×
27.03.2016
216.014.c855

Результат интеллектуальной деятельности: СПОСОБ И УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ДЛИНЫ ДИФФУЗИИ НОСИТЕЛЕЙ ЗАРЯДА В ПОЛУПРОВОДНИКОВЫХ ПЛАСТИНКАХ

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике и предназначено для бесконтактного неразрушающего определения диффузионной длины носителей заряда в полупроводниковых пластинах, в том числе покрытых прозрачным слоем диэлектрика. Способ измерения диффузионной длины носителей заряда в полупроводниковых пластинах включает измерение сигнала, пропорционального неравновесной концентрации носителей заряда, возникающей в точке тестирования полупроводниковой пластины вследствие их диффузии из областей генерации, создаваемых на различных расстояниях от точки тестирования за счет формирования в этих областях световых пятен малой площади излучением из спектрального диапазона внутреннего фотоэффекта в полупроводнике, построение опытной зависимости амплитуды измеренного сигнала от расстояния между световым пятном и точкой тестирования, сравнение опытной зависимости с аналогичными зависимостями, рассчитанными теоретически, при этом для проведения измерений без установления электрического контакта с исследуемой пластиной сигнал, пропорциональный неравновесной концентрации носителей заряда в точке тестирования, получают путем пропускания через пластинку инфракрасного излучения с длиной волны из области прозрачности исследуемого полупроводника и измерения интенсивности прошедшего через пластину излучения. Также предложено устройство для измерения длины диффузии носителей заряда в полупроводниковых пластинах. Изобретение обеспечивает возможность выполнять измерения длины диффузии носителей заряда в полупроводниковых пластинах без установления электрического контакта с образцом непосредственно в тех областях, где будут изготовлены приборы, а также в пластинах, покрытых слоем прозрачного диэлектрика. 2 н.п. ф-лы, 1 ил.

Изобретение относится к способам и устройствам измерения длины диффузии носителей заряда в полупроводниковых материалах, в частности в полупроводниковых пластинках, в том числе покрытых прозрачным для инфракрасного излучения слоем диэлектрика, и может использоваться для контроля свойств полупроводниковых материалов при производстве приборов и в научных исследованиях.

Известен способ измерения диффузионной длины носителей заряда и устройство для его реализации (метод подвижного электронного зонда) (Батавин В.В., Концевой Ю.А., Федорович Ю.В. Измерение параметров полупроводниковых материалов и структур. - М.: Радио и связь, 1985. - 264 с.). На поверхности полупроводника создается совокупность р-n-переходов или барьеров Шотки малой площади, являющихся коллекторами неосновных носителей заряда. В другой точке образца при помощи подвижного электронного зонда создается повышенная концентрация носителей заряда, которые диффундируют в полупроводнике. Ток в цепи коллектора прямо пропорционален концентрации неосновных носителей заряда. Диффузионную длину определяют, сравнивая экспериментальную зависимость тока в коллекторе от расстояния между зондом и коллектором с такими же зависимостями, рассчитанными теоретически для различных длин диффузии неосновных носителей заряда.

Недостатком этого способа является необходимость формирования на поверхности полупроводника дополнительных структур и создание электрического контакта с ним.

Недостатком устройства, реализующего этот способ, является обязательное наличие вакуумной системы, без которой невозможно создание электронного зонда.

Известен способ измерения диффузионной длины неосновных носителей заряда в полупроводниках (патент РФ №2501116, опубл. 10.12.2013 г.), заключающийся в том, что в тестовой структуре, выполненной на общем базовом слое на поверхности р-n- или n-р-переходов фотодиодов, изготавливают контактные электроды, которые изолируют от базового слоя диэлектрическим слоем. Радиусы контактных электродов больше радиусов р-n- или n-р-переходов фотодиодов и имеют общую ось симметрии. На поверхности базового слоя изготавливают контакт. Освещение тестовой структуры осуществляют в спектральном диапазоне поглощения базового слоя со стороны контактных электродов, непрозрачных для потока ИК-излучения. Проводят измерение фототоков фотодиодов и вычисляют отношения фототоков двух фотодиодов в тестовой структуре. Осуществляют теоретический расчет фототоков разных фотодиодов тестовой структуры и построение графиков зависимости отношения фототоков фотодиодов от диффузионной длины неосновных носителей заряда. Полученные экспериментально отношения фототоков сравнивают с теоретически рассчитанными по графикам и определяют величину диффузионной длины неосновных носителей заряда.

Недостатком способа является необходимость непосредственного контакта с поверхностью полупроводникового образца и изготовление тестовых структур.

Известен способ измерения длины диффузии носителей заряда и устройство для его реализации на основе измерения фотоэлектромагнитного эффекта (Батавин В.В., Концевой Ю.А., Федорович Ю.В. Измерение параметров полупроводниковых материалов и структур. - М.: Радио и связь, 1985. - 264 с.). Полупроводниковая пластина, находящаяся в магнитном поле, освещается излучением лазера, мощность которого может быть измерена с погрешностью, не превышающей 10%. В этом случае можно рассчитать скорость поверхностной генерации носителей заряда. Присоединяя к пластине контакты, измеряют силу тока фотоэлектромагнитного эффекта или ЭДС. Значения подвижности носителей заряда берут из литературы или измеряют иными методами. Имея вышеперечисленные данные, можно рассчитать длину диффузии неосновных носителей заряда.

Недостаткам способа являются необходимость проведения дополнительных исследований для определения подвижности носителей заряда.

Недостатком устройства, реализующего этот способ, является создание электрического контакта с поверхностью образца.

Известен способ измерения длины диффузии носителей заряда и устройство для его реализации (Л.П. Павлов. Методы измерения параметров полупроводниковых материалов. - М.: Высшая школа, 1987, с. 96-99), принятые за прототип. Способ реализуется следующим образом. Излучением из спектральной области внутреннего фотоэффекта в полупроводнике на поверхности исследуемой полупроводниковой пластины создают световое пятно малой площади. Такой свет (излучение), поглощаясь в приповерхностном слое полупроводника, генерирует в нем электронно-дырочные пары носителей заряда, которые перемещаются из освещенной области посредством диффузии. На некотором расстоянии от светового пятна в другой точке на поверхности исследуемой полупроводниковой пластины (в точке тестирования) устанавливают точечный прижимной коллекторный контакт. К контакту прикладывают напряжение в обратном направлении. Ток в цепи коллектора прямо пропорционален концентрации неосновных носителей заряда, которые переместились (продиффундировали) от светового пятна в точку тестирования. Изменяя расстояние между точкой тестирования и световым пятном, получают опытную зависимость тока коллектора (и концентрации носителей заряда) от расстояния между световым пятном и точкой тестирования. Для определения диффузионной длины неосновных носителей заряда строят зависимость экспериментально измеренного тока в цепи коллектора (или концентрации неравновесных носителей) от расстояния между световым пятном и коллекторным контактом. Полученную зависимость сравнивают с аналогичными зависимостями, рассчитанными теоретически для различных значений диффузионной длины. Совпадение одной из теоретических зависимостей с опытной (экспериментальной) позволяет определить длину диффузии носителей заряда.

Недостатком способа-прототипа является необходимость создания прижимного электрического контакта зонда с поверхностью полупроводника. Это накладывает ограничения на его использование, например, когда исследуемая полупроводниковая пластина покрыта слоем диэлектрика. Кроме того, прижимной контакт механически повреждает пластину и делает невозможным изготовление в области тестирования качественных приборов.

Устройство, реализующее данный способ, содержит: оптическую систему для формирования излучением из области внутреннего фотоэффекта на поверхности исследуемой полупроводниковой пластины пятна малой площади, систему перемещения этого пятна относительно точки тестирования на заданные расстояния и систему измерения концентрации неравновесных носителей заряда в точке тестирования. Система формирования светового пятна может быть реализована классически - источник света (лампа) и объектив. Для повышения точности измерений световое излучение модулируют на заданной частоте. В настоящее время в качестве системы создания светового пятна часто используют полупроводниковый лазер или светодиод, излучение которого модулируют за счет питания. Система перемещения светового пятна на заданное расстояние обычно представляет собой микрометрическую подвижку с линейной или угловой шкалой перемещений, на которую монтируется система формирования светового пятна. Для определения концентрации неравновесных носителей заряда в точке тестирования используется металлический контактор, источник питания и измерительный прибор. В случае использования модулированного светового потока в качестве измерительного прибора обычно используется селективный милливольтметр.

Недостатком устройства являются искажения, связанные с ненадежным контактом между контактором и поверхностью полупроводника, приводящие к ошибкам в измерениях. Создание прижимного электрического контакта с поверхностью пластины для контроля ее электрофизических характеристик может вызывать изменение свойств полупроводника, его повреждение или даже разрушение, поэтому для проведения измерений на пластине приходится резервировать специальные площадки. Измерение параметров происходит не в той области пластины, где будет создан прибор, а в соседней. Это приводит как к недостоверности результатов, так и к уменьшению количества приборов, изготавливаемых по планарной технологии на одной пластине, следствием чего является увеличение их себестоимости.

Техническим результатом предлагаемого способа является возможность выполнять измерения длины диффузии носителей заряда в полупроводниковых пластинах без установления электрического контакта с образцом, в том числе в пластинах, покрытых слоем прозрачного диэлектрика.

Технический результат достигается тем, что для проведения измерений без установления электрического контакта с исследуемой пластиной сигнал, пропорциональный неравновесной концентрации носителей в измеряемой области, получают путем пропускания через нее луча инфракрасного излучения с длиной волны из области прозрачности исследуемой полупроводниковой пластины и измерения интенсивности этого луча после прохождения им пластины.

Техническим результатом устройства является расширение возможностей выполнения измерения длины диффузии носителей заряда в полупроводниковых пластинах без установления электрического контакта с образцом, в том числе непосредственно в тех областях, где будут изготовлены приборы, и без изменения свойств пластины, а также в пластинах, покрытых слоем прозрачного диэлектрика.

Технический результат достигается тем, что для измерения концентрации неравновесных носителей в точке тестирования используется инфракрасный лазер с длиной волны из области прозрачности полупроводника, фотоэлектрический приемник, регистрирующий излучение этого лазера после прохождения излучением исследуемой пластины, и электроизмерительный прибор, например селективный милливольтметр.

Способ и устройство для определения длины диффузии носителей заряда в полупроводниковых пластинках поясняется следующим чертежом:

фиг. 1 - блок-схема установки, где:

1 - система формирования светового пятна на поверхности полупроводниковой пластинки;

2 - система перемещения светового пятна по поверхности полупроводниковой пластинки;

3 - исследуемая полупроводниковая пластина;

4 - инфракрасный лазер с длиной волны из области прозрачности исследуемого полупроводника;

5 - фотоэлектрический приемник, преобразующий излучение инфракрасного лазера в электрический сигнал;

6 - электроизмерительный прибор.

Способ осуществляется следующим образом. Излучение из спектральной области внутреннего фотоэффекта в полупроводнике направляют на поверхность исследуемой полупроводниковой пластины и формируют на ее поверхности световое пятно малой площади. В области светового пятна внутри полупроводниковой пластины возникает повышенная концентрация неравновесных носителей заряда. В другой точке образца (в точке тестирования), отстоящей от области генерации неравновесных носителей заряда (т.е. от светового пятна) на заданное расстояние, определяют пропускание пластиной излучения инфракрасного лазера, длина волны которого выбирается из области прозрачности исследуемого полупроводника. Величина полученного сигнала пропорциональна неравновесной концентрации носителей заряда, созданной в точке тестирования. Это объясняется тем, что изменение концентрации носителей заряда приводит к изменению показателя преломления и коэффициента поглощения полупроводника, вследствие чего и происходит изменение пропускания пластинкой луча инфракрасного лазера (А.Б. Федорцов, Ю.В. Чуркин. Раздельное определение времен жизни неравновесных электронов и дырок в полупроводниках интерференционным методом. - М: Наука, журн. "Письма в ЖТФ", 1988, Т. 14, №4, с. 321-324). Проведя измерения интенсивности прошедшего через исследуемую полупроводниковую пластину лазерного излучения при разных расстояниях между световым пятном малой площади и точкой тестирования, строят экспериментальную зависимость величины полученного сигнала от этого расстояния. Используя решение уравнения непрерывности, рассчитывают серию теоретических зависимостей неравновесной концентрации носителей заряда от расстояния между световыми пятнами и точкой тестирования для различных значений длины диффузии. По совпадению опытной зависимости с одной из теоретических, при их сравнении, определяют диффузионную длину носителей заряда.

Устройство включает в себя: систему формирования излучением из спектрального диапазона внутреннего эффекта в исследуемом полупроводнике светового пятна малой площади на поверхности пластины 1, систему перемещения этого пятна на заданные расстояния 2 по поверхности пластины 3. Для измерения концентрации неравновесных носителей заряда в точке тестирования используется инфракрасный лазер с длиной волны из области прозрачности исследуемого полупроводника 4, фотоэлектрический приемник инфракрасного лазерного излучения 5 и электроизмерительный прибор 6.

Устройство работает следующим образом. Система 1 создает световое пятно малой площади, которое с помощью системы 2 может перемещаться на заданные расстояния по поверхности исследуемой полупроводниковой пластины 3. За счет диффузии неравновесные носители заряда, возникшие в области светового пятна, достигают точки тестирования полупроводниковой пластины 3. Для того чтобы измерения концентрации неравновесных носителей заряда выполнить бесконтактно, не разрушая исследуемый образец, через пластину 3 в точке тестирования пропускают луч длинноволнового инфракрасного лазера 4. Интенсивность прошедшего через пластинку лазерного излучения измеряют фотоэлектрическим приемником 5 и измерительным прибором 6. С помощью системы 2 последовательно устанавливают световое пятно на разных расстояниях от точки тестирования на поверхности пластины 3. При каждом положении светового пятна измеряют концентрацию неравновесных носителей заряда с помощью указанных выше приборов. По результатам измерений стоят опытную зависимость измеренного сигнала от расстояния между световым пятном и точкой тестирования.

Определение диффузионной длины производится по алгоритму, аналогичному тому, который используется в устройстве-прототипе, т.е. сравнением полученной опытной зависимости с аналогичными зависимостями, рассчитанными теоретически для разных длин диффузии носителей заряда.


СПОСОБ И УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ДЛИНЫ ДИФФУЗИИ НОСИТЕЛЕЙ ЗАРЯДА В ПОЛУПРОВОДНИКОВЫХ ПЛАСТИНКАХ
Источник поступления информации: Роспатент

Показаны записи 141-150 из 164.
10.02.2016
№216.014.c58e

Способ переработки железных руд

Изобретение относится к подготовке железосодержащего сырья к металлургической переработке. Руду рассеивают на крупный, средний и мелкий классы крупности. Руду крупного класса подвергают сенсорной сепарации с выделением чернового концентрата и отвальных хвостов, черновой концентрат додрабливают...
Тип: Изобретение
Номер охранного документа: 0002574560
Дата охранного документа: 10.02.2016
27.03.2016
№216.014.c69b

Стенд для ударных испытаний образцов материалов

Изобретение относится к испытательной технике, к испытаниям на прочность. Стенд содержит основание, установленные на нем маховик с приводом вращения, штанги по количеству точек нагружения по заданной поверхности образца с ударниками для взаимодействия с образцом, установленные с возможностью...
Тип: Изобретение
Номер охранного документа: 0002578657
Дата охранного документа: 27.03.2016
20.03.2016
№216.014.c76f

Устройство защиты электрических сетей от однофазных замыканий на землю

Использование: в области электроэнергетики. Технический результат заключается в повышении эффективности действия токовой защиты от однофазных замыканий на землю, происходящих через переходное сопротивление, за счет коррекции ее алгоритма работы в соответствии с величиной асимметрии...
Тип: Изобретение
Номер охранного документа: 0002578123
Дата охранного документа: 20.03.2016
27.03.2016
№216.014.c784

Способ механической обработки с дроблением стружки

Способ включает нагрев обрабатываемой поверхности заготовки пламенем газовой горелки перед обработкой по винтовой линии с последующим охлаждением и срезанием припуска. Для повышения надежности стружкодробления нагрев осуществляют до достижения в срезаемом слое температур, превышающих...
Тип: Изобретение
Номер охранного документа: 0002578875
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.da5b

Ингибитор коррозии и асфальтосмолопарафиновых отложений

Изобретение относится к нефтяной промышленности, в частности к составам для предотвращения образования асфальтосмолопарафиновых отложений и коррозии скважинного оборудования при добыче нефти, работающего в высокотемпературных условиях. Ингибитор коррозии и асфальтосмолопарафиновых отложений...
Тип: Изобретение
Номер охранного документа: 0002579071
Дата охранного документа: 27.03.2016
20.06.2016
№217.015.033c

Способ получения лигатуры алюминий-скандий-иттрий

Изобретение относится к области металлургии цветных металлов и может быть использовано для производства лигатуры алюминий-скандий-иттрий, применяемой для модифицирования алюминиевых сплавов. Способ получения лигатуры алюминий-скандий-иттрий включает приготовление флюса, содержащего смесь солей...
Тип: Изобретение
Номер охранного документа: 0002587700
Дата охранного документа: 20.06.2016
20.06.2016
№217.015.0375

Способ разделения эрбия, самария и празеодима олеиновой кислотой из нитратно-хлоридных сред

Изобретение относится к технологии получения редкоземельных металлов из низкоконцентрированного или вторичного сырья на стадии разделения суммы лантаноидов. Способ разделения эрбия, самария и празеодима из нитратно-хлоридных растворов включает контакт экстрагента и раствора, перемешивание...
Тип: Изобретение
Номер охранного документа: 0002587699
Дата охранного документа: 20.06.2016
10.05.2016
№216.015.3a61

Способ восстановления чувствительного слоя чипа биосенсора

Изобретение относится к области биотехнологии и касается способа восстановления чувствительного слоя чипов биосенсоров. Способ предусматривает обработку чувствительного слоя чипа биосенсора смесью трипсина и общей фракцией протеаз гепатопанкреаса камчатского краба (при соотношении 1,5:1) в...
Тип: Изобретение
Номер охранного документа: 0002583303
Дата охранного документа: 10.05.2016
20.05.2016
№216.015.3e97

Устройство для определения содержания глинозема в электролите алюминиевого электролизера

Изобретение относится к электролитическому способу получения алюминия. Технический результат - повышение точности измерений и оперативности определения концентрации глинозема. Устройство для определения концентрации глинозема в электролите алюминиевого электролизера содержит автономный источник...
Тип: Изобретение
Номер охранного документа: 0002584631
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.3f1e

Способ подготовки к транспортированию смеси сжиженных углеводородов по магистральным трубопроводам в охлажденном состоянии

Изобретение относится к области подготовки к транспортированию смеси газа и газового конденсата. Способ включает очистку природного газа, многоступенчатое охлаждение его до температуры от -30 до -50°С с добавлением охлажденного до температуры от -20 до -50°С конденсата в количестве от 3 до 10...
Тип: Изобретение
Номер охранного документа: 0002584628
Дата охранного документа: 20.05.2016
Показаны записи 141-150 из 203.
20.04.2015
№216.013.43b1

Устройство для определения величины коэффициента сопротивления движению шахтных вагонеток

Изобретение относится к испытаниям транспортных средств, в частности шахтных вагонеток. Устройство содержит наклонный, при испытании, рабочий участок рельсового пути с фиксированным углом его наклона и примыкающими к нему горизонтальными участками рельсового нуги. Рабочий участок рельсового...
Тип: Изобретение
Номер охранного документа: 0002548827
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.43ba

Способ извлечения катионов самария (iii) из водных фаз

Изобретение относится к способу извлечения самария (III) из бедного или техногенного сырья, в частности флотоэкстракцией из водных фаз. В процессе флотоэкстракции самария (III) в качестве органической фазы используют изооктиловый спирт, а в качестве собирателя - ПАВ анионного типа...
Тип: Изобретение
Номер охранного документа: 0002548836
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.43e1

Холоднонабивная подовая масса

Изобретение относится к холоднонабивной подовой массе для футеровки подины алюминиевого электролизера. Холоднонабивная подовая масса содержит электрокальцинированный антрацит, пластификатор и жидкое углеродное связующее, включающее каменноугольный пек, поглотительное масло и карбонат лития в...
Тип: Изобретение
Номер охранного документа: 0002548875
Дата охранного документа: 20.04.2015
27.04.2015
№216.013.46da

Перфоратор

Изобретение относится к горной и строительной промышленности и может быть использовано для бурения шпуров в любых многоструктурных породах с твердыми включениями, например апатитонефелиновой руды. Перфоратор содержит сдвоенный ударник, состоящий из основного и вспомогательного бойков, при этом...
Тип: Изобретение
Номер охранного документа: 0002549642
Дата охранного документа: 27.04.2015
27.04.2015
№216.013.472a

Шахтный скиповой грузовой подъемник

Шахтный скиповой грузовой подъемник содержит размещенные в шахтном стволе два скипа и противовес, кинематически связанные тяговым стальным проволочным канатом с многовитковым шкивом трения. Скипы закреплены на концах тягового каната. Один из скипов в исходном положении размещен в нижней части...
Тип: Изобретение
Номер охранного документа: 0002549722
Дата охранного документа: 27.04.2015
27.04.2015
№216.013.472c

Способ стыковки рельсов железнодорожных путей

Изобретение относится к железнодорожному транспорту, а именно к исключению смещения по вертикали относительно друг друга смежных рельсов железнодорожных путей в зоне их стыковочных узлов. Для стыковки рельсов железнодорожного пути стыкуемые концы рельсов соединяют между собой с помощью...
Тип: Изобретение
Номер охранного документа: 0002549724
Дата охранного документа: 27.04.2015
10.06.2015
№216.013.50d9

Способ подготовки агломерационной шихты к спеканию

Изобретение относится к черной металлургии, а именно к агломерационному производству. Способ подготовки агломерационной шихты к спеканию, включающий подачу в смеситель-окомкователь шихты, содержащей смесь тонкоизмельченных железорудных концентратов, флюсы и топливо. В смесь железорудных...
Тип: Изобретение
Номер охранного документа: 0002552218
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.5115

Коронка для вращательного способа бурения взрывных шпуров малого диаметра

Изобретение относится к коронкам, предназначенным для бурения взрывных шпуров при щадящих буровзрывных работах по отбойке горной массы в крепких горных породах. Технический результат заключается в повышении эффективности и ресурса коронки, увеличении скорости бурения шпуров малого диаметра,...
Тип: Изобретение
Номер охранного документа: 0002552278
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.5527

Способ извлечения благородных металлов из отходов радиоэлектронной промышленности

Изобретение относится к металлургии благородных металлов и может быть использовано на предприятиях вторичной металлургии по переработке радиоэлектронного лома и при извлечении золота или серебра из отходов радиоэлектронной промышленности. Способ включает плавку радиоэлектронных отходов в...
Тип: Изобретение
Номер охранного документа: 0002553320
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.558a

Способ распознавания калибра стреляющего артиллерийского орудия по параметрам спектральных составляющих прецессий и нутаций

Изобретение относится к вооружению и может быть использовано в системах распознавания калибра стреляющего артиллерийского орудия по параметрам спектральных составляющих прецессий и нутаций. Проводят экспериментальные стрельбы, исследуют записи отражения от снарядов для каждого калибра...
Тип: Изобретение
Номер охранного документа: 0002553419
Дата охранного документа: 10.06.2015
+ добавить свой РИД