9 мг (32%) комплекса (2S,3R)-треонина.

HRMS: m/z 542.1570 (М+Н+, вычислено для C29H30N3NiO4: 542.1589); 564.1401 (M+Na+, вычислено для C29H29N3NiO4Na: 564.1408).

Диастереомерный комплекс Ni(II) с (2R, 3S)-треонином:

ЯМР 1H (CDCl3 δ, м.д.): 8.47 (дд, J=8.8, 1.1 Гц, 1H), 7.86-7.83 (м, 2Н), 7.55-7.40 (м, 6Н), 7.28 (ддд, J=8.8, 6.9, 1.7 Гц, 1H), 7.24 (с, 1H), 7.10 (с, 1H), 6.85 (дд, J=8.3, 1.7 Гц, 1H), 6.74 (ддд, J=8.3, 6.9,1.1 Гц, 1H), 4.72 (д, J=13.2 Гц, 1Н), 4.07 (д, J=5.2 Гц, 1Н), 3.99 (ддд, J=11.1, 6.8, 4.0 Гц, 1Н), 3.90 (д, J=13.1 Гц, 1H), 3.81-3.72 (м, 1Н), 3.59 (дд, J=10.0,4.5 Гц, 1Н), 3.62-3.56 (м, 1Н), 2.76-2.61 (м, 1Н), 2.53 (ддд, J=11.5, 9.6,6.2 Гц, 1H), 2.29-2.20 (м, 1H), 2.13-2.01 (м, 1H), 1.91-1.80 (м, 1Н), 1.70 (д, J=6.3 Hz, 3Н).

ЯМР 13С-{1Н} (CDCl3 δ, м.д.): 182.33, 179.44, 173.83, 142.96, 134.19, 134.00, 132.88, 132.66, 131.89, 130.13, 129.34, 129.17, 128.84, 126.56, 125.91, 124.16, 121.07, 74.07, 68.96, 68.81,61.99, 57.60, 30.90, 23.64, 19.39.

Диастереомерный комплекс Ni(II) с (2S, 3R)-треонином:

HRMS: m/z 542.1583 (М+Н+, вычислено для C29H30N3NiO4 542.1589); 564.1409 (M+Na+, вычислено для С29Н29N3NiO4Na 564.1408).

ЯМР 1H (CDCl3 δ, м.д.): 8.26 (ддд, J=8.7, 1.2, 0.5 Гц, 1Н), 8.06-8.03 (м, 2Н), 7.58-7.51 (м, 3Н), 7.38-7.33 (м, 2Н), 7.22-7.14 (м, 3Н), 6.95-6.91 (м, 1Н), 6.67 (ддд, J=8.3, 6.7, 1.2 Гц, 1Н), 6.63 (ддд, J=8.3, 2.0, 0.5 Гц, 1Н), 4.37 (д, J=12.7 Гц, 1H), 4.12 (д, J=5.1 Гц, 1Н), 3.71-3.63 (м, 1Н), 3.62 (д, J=12.7 Гц, 1Н), 3.55-3.34 (м, 3Н), 2.85-2.75 (м, 1H), 2.60-2.51 (м, 1H), 2.16-2.02 (м, 2Н), 1.98 (д, J=6.3 Гц, 3Н).

Пример 6. Получение β-этилсериновых комплексов и их выделение.

В условиях, аналогичных примеру 5, за исключением того, что вместо этанола использовали н-пропанол, получают β-этилсериновые комплексы. Суммарный выход неразделенных диастереомерных комплексов составляет 95%. После хроматографического разделения получено 6.5 мг (30%) (S, 2R, 3S)-диастереомера (первая фракция) и 11 мг (50%) (S, 2S, 3S)-диастереомера (вторая фракция).

Диастереомерный комплекс Ni(II) с (2S, 3R)-β-этилсерином:

1H NMR (400 MHz, CDCl3) δ, м.д. 8.50 (дд, J=8.7, 1.2 Гц, 1H), 7.87-7.83 (м, 2Н), 7.55-7.41 (м, 6Н), 7.29 (ддд, J=8.7, 6.9, 1.7 Гц, 1H), 6.84 (дд, J=8.3, 1.7 Гц, 1H), 6.74 (ддд, J=8.3, 6.9, 1.2 Гц, 1Н), 4.66 (д, J=13.3 Гц, 1H), 4.09 (d, J=5.3 Гц, 1Н), 4.07-4.01 (м, 1H), 3.85 (d, J=13.3 Гц, 1Н), 3.62 (дд, J=9.9, 4.3 Гц, 1Н), 3.48-3.40 (м, 1H), 3.38-3.31 (м, 1Н), 2.71-2.53 (м, 3Н), 2.29-2.20 (м, 1Н), 2.13-2.01 (м, 1H), 1.91-1.81 (м, 1H), 1.65-1.58 (м, 1H), 1.08 (т, J=7.3 Гц, 3Н).

Диастереомерный комплекс Ni(II) с (2R, 3S)-β-этилсерином:

1Н NMR (400 MHz, CDCl3) δ, м.д. 8.24 (дд, J=8.7, 0.8 Гц, 1H), 8.07-8.02 (м, 2Н), 7.58-7.41 (м, 4Н), 7.38-7.32 (м, 2Н), 7.22-7.12 (м, 2Н), 6.94-6.88 (м, 1H), 6.70 (ддд, J=8.20, 6.70, 1.20 Гц, 1H), 6.62 (дд, J=8.2, 1.9 Гц, 1Н), 4.37 (д, J=12.7 Гц, 1H), 4.14 (д, J=4.8 Гц, 1H), 3.61 (d, J=12.7 Гц, 1Н), 3.53-3.43 (м, 2Н), 3.43-3.27 (м, 3Н), 3.21-3.09 (м, 1H), 2.84-2.74 (м, 1Н), 2.60-2.48 (м, 1H), 2.16-2.01 (м, 2Н), 1.14 (т, J=7.3 Гц, 3Н).

13С NMR (101 MHz, CDCl3) δ, м.д. 180.38, 179.08, 172.58, 142.70, 133.88, 133.83, 133.34, 132.77, 131.82, 131.64, 130.21, 129.24, 129.23, 129.11, 129.06, 128.19, 126.87, 126.44, 123.60, 120.91, 73.45, 70.63, 63.56, 57.07, 30.82, 26.65, 23.36, 11.00.

Пример 7. Получение сериновых комплексов с использованием этиленгликоля и их выделение.

В ячейку с неразделенным электродным пространством помещают раствор 300 мг (5.4 ммоль) гидроксида калия и 20 мг (0.04 ммоль) комплекса [(S)-ВРВ- Gly] Ni (II) в 10 мл этиленгликоля. Раствор продувают аргоном. Электролиз проводят в гальваностатическом режиме (J=5 мА/см2) в течение 45 мин при перемешивании магнитной мешалкой (пропускают 13.5 Кл электричества, 3.5 F/моль комплекса). Затем к раствору добавляют 400 мкл (6,4 ммоль) ледяной уксусной кислоты и разбавляют 70 мл воды. Экстрагируют хлористым метиленом (3×15 мл), объединенную органическую фракцию промывают два раза насыщенным раствором хлорида натрия, затем сушат над хлоридом кальция. Суммарный выход неразделенных диастереомерных комплексов составил 95%, соотношение комплексов с (S)- и (R)-серином, определенное из спектра ЯМР 1H, составляет 3:5. Полученную смесь разделяют хроматографически, элюент - ацетон. Получают две фракции диастереомерных комплексов, содержащих остаток серина: 10,5 мг (5,7 г)-диастереомера (50%) и 6,2 мг (S,S)-диастереомера (29%).

Пример 8. Стандартная методика разложения комплексов Ni(II) и выделения β-гидрокси-α-аминокислот

К 10 мл кипящего 2Ν раствора НСl добавляют по каплям раствор 108 мг (0,2 ммоль) Ni (II) комплекса (S)-серина в 5 мл МеОН. Через 30 мин после исчезновения красной окраски комплекса раствор нейтрализуют 20% NH4OH до рН 8-9 и экстрагируют хлороформом хиральный реагент (S)-ВРВ, пригодный для повторного использования. Выход реагента, определенный спектрофотометрически по поглощению при 330 нм, составляет ~98%, оптический выход (S)-ВРВ >99% (согласно поляриметрическим данным). Аминокислоту из водного слоя выделяют на катионообменной смоле Dowex-50 в Н+-форме, сорбированную аминокислоту элюируют 5% NH4OH, элюат упаривают под вакуумом, аминокислоту кристаллизуют. Выход аминокислоты (S)-серина - 20,5 мг (98%). Энантиомерная чистота >99% (по данным энантиомерного ГЖХ-анализа). Удельное вращение полученного (S)-серина соответствует литературным данным [α]20D+15.2 (С=5.1, 1N HCl).

Количества реагентов, используемые в примерах, могут быть масштабированы в десятки раз. Для этого достаточно просто увеличить объем электролизера и площадь электродов.

Таким образом, предлагается новый эффективный способ электрохимического стереоселективного α-гидроксиалкилирования глицина, который включает введение глицина в виде основания Шиффа в координационную сферу комплекса никеля с хиральным лигандом ((S)-2N-(N'-бензилпролил)аминобензофеноном) и последующего гальваностатического электролиза в спиртовом растворе в присутствии КОН, причем реакцию проводят как one-pot процесс, а в качестве реагентов используются алифатические спирты, вместо более дорогих и менее доступных альдегидов. Способ является удобной альтернативой известной реакции конденсации с данным комплексом. Способ отличается аппаратурной простотой и высокой эффективностью.

Технический результат

Техническим результатом данного способа являются

- использование дешевых и доступных реагентов - спиртов (вместо соответствующих альдегидов) и щелочи (вместо гидрида или метилата натрия),

- проведение реакции как технологичный one-pot процесс и

- расширение ассортимента целевых продуктов.

Возможность введения в реакцию вместо дорогостоящих альдегидов их прекурсоров - спиртов, которые являются гораздо более дешевыми реагентами и более технологичны в использовании, позволяет избежать применения альдегидов, расширить ассортимент целевых продуктов за счет получения аминокислотных комплексов, которые ранее не были синтезированы.

α-Гидроксиалкилирование глицина проводят электрохимически в одном реакторе (one-pot процесс), поскольку альдегиды генерируются путем анодного гальваностатического окисления спиртов, используемых одновременно в качестве растворителя (при этом исключается использование пожароопасного тетрагидрофурана), и тем самым альдегиды вводятся в реакцию in situ, что уменьшает вероятность характерных для них побочных реакций и позволяет снизить отходы при сохранении высокого выхода целевых комплексов II и III.

В заявляемом способе используют дешевую щелочь, а недорогие и огнеопасные гидрид натрия или метилат натрия. Изменяя концентрацию КОН (который одновременно выполняет роль основания и фонового электролита), можно широко варьировать соотношение образующихся Ni(II) комплексов с (S) или (R) конфигурацией α-аминокислотного центра, при сохранении высоких выходов.

Источник поступления информации: Роспатент

Показаны записи 101-109 из 109.
21.04.2023
№223.018.50c0

Применение монтмориллонита для детоксикации почв, загрязненных гербицидами

Изобретение относится к сельскому хозяйству, а именно к проблеме в агрохимии, связанной с преодолением фитотоксического действия остатков гербицидов в почвах на культурные растения. В качестве детоксиканта предложен монтмориллонит, вносимый в почву в дозе 100-200 кг/га в виде суспензии в воде...
Тип: Изобретение
Номер охранного документа: 0002794171
Дата охранного документа: 12.04.2023
12.05.2023
№223.018.5452

Композиция для стимуляции роста сельскохозяйственных культур

Изобретение относится к сельскому хозяйству, а именно к агрохимии. Композиция для ускорения роста и развития сельскохозяйственных культур включает стимулятор роста растений флороксан (СРР), модифицированный по твердофазной механохимической технологии глицирризиновой кислотой (ГК), при массовом...
Тип: Изобретение
Номер охранного документа: 0002795484
Дата охранного документа: 04.05.2023
16.05.2023
№223.018.63d6

Биополимерный материал для клеточно-инженерных и/или тканеинженерных конструкций и способ его получения

Изобретение относится к области биохимии, клеточной биологии и медицине, в частности к биополимерному материалу для клеточно-инженерных и тканеинженерных конструкций, а также способу его получения. Указанный материал обладает губчатой морфологией с системой взаимосвязанных макропор сечением от...
Тип: Изобретение
Номер охранного документа: 0002774947
Дата охранного документа: 24.06.2022
21.05.2023
№223.018.69e0

Композитный углеродный аэрогель, содержащий аэрогель оксида металла, и способ его получения

Изобретение относится к получению композитных аэрогелей, содержащих углеродные аэрогели и оксиды металлов. Композитный углеродный аэрогель содержит в порах оксид такого металла как железо, марганец, вольфрам, кобальт или хром. Оксид металла, заполняющий поры исходного углеродного аэрогеля,...
Тип: Изобретение
Номер охранного документа: 0002795582
Дата охранного документа: 05.05.2023
21.05.2023
№223.018.69e1

Композитный углеродный аэрогель, содержащий аэрогель оксида металла, и способ его получения

Изобретение относится к получению композитных аэрогелей, содержащих углеродные аэрогели и оксиды металлов. Композитный углеродный аэрогель содержит в порах оксид такого металла как железо, марганец, вольфрам, кобальт или хром. Оксид металла, заполняющий поры исходного углеродного аэрогеля,...
Тип: Изобретение
Номер охранного документа: 0002795582
Дата охранного документа: 05.05.2023
23.05.2023
№223.018.6cd1

Карборансодержащий полидифенилен-n-фенилфталимидин и способ его получения

Изобретение относится к химии высокомолекулярных соединений, конкретно к термостойкому карборансодержащему полидифенилен-N-фенилфталимидину формулы I, где значение n таково, что приведенная вязкость η полимера I составляет 0,40 дл/г. Также предложен способ получения полимера формулы I....
Тип: Изобретение
Номер охранного документа: 0002779450
Дата охранного документа: 07.09.2022
23.05.2023
№223.018.6e47

1,2-бис(перфтор-трет-бутокси)этан в качестве контрастного вещества для магнитно-резонансной томографии на ядрах f

Изобретение относится к области медицины и может быть использовано при проведении магнитно-резонансной томографии (МРТ). Предложено применение 1,2-бис(перфтор-трет-бутокси)этана в качестве контрастного вещества для магнитно-резонансной томографии на ядрах F. Изобретение обеспечивает расширение...
Тип: Изобретение
Номер охранного документа: 0002795915
Дата охранного документа: 15.05.2023
16.06.2023
№223.018.7a98

Способ получения перфторалкилйодидов и бромидов

Изобретение относится к способу получения перфторалкилйодидов или бромидов из перфторалкилсульфонилфторидов, включающему взаимодействие последних с гидразингидратом в апротонном полярном растворителе - ацетонитриле и последующее галогенирование промежуточных продуктов, причем продукт...
Тип: Изобретение
Номер охранного документа: 0002739762
Дата охранного документа: 28.12.2020
17.06.2023
№223.018.7f40

Композиции для получения кремнийорганических материалов с эффектом самозалечивания

Изобретение относится к области термостойких силоксановых композиций с эффектом самозалечивания и может найти применение в качестве герметизирующих и барьерных покрытий. Предложены композиции для получения материалов с эффектом самозалечивания, включающие полидиорганосилоксан, выбранный из...
Тип: Изобретение
Номер охранного документа: 0002766219
Дата охранного документа: 09.02.2022
Показаны записи 111-120 из 227.
25.08.2017
№217.015.b5d1

Средство, обладающее нейропротекторными свойствами в эксперименте и способ его получения

Группа изобретений относится к области создания средства, обладающего нейропротекторными свойствами в эксперименте, включающего биодеградируемый полимерный матрикс на основе фиброина шелка с иммобилизированным пептидом-агонистом рецептора ПАР1, освобождаемым активированным протеином С в...
Тип: Изобретение
Номер охранного документа: 0002614694
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b65b

Способ отклонения тепловой кумулятивной струи расплавленного металла и образованного ей канала на металлической поверхности катода в дуговом импульсном разряде при взрыве проволочки между электродами действием поперечного магнитного поля

Изобретение относится к области исследования физических свойств вещества, в частности к исследованию процессов в газоразрядных приборах и плазме. Между электродами при фиксированном расстоянии между ними подается напряжение, возникающий ток плавит и испаряет тонкую проволочку, которая...
Тип: Изобретение
Номер охранного документа: 0002614526
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b6b1

Способ создания образцов с заранее заданной термо-эдс, предназначенных для преобразования тепловой энергии в электрическую

Изобретение относится к электротехнике, а именно к области прямого преобразования тепловой энергии в электрическую энергию, и может быть использовано для получения образцов магнитных полупроводников - легированных манганитов с заданной термо-ЭДС для последующего их использования в источниках...
Тип: Изобретение
Номер охранного документа: 0002614739
Дата охранного документа: 29.03.2017
25.08.2017
№217.015.b6b5

Фармацевтическая композиция на основе β-модификации 2,3-бис-(гидроксиметил)хиноксалин-n,n'-диоксида и способ её получения

Группа изобретений относится к медицине. Описана фармацевтическая композиция, содержащая кристаллическую β-модификацию 2,3-бис-(гидроксиметил)хиноксалин-N,N'-диоксида, характеризующуюся определенным набором дифракционных максимумов и их интенсивностью (I, %), и наночастицы серебра. Описан...
Тип: Изобретение
Номер охранного документа: 0002614736
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b7ca

Способ получения покрытий, придающих материалам огнестойкость

Изобретение относится к химической технологии, конкретно к способу обработки текстильных материалов для придания им огнестойкости и снижения их горючести. Способ включает нанесение на поверхность материалов раствора олиго(аминопропил)этоксисилоксана общей формулы где n=5 (I), 10 (II), 15...
Тип: Изобретение
Номер охранного документа: 0002614957
Дата охранного документа: 31.03.2017
25.08.2017
№217.015.b8d0

Лекарственное средство для лечения фиброза печени, способ его получения и способ лечения фиброза печени

Изобретение относится к области биохимии, биотехнологии и генетической инженерии, в частности к лекарственному средству для лечения фиброза печени на основе смеси двух невирусных плазмидных конструкций. Первая невирусная плазмидная конструкция представляет собой pC4W-HGFopt и содержит ген,...
Тип: Изобретение
Номер охранного документа: 0002615445
Дата охранного документа: 04.04.2017
25.08.2017
№217.015.b8fc

Биологический днк-маркер для определения примеси муки мягкой пшеницы в муке твердой пшеницы и продуктах ее переработки

Изобретение относится к области биохимии, в частности к биологическому ДНК-маркеру для определения наличия примеси муки мягкой пшеницы в муке твердой пшеницы и продуктах ее переработки, а также к способу определения наличия примеси муки мягкой пшеницы в муке твердой пшеницы и продуктах ее...
Тип: Изобретение
Номер охранного документа: 0002615449
Дата охранного документа: 04.04.2017
25.08.2017
№217.015.ba38

Способ получения растворимых полиметилсилсесквиоксанов

Изобретение относится к способу получения растворимых полиметилсилсесквиоксанов из метилтриалкоксисиланов. Предложен способ получения растворимых в органических растворителях полиметилсилсесквиоксанов гидролитической поликонденсацией метилтриалкоксисилана общей формулы MeSi(OAlk), где Alk...
Тип: Изобретение
Номер охранного документа: 0002615507
Дата охранного документа: 05.04.2017
25.08.2017
№217.015.be98

Биорезорбируемый микроноситель для доставки клеток в область заживления и регенерации ран

Изобретение относится к области биотехнологии и медицины. Предложен биорезорбируемый микроноситель для доставки клеток в область повреждения ткани кожи для заживления и регенерации ран. Микроноситель представляет собой частицы диаметром 50-300 мкм с отрицательным зарядом при значениях рН...
Тип: Изобретение
Номер охранного документа: 0002616866
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.bfd0

Способ нейропротекции в эксперименте

Изобретение относится к области создания способа нейропротекции в эксперименте, включающего введение средства, содержащего биодеградируемый полимерный матрикс на основе фиброина с иммобилизированным пептидом-агонистом рецептора ПАР1, освобождаемым активированным протеином С. Использование...
Тип: Изобретение
Номер охранного документа: 0002616509
Дата охранного документа: 17.04.2017
+ добавить свой РИД