×
20.03.2016
216.014.c9ac

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ЦЕЛОСТНОСТИ ВЫСОКОТОЧНЫХ НАВИГАЦИОННЫХ ОПРЕДЕЛЕНИЙ ПОТРЕБИТЕЛЯ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области спутниковой навигации и может быть использовано в качестве оценки достоверности высокоточного навигационного определения. Технический результат состоит в повышении достоверности высокоточных навигационных определений и уменьшении времени оповещения потребителя о нарушении целостности навигации. Для этого вычисляются уровни защиты по горизонтали и вертикали, сравниваемые с соответствующими им аварийными пределами. Вычисление уровней защиты производится с учетом величины ошибки положения, которая может быть вызвана текущими измерениями, введения коэффициентов, отражающих доверительный диапазон по горизонтали и вертикали, для учета погрешностей, вносимых при распространении сигнала от навигационных космических аппаратов (НКА), а также погрешностей эфемеридно-временного обеспечения НКА, либо коррекций спутниковых часов и коррекций орбиты, в случае применения корректирующей информации от широкозонного функционального дополнения. 2 н. и 1 з.п. ф-лы, 9 ил.

Изобретение относится к области спутниковой навигации и может быть использовано в качестве оценки достоверности высокоточного навигационного определения.

Известен способ внутрисистемного мониторинга навигационных сигналов каждого спутника GPS (статья “Precise Point Positioningand Integrity Monitoring with GPS and GLONASS”, авторы: AlttiJokinen, ShaojunFeng, Carl Milner, Wolfgang Schuster and Washington Ochieng, URL: http://www.rin.org.uk/Uploadedpdfs/ConferenceProceedings/Jokinen%20paper%202A-web.pdf (дата обращения 28.03.14)), который проводится в рамках решения задачи эфемеридно-временного обеспечения системы на основе беззапросных измерений контрольного сегмента GPS. Все оценки качества функционирования навигационного космического аппарата (НКА) делаются на основе измерений по Р-коду, поскольку считается, что поведение параметров сигнала в кодах Р и С/А идентично. Параметры С/А-кода контролируются лишь в течение краткого периода времени при восхождении НКА в секторе видимости станции.

Недостатком является большой период времени с момента определения неисправности НКА до момента оповещения потребителя, поскольку между моментом возникновения неисправности НКА и моментом установки признака «не здоров» в навигационном сообщении может пройти несколько часов.

В работе “GNSS navigation solution integrity in non-controlled environments” (US 8131463, приор. 26.02.2009) описан алгоритм оценки целостности навигационного определения для одиночного приемника.

Недостатком указанного патента является то, что в описанном алгоритме не используют корректирующую информацию от какого-либо функционального дополнения глобальной навигационной спутниковой системы (ГНСС) и не применяют для определения местоположения метод наименьших квадратов, что приводит к снижению достоверности высокоточного навигационного определения.

Техническим результатом заявленного изобретения является повышение достоверности высокоточных навигационных определений и уменьшение времени оповещения потребителя о нарушении целостности навигации.

Технический результат заявленного изобретения достигается тем, что способ определения целостности высокоточных навигационных определений потребителя заключается в том, что принимают при помощи антенно-фидерного устройства приемника первый радиосигнал всех видимых навигационных космических аппаратов глобальных навигационных спутниковых систем, содержащий навигационную информацию, второй радиосигнал, содержащий корректирующую навигационную информацию хотя бы от одного космического аппарата широкозонной дифференциальной системы, и третий радиосигнал, содержащий измерения первичных радионавигационных параметров (псевдодальности и псевдофазы) от опорного приемника локальной дифференциальной системы, далее формируют в радиочастотной части приемника измерения первичных радионавигационных параметров (псевдодальности и псевдофазы), используя первый сигнал, передают в вычислительное устройство приемника первый, второй и третий радиосигналы, далее в блоке формирования массива первичных измерений вычислительного устройства приемника формируют вторые и третьи разности первичных радионавигационных параметров с использованием первого и третьего сигналов, формируют в блоке реализации режима относительной навигации вычислительного устройства приемника ковариационную матрицу ошибок

, где RS - подматрица ошибок невязок вторых разностей измерений псевдодальности; RδФ - подматрица ошибок невязок вторых разностей измерений приращений псевдофазы; RФ - подматрица ошибок невязок вторых разностей измерений псевдофазы,

и проекционную матрицу

,

где H - матрица вторых разностей частных производных (направляющих косинусов) вектора оцениваемых параметров, с использованием первого, второго и третьего сигналов, определяют в блоке реализации режима относительной навигации вычислительного устройства приемника параметры неоднозначности фазовых измерений на основе полученных вторых и третьих разностей первичных радионавигационных параметров, соответствующих им ковариационной матрицы ошибок и проекционной матрицы, вычисляют в блоке реализации режима относительной навигации вычислительного устройства приемника высокоточное навигационное определение на основе калмановской фильтрации, определяют в блоке определения целостности навигационных определений вычислительного устройства приемника величины ошибок в горизонтальной плоскости и по вертикали, обусловленные текущими измерениями первичных радионавигационных параметров

где P11, P22, P33 - элементы ковариационной матрицы ошибок, определяют в блоке определения целостности навигационных определений вычислительного устройства приемника горизонтальный и вертикальный уровни защиты с использованием заданных факторов, отражающих доверительные диапазоны в плоскости и по высоте, отражающих неточности моделирования атмосферных погрешностей и погрешностей, вызванных многолучевостью, а также с использованием точности формирования коррекции частотно-временных параметров и орбиты НКА в широкозонной дифференциальной системе

где AН - коэффициент проекции ошибок в горизонтальной плоскости; AV - коэффициент проекции ошибок в вертикальной плоскости.

где HPLВНО - радиус круга в горизонтальной плоскости с центром в точке реального положения потребителя;

VPLВНО - половина длины отрезка в вертикальном направлении с центром в точке реального положения потребителя;

KH - фактор, отражающий доверительный диапазон в плоскости;

KV - фактор, отражающий доверительный диапазон по высоте;

Sbias - точность формирования коррекций частотно-временных параметров и орбиты НКА,

оценивают в блоке определения целостности навигационных определений вычислительного устройства приемника целостность высокоточного навигационного определения потребителя путем сравнения с заданными потребителем аварийными пределами по горизонтали и вертикали, после сообщают с помощью устройства отображения информации приемника полученную из вычислительного устройства приемника целостность высокоточных навигационных определений потребителя.

Система определения целостности высокоточного навигационного определения потребителя состоит из всех видимых навигационных космических аппаратов глобальной навигационной спутниковой системы, хотя бы одного космического аппарата широкозонной дифференциальной системы, опорного приемника локальной дифференциальной системы и приемника, в свою очередь приемник состоит из первого антенно-фидерного устройства, вход которого является первым входом приемника, радиочастотной части, вход которой соединен с выходом первого антенно-фидерного устройства, вычислительного устройства, первый вход которого соединен с выходом радиочастотной части, устройства отображения информации, вход которого соединен с выходом вычислительного устройства, также приемник состоит из последовательно соединенных второго антенно-фидерного устройства, вход которого является вторым входом приемника, и устройства приема локальной корректирующей информации, выход устройства приема корректирующей информации соединен со вторым входом вычислительного устройства, при этом все видимые навигационные космические аппараты глобальной навигационной спутниковой системы связаны односторонней радиосвязью с первым входом приемника и входом опорного приемника локальной дифференциальной системы, хотя бы один космический аппарат широкозонной дифференциальной системы связан односторонней радиосвязью с первым входом приемника, а выход опорного приемника локальной дифференциальной системы связан односторонней радиосвязью со вторым входом приемника.

Вычислительное устройство приемника включает в себя последовательно соединенные блок формирования массива первичных измерений, блок реализации режима относительной навигации и блок определения целостности навигационных определений соответственно, первый и второй входы блока формирования массива первичных измерений являются первым и вторым входами вычислительного устройства соответственно, выход блока определения целостности навигационных определений является выходом вычислительного устройства.

Сущность и признаки заявленного изобретения в дальнейшем поясняются чертежами, где показано следующее:

на фиг. 1 - блок-схема системы определения целостности высокоточных навигационных определений, где:

1…1N - космические аппараты широкозонной дифференциальной системы;

2…2N - навигационные космические аппараты глобальной навигационной спутниковой системы;

3 - локальная дифференциальная система;

4 - опорный приемник локальной дифференциальной системы;

5 - приемник;

6 - первое антенно-фидерное устройство;

7 - второе антенно-фидерное устройство;

8 - радиочастотная часть;

9 - устройство приема локальной корректирующей информации;

10 - вычислительное устройство;

11 - устройство отображение информации;

12 - первый радиосигнал от НКА;

13 - второй радиосигнал от КА широкозонной дифференциальной системы;

14 - третий радиосигнал от опорного приемника локальной дифференциальной системы;

на фиг. 2 - блок-схема вычислительного устройства приемника, где:

10 - вычислительное устройство;

15 - блок формирования массива первичных измерений;

16 - блок реализации режима относительной навигации;

17 - блок определения целостности навигационных определений;

на фиг. 3 - блок-схема алгоритма определения целостности высокоточных навигационных определений, где:

18 - формирование первичных измерений;

19 - локальная дифференциальная система;

20 - первичные измерения опорного приемника;

21 - первичные измерения приемника;

22 - общий массив первичных измерений;

23 - алгоритм относительной навигации;

24 - формирование вторых и третьих разностей измерений;

25 - корректирующая информация широкозонной ДС;

26 - формирование ковариационной и проекционной матриц;

27 - определение параметров неоднозначности фазовых измерений;

28 - целостность навигационных определений;

29 - определение величин ошибок в горизонтальной плоскости и по вертикали, определяемых текущими измерениями;

30 - определение горизонтального (HPL) и вертикального (VPL) уровней защиты;

31 - определение целостности высокоточного навигационного определения;

32 - целостность обеспечения;

33 - вывод результатов высокоточных навигационных определений не обеспеченных признаком целостности;

34 - вывод достоверных результатов высокоточных навигационных определений;

на фиг. 4 - горизонтальный, вертикальный уровни защиты и горизонтальная и вертикальная ошибка положения для длины базовой линии 20 км;

на фиг. 5 - горизонтальный, вертикальный уровни защиты и горизонтальная и вертикальная ошибка положения для длины базовой линии 35 км;

на фиг. 6 - горизонтальный, вертикальный уровни защиты и горизонтальная и вертикальная ошибка положения для длины базовой линии 45 км;

на фиг. 7 - горизонтальный, вертикальный уровни защиты и горизонтальная и вертикальная ошибка положения для длины базовой линии 20 км;

на фиг. 8 - горизонтальный, вертикальный уровни защиты и горизонтальная и вертикальная ошибка положения для длины базовой линии 35 км;

на фиг. 9 - горизонтальный, вертикальный уровни защиты и горизонтальная и вертикальная ошибка положения для длины базовой линии 45 км при работе по совмещенному созвездию НКА GPS/ГЛОНАСС.

Решение задачи навигации потребителя на основе измерений нарастающего объема (фильтра Калмана) позволяет найти оценку вектора положения потребителя с учетом всех проведенных ранее измерений, что уменьшает влияние аномальных ошибок измерений на результат решения задачи местоопределения. При описании модели движения объекта используют линеаризацию в окрестности текущего фазового вектора потребителя Хk. Переходная матрица линейной модели движения объекта есть Ф.

Априорные оценки вектора потребителя (X) и ковариационной матрицы ошибки определения вектора потребителя (P) обозначены верхним индексом "-", а апостериорные оценки - индексом "+".

Процедура применения фильтра Калмана на каждом шаге измерений k (k=0,1,2,…) имеет следующий вид:

• Вычисляется ожидаемый вектор измерений

(1)

• Вычисляется матрица измерений

(2)

• Вычисляется матрица обратной связи Kk при помощи уравнения:

(3)

• Определяется апостериорная оценка фазового вектора потребителя:

(4)

• Определяется апостериорная ковариационная матрица ошибки определения фазового вектора потребителя:

(5)

здесь I - единичная матрица

• Вычисляется априорная оценка ковариационной матрицы на следующем k+1 шаге:

(6)

здесь - ковариационная матрица возмущений

• Вычисляется фазовый вектор потребителя на следующем k+1 шаге:

(7)

В режиме относительной высокоточной навигации по радиосигналам НКА ГНСС (21…2N), принимаемых опорным приемником (4) локальной дифференциальной системы (3) и первым антенно-фидерным устройством (6) приемника (5), в радиочастотной части (8) приемника (5) осуществляется формирование измерений первичных радионавигационных параметров (псевдодальности и псевдофазы) (см. фиг. 1). Первым антенно-фидерным устройством (6) приемника (5) осуществляется прием радиосигналов от космических аппаратов широкозонной дифференциальной системы (11…1N) с коррекциями спутниковых часов и орбиты НКА ГНСС. Опорный приемник (4) локальной дифференциальной системы (3) располагается в точке с координатами, известными с высокой точностью. Посредством второго антенно-фидерного устройства (7) и устройства приема локальной корректирующей информации (9) измерения с опорного приемника (4) локальной дифференциальной системы (3) становятся доступны в вычислительном устройстве (10) приемника (5). По измерениям от навигационных космических аппаратов (21…2N), одновременно наблюдаемых на опорном приемнике (4) и приемнике (5), в вычислительном устройстве (10) формируются вторые и третьи разности. Вектор измеренных параметров представим в виде:

(8)

где ΔΔS - вторые разности измерений псевдодальности; ΔΔδФ - вторые разности приращений псевдофазы (третьи разности); ΔΔФ - вторые разности измерений псевдофазы.

Ковариационная матрица ошибок измерений имеет вид:

(9)

где RS - подматрица ошибок невязок вторых разностей измерений псевдодальности; RδФ - подматрица ошибок невязок вторых разностей измерений приращений псевдофазы; RФ - подматрица ошибок невязок вторых разностей измерений псевдофазы.

В общем виде вектор оцениваемых параметров для относительной высокоточной навигации имеет вид:

(10)

где X, Y, Z- координаты определяемого пункта; N - неоднозначность измерений псевдофазы.

В заявленном способе определения целостности высокоточных навигационных определений потребителя предлагается использовать параметры для оценки характеристик точности навигации потребителя, аналогичные параметрам для широкозонных функциональных дополнений ГНСС (горизонтальный и вертикальный уровень защиты):

• HPLВНО - радиус круга в горизонтальной плоскости с центром в точке реального положения потребителя.

• VPLВНО - половина длины отрезка в вертикальном направлении с центром в точке реального положения потребителя.

Применение данных оценок характеристик точности дает возможность получить количественную оценку качества навигационного определения и отобразить потребителю с помощью устройства отображения информации (11). Величины ошибок определения положения потребителя в горизонтальной плоскости и по вертикали вычисляются на основе коэффициентов ковариационной матрицы ошибок определения вектора положения:

(11)

(12)

где P11, P22, P33 - элементы ковариационной матрицы ошибок (5).

Расчет HPLВНО и VPLВНО проводится по следующим формулам:

(13)

(14)

где KH - фактор, отражающий доверительный диапазон в плоскости;

KV - фактор, отражающий доверительный диапазон по высоте.

Проблемы с вычислением горизонтального и вертикального уровней защиты появляются, особенно в статических случаях, когда оценка положения в фильтре Калмана сходится к некоторой очень маленькой величине. Поэтому невозможно использовать эти данные, чтобы вычислить реалистичные уровни защиты. Уровни защиты, рассчитанные заявленным способом, описывают только, какая величина ошибки положения может быть вызвана текущими измерениями, но эти уровни защиты не сообщают пользователю о полных ошибках положения. Присутствующие при спутниковой навигации тропосферная, ионосферная погрешности, а также эффект многолучевости не могут быть смоделированы или исправлены полностью. Кроме того, ошибки в эфемеридно-временном обеспечении навигационных космических аппаратов (НКА), либо в коррекциях спутниковых часов и коррекциях орбиты, в случае применения корректирующей информации от широкозонного функционального дополнения, могут оказывать шумовое воздействие на измерения навигационных параметров.

Вышеперечисленные положения должны быть приняты во внимание при вычислении реалистичных уровней защиты. Для обеспечения вероятности правильного определения положения потребителя ~ 99,9% величины факторов, отражающих доверительный диапазон в плоскости (KH) и по высоте (KV), принимаем равными 6.

В заявленном способе определения целостности для высокоточной навигации потребителя проекционная матрица имеет вид:

(15)

Тогда коэффициенты проекции ошибок в горизонтальной области (AH)и по вертикали(AV) рассчитываются по следующим формулам:

(16)

(17)

Горизонтальный и вертикальный уровни защиты для режима высокоточной навигации, с учетом качества измерений и точности формирования коррекций частотно-временных параметров (ЧВП) и орбиты НКА в широкозонных функциональных дополнениях, рассчитываются по следующим формулам:

(18)

(19)

где Sbias - точность формирования коррекций ЧВП и орбиты НКА.

Уровень точности формирования коррекций ЧВП и орбиты НКА в широкозонных системах порядка 5 см.

После вычисления горизонтального и вертикального уровней защиты их сравнивают с заданным потребителем аварийным пределом и принимают решение о целостности высокоточного навигационного определения потребителя.

Экспериментальная оценка определения целостности навигационных определений проводилась для режима относительных определений на разных длинах базовой линии и различного состава визируемого созвездия НКА. При обработке экспериментальных данных использовался алгоритм комплексной обработки локальной и широкозонной корректирующей информации. В качестве широкозонной корректирующей информации была использована корректирующая информация от широкозонного функционального дополнения СДКМ: коррекции часов и орбит НКА, данные о пригодности НКА для выполнения целевой задачи. Определение параметров HPL и VPL проводилось по заявленному способу определения целостности при высокоточных навигационных определений потребителя. При расчете HPL и VPL использовались следующие значения параметров: Sbias = 5 см; KH= KV=6. Ошибки определения положения в плоскости (Eh) и по высоте (Ev) оценивались относительно известных априорных координат пункта.

Первый набор экспериментов проводился для длины базовой линии порядка 20 км для созвездия НКА GPS, НКА ГЛОНАСС и совмещенного созвездия НКА ГЛОНАСС/GPS (фиг.4).

Второй набор экспериментов проводился для длины базовой линии порядка 35 км для созвездия НКА GPS и совмещенного созвездия НКА ГЛОНАСС/GPS (фиг.5).

Третий набор экспериментов проводился для длины базовой линии порядка 45 км для созвездия НКА GPS и совмещенного созвездия НКА ГЛОНАСС/GPS (фиг.6).

Для подтверждения повторяемости результатов экспериментальной отработки разработанной методики определения целостности высокоточных навигационных определений был проведен аналогичный набор экспериментов в другие сутки. Результаты экспериментальной оценки для длины базовой линии 20 км представлены на фигуре 7, для длины базовой линии 35 км - на фигуре 8, для длины базовой линии 45 км - на фигуре 9.

Проведенные экспериментальные оценки заявленного способа и системы определения целостности высокоточных навигационных определений потребителя показывают, что расчет уровней защиты в плоскости и по высоте отражает реальную картину распределения ошибки навигационных определений потребителя.


СПОСОБ ОПРЕДЕЛЕНИЯ ЦЕЛОСТНОСТИ ВЫСОКОТОЧНЫХ НАВИГАЦИОННЫХ ОПРЕДЕЛЕНИЙ ПОТРЕБИТЕЛЯ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ ОПРЕДЕЛЕНИЯ ЦЕЛОСТНОСТИ ВЫСОКОТОЧНЫХ НАВИГАЦИОННЫХ ОПРЕДЕЛЕНИЙ ПОТРЕБИТЕЛЯ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ ОПРЕДЕЛЕНИЯ ЦЕЛОСТНОСТИ ВЫСОКОТОЧНЫХ НАВИГАЦИОННЫХ ОПРЕДЕЛЕНИЙ ПОТРЕБИТЕЛЯ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ ОПРЕДЕЛЕНИЯ ЦЕЛОСТНОСТИ ВЫСОКОТОЧНЫХ НАВИГАЦИОННЫХ ОПРЕДЕЛЕНИЙ ПОТРЕБИТЕЛЯ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ ОПРЕДЕЛЕНИЯ ЦЕЛОСТНОСТИ ВЫСОКОТОЧНЫХ НАВИГАЦИОННЫХ ОПРЕДЕЛЕНИЙ ПОТРЕБИТЕЛЯ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ ОПРЕДЕЛЕНИЯ ЦЕЛОСТНОСТИ ВЫСОКОТОЧНЫХ НАВИГАЦИОННЫХ ОПРЕДЕЛЕНИЙ ПОТРЕБИТЕЛЯ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ ОПРЕДЕЛЕНИЯ ЦЕЛОСТНОСТИ ВЫСОКОТОЧНЫХ НАВИГАЦИОННЫХ ОПРЕДЕЛЕНИЙ ПОТРЕБИТЕЛЯ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ ОПРЕДЕЛЕНИЯ ЦЕЛОСТНОСТИ ВЫСОКОТОЧНЫХ НАВИГАЦИОННЫХ ОПРЕДЕЛЕНИЙ ПОТРЕБИТЕЛЯ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ ОПРЕДЕЛЕНИЯ ЦЕЛОСТНОСТИ ВЫСОКОТОЧНЫХ НАВИГАЦИОННЫХ ОПРЕДЕЛЕНИЙ ПОТРЕБИТЕЛЯ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ ОПРЕДЕЛЕНИЯ ЦЕЛОСТНОСТИ ВЫСОКОТОЧНЫХ НАВИГАЦИОННЫХ ОПРЕДЕЛЕНИЙ ПОТРЕБИТЕЛЯ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ ОПРЕДЕЛЕНИЯ ЦЕЛОСТНОСТИ ВЫСОКОТОЧНЫХ НАВИГАЦИОННЫХ ОПРЕДЕЛЕНИЙ ПОТРЕБИТЕЛЯ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ ОПРЕДЕЛЕНИЯ ЦЕЛОСТНОСТИ ВЫСОКОТОЧНЫХ НАВИГАЦИОННЫХ ОПРЕДЕЛЕНИЙ ПОТРЕБИТЕЛЯ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ
Источник поступления информации: Роспатент

Показаны записи 41-50 из 72.
10.02.2015
№216.013.26ff

Способ плазмохимической обработки подложек из поликора и ситалла

Изобретение относится к области радиоэлектронной техники и микроэлектроники и может быть использовано для плазмохимической обработки подложек из поликора и ситалла. В способе плазмохимической обработки подложек из поликора и ситалла производят предварительную протирку изделий спиртом со всех...
Тип: Изобретение
Номер охранного документа: 0002541436
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.28c2

Резервированный усилитель мощности бортовой аппаратуры командно-измерительной системы

Изобретение относится к передающим устройствам и может найти применение в бортовой аппаратуре командно-измерительных систем (БА КИС) космических аппаратов. Технический результат заключается в уменьшении массы и снижении энергопотребления. Резервированный усилитель мощности (РУМ) для БА КИС...
Тип: Изобретение
Номер охранного документа: 0002541891
Дата охранного документа: 20.02.2015
10.07.2015
№216.013.5c9a

Способ одновременного определения шести параметров движения ка при проведении траекторных измерений одной станцией слежения и система для его реализации

Группа изобретений относится к области траекторных измерений с использованием станции слежения (СС) за полетом космического аппарата (КА). При обмене информацией с КА по радиоканалу СС производит измерение дальности до КА и скорости ее изменения. Основная и дополнительные антенны СС принимают...
Тип: Изобретение
Номер охранного документа: 0002555247
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5f1e

Микроструктурная многослойная экранно-вакуумная изоляция космических аппаратов

Изобретение относится к многослойной экранно-вакуумной изоляции (ЭВИ) с микроструктурными элементами для космических аппаратов (КА). Каждый слой ЭВИ выполнен в виде подложки, на которой закреплены теплоотражающие элементы в виде массива прямоугольных микропластин. Каждая микропластина...
Тип: Изобретение
Номер охранного документа: 0002555891
Дата охранного документа: 10.07.2015
10.08.2015
№216.013.6dba

Способ и устройство контроля целостности спутниковой навигационной системы

Изобретение относится к космической области и может быть использовано для осуществления контроля целостности спутниковой радионавигационной системы без участия средств наземного комплекса управления и контрольных станций, размещаемых глобально. Технический результат состоит в повышении...
Тип: Изобретение
Номер охранного документа: 0002559648
Дата охранного документа: 10.08.2015
10.10.2015
№216.013.8055

Способ приема и комплексной обработки данных от спутниковых навигационных приемников космических аппаратов для диагностики возмущения ионосферы и аппаратно-программный комплекс для его реализации

Изобретение относится к космической отрасли, а именно к средствам и способам оперативного мониторинга состояния ионосферы с использованием космических аппаратов (КА), и может использоваться, например, для оперативной диагностики ионосферных возмущений с целью принятия необходимых комплексных...
Тип: Изобретение
Номер охранного документа: 0002564450
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.80aa

Система радиоподавления несанкционированного дуплексного канала космической связи

Изобретение относится к области радиотехники и может быть использовано для избирательного радиоподавления несанкционированных дуплексных каналов связи космических систем, в частности для радиоподавления дуплексных каналов «пиратских» терминалов, работающих в спутниковых сетях связи и...
Тип: Изобретение
Номер охранного документа: 0002564535
Дата охранного документа: 10.10.2015
27.10.2015
№216.013.8823

Микросистемный космический робот-инспектор (варианты)

Изобретение относится к области микроробототехники, в которой основными подвижными элементами конструкции являются устройства микросистемной техники, выполненные по технологиям микрообработки кремния. Робот-инспектор может быть использован при создании систем, предназначенных для...
Тип: Изобретение
Номер охранного документа: 0002566454
Дата охранного документа: 27.10.2015
20.11.2015
№216.013.9132

Высокоскоростной бортовой модулятор

Изобретение относится к скоростным модуляторам и может использоваться в бортовых передатчиках спутниковой системы связи и в системах дистанционного зондирования земли. Достигаемый технический результат - осуществление управления выходной мощностью сигнала, формирование любой фазовой,...
Тип: Изобретение
Номер охранного документа: 0002568786
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.91bc

Многофункциональный прикладной потребительский центр навигационно-информационного обеспечения

Изобретение относится к области космической навигации, а именно реализует навигационное обеспечение различных групп пользователей и предназначено для сбора, обработки, архивирования и хранения навигационных данных; подготовки, формирования и передачи навигационной информации. Технический...
Тип: Изобретение
Номер охранного документа: 0002568924
Дата охранного документа: 20.11.2015
Показаны записи 41-50 из 63.
10.02.2015
№216.013.26ff

Способ плазмохимической обработки подложек из поликора и ситалла

Изобретение относится к области радиоэлектронной техники и микроэлектроники и может быть использовано для плазмохимической обработки подложек из поликора и ситалла. В способе плазмохимической обработки подложек из поликора и ситалла производят предварительную протирку изделий спиртом со всех...
Тип: Изобретение
Номер охранного документа: 0002541436
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.28c2

Резервированный усилитель мощности бортовой аппаратуры командно-измерительной системы

Изобретение относится к передающим устройствам и может найти применение в бортовой аппаратуре командно-измерительных систем (БА КИС) космических аппаратов. Технический результат заключается в уменьшении массы и снижении энергопотребления. Резервированный усилитель мощности (РУМ) для БА КИС...
Тип: Изобретение
Номер охранного документа: 0002541891
Дата охранного документа: 20.02.2015
10.07.2015
№216.013.5c9a

Способ одновременного определения шести параметров движения ка при проведении траекторных измерений одной станцией слежения и система для его реализации

Группа изобретений относится к области траекторных измерений с использованием станции слежения (СС) за полетом космического аппарата (КА). При обмене информацией с КА по радиоканалу СС производит измерение дальности до КА и скорости ее изменения. Основная и дополнительные антенны СС принимают...
Тип: Изобретение
Номер охранного документа: 0002555247
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5f1e

Микроструктурная многослойная экранно-вакуумная изоляция космических аппаратов

Изобретение относится к многослойной экранно-вакуумной изоляции (ЭВИ) с микроструктурными элементами для космических аппаратов (КА). Каждый слой ЭВИ выполнен в виде подложки, на которой закреплены теплоотражающие элементы в виде массива прямоугольных микропластин. Каждая микропластина...
Тип: Изобретение
Номер охранного документа: 0002555891
Дата охранного документа: 10.07.2015
10.08.2015
№216.013.6dba

Способ и устройство контроля целостности спутниковой навигационной системы

Изобретение относится к космической области и может быть использовано для осуществления контроля целостности спутниковой радионавигационной системы без участия средств наземного комплекса управления и контрольных станций, размещаемых глобально. Технический результат состоит в повышении...
Тип: Изобретение
Номер охранного документа: 0002559648
Дата охранного документа: 10.08.2015
10.10.2015
№216.013.8055

Способ приема и комплексной обработки данных от спутниковых навигационных приемников космических аппаратов для диагностики возмущения ионосферы и аппаратно-программный комплекс для его реализации

Изобретение относится к космической отрасли, а именно к средствам и способам оперативного мониторинга состояния ионосферы с использованием космических аппаратов (КА), и может использоваться, например, для оперативной диагностики ионосферных возмущений с целью принятия необходимых комплексных...
Тип: Изобретение
Номер охранного документа: 0002564450
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.80aa

Система радиоподавления несанкционированного дуплексного канала космической связи

Изобретение относится к области радиотехники и может быть использовано для избирательного радиоподавления несанкционированных дуплексных каналов связи космических систем, в частности для радиоподавления дуплексных каналов «пиратских» терминалов, работающих в спутниковых сетях связи и...
Тип: Изобретение
Номер охранного документа: 0002564535
Дата охранного документа: 10.10.2015
27.10.2015
№216.013.8823

Микросистемный космический робот-инспектор (варианты)

Изобретение относится к области микроробототехники, в которой основными подвижными элементами конструкции являются устройства микросистемной техники, выполненные по технологиям микрообработки кремния. Робот-инспектор может быть использован при создании систем, предназначенных для...
Тип: Изобретение
Номер охранного документа: 0002566454
Дата охранного документа: 27.10.2015
20.11.2015
№216.013.9132

Высокоскоростной бортовой модулятор

Изобретение относится к скоростным модуляторам и может использоваться в бортовых передатчиках спутниковой системы связи и в системах дистанционного зондирования земли. Достигаемый технический результат - осуществление управления выходной мощностью сигнала, формирование любой фазовой,...
Тип: Изобретение
Номер охранного документа: 0002568786
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.91bc

Многофункциональный прикладной потребительский центр навигационно-информационного обеспечения

Изобретение относится к области космической навигации, а именно реализует навигационное обеспечение различных групп пользователей и предназначено для сбора, обработки, архивирования и хранения навигационных данных; подготовки, формирования и передачи навигационной информации. Технический...
Тип: Изобретение
Номер охранного документа: 0002568924
Дата охранного документа: 20.11.2015
+ добавить свой РИД