×
27.03.2016
216.014.c7a8

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЧНОСТИ ЛЬДА В ЛЕДОВОМ ОПЫТОВОМ БАССЕЙНЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области судостроения, а более конкретно - к ледовым опытовым бассейнам для проведения испытаний моделей судов и инженерных сооружений, касается вопроса определения прочности льда в ледовом опытовом бассейне. Способ определения прочности льда в ледовом опытовом бассейне включает измерение средней солености льда и средней температуры льда по его толщине и определение прочностных свойств льда на изгиб методом разрушения консольных балок льда на плаву. При этом предварительно в выбранном опытовом ледовом бассейне намораживают моделированные ледяные покровы, имеющие различную среднюю температуру, среднюю соленость и структуру, в которых затем проводят эксперименты по упомянутому определению прочности льда путем разрушения консольных балок льда на плаву с измерением средней солености льда S и средней температуры t по его толщине, в результате которых получают данные о прочности льда σ в виде зависимости σ=f(S,t), и структуры льда для выбранного опытового бассейна. А перед проведением модельных испытаний перед каждым экспериментом с буксируемыми моделями измеряют в ледовом опытовом бассейне среднюю соленость льда и температуру приледного слоя воды, которые вводят в бортовой компьютер. После чего, в процессе проведения испытаний с буксируемыми моделями, в темпе ведения эксперимента определяют температуру поверхности льда непосредственно перед буксируемой моделью на расстоянии, равном не менее восьми толщинам ледового покрова опытового бассейна перед буксируемой моделью в полосе шириной в 1,1-1,2 ширины испытуемой модели с помощью измерительного тепловизора, сканирующего поверхность льда в указанной полосе, значения которой постоянно регистрируют на бортовом компьютере, который на основе полученных данных вычисляют среднюю температуру льда по формуле: где t - температура поверхности льда, t - температура приледного слоя воды. С использованием полученных результатов измерений характеристик льда и результатов расчета компьютера и с применением ранее полученной зависимости σ=f(S,t), после обработки на компьютере, получают в процессе буксировки модели информацию о прочности льда вдоль полосы буксировки. Техническим результатом является повышение точности и достоверности результатов модельного эксперимента при одновременном повышении эффективности использования ледового поля для проведения в нем указанных экспериментов, что их выгодно отличает от прототипов. 2 ил.
Основные результаты: Способ определения прочности льда в ледовом опытовом бассейне, включающий измерение средней солености льда и средней температуры льда по его толщине и определение прочностных свойств льда на изгиб методом разрушения консольных балок льда на плаву, отличающийся тем, что предварительно в выбранном опытовом ледовом бассейне намораживают моделированные ледяные покровы, имеющие различные среднюю температуру, среднюю соленость и структуру, в которых затем проводят эксперименты по упомянутому определению прочности льда путем разрушения консольных балок льда на плаву с измерением средней солености льда S и средней температуры t по его толщине, в результате которых получают данные о прочности льда σ в виде зависимости σ=f (S, t), и структуры льда для выбранного опытового бассейна, а перед проведением модельных испытаний перед каждым экспериментом с буксируемыми моделями измеряют в ледовом опытовом бассейне среднюю соленость льда и температуру приледного слоя воды, которые вводят в бортовой компьютер, после чего, в процессе проведения испытаний с буксируемыми моделями, в темпе ведения эксперимента определяют температуру поверхности льда непосредственно перед буксируемой моделью на расстоянии, равном не менее восьми толщинам ледового покрова опытового бассейна перед буксируемой моделью в полосе шириной в 1,1-1,2 ширины испытуемой модели с помощью измерительного тепловизора, сканирующего поверхность льда в указанной полосе, значения которой постоянно регистрируют на бортовом компьютере, который на основе полученных данных вычисляет среднюю температуру льда по формуле: где t - температура поверхности льда, t - температура приледного слоя воды, и с использованием полученных результатов измерений характеристик льда и с применением ранее полученной зависимости σ=f (S, t), после обработки на компьютере, получают в процессе буксировки модели информацию о прочности льда вдоль полосы буксировки.

Изобретение относится к области судостроения, а более конкретно - к ледовым опытовым бассейнам для проведения испытаний моделей судов и инженерных сооружений, и может быть использовано для оперативного определения и контроля прочности моделированного льда в процессе проведения гидродинамических экспериментов с буксируемыми моделями в ледовых опытовых бассейнах.

Известен способ определения прочности льда, согласно которому прочность льда определяют путем разрушения консольных балок льда на плаву и с использованием силового динамометра, при этом измеряют соленость льда и его среднюю по толщине температуру. Полученные результаты выводят на регистрирующую аппаратуру (Е.Б. Карулин, М.М. Карулина, А.С. Шестов и А.В. Марченко. Исследование прочности льда на изгиб в Фиордах западного Шпицбергена. Труды Центрального научно-исследовательского института имени академика А.Н. Крылова, вып. 63(347). - Спб., 2011, стр. 131-142) - прототип.

Однако определение прочности льда методом его разрушения приводит к сокращению площади ледового поля, необходимого для проведения испытаний моделей, и, кроме того, в различных точках ледового поля средняя температура льда по его толщине как правило не одинакова и, соответственно, не одинакова прочность льда в этих точках, поэтому в процессе испытаний модели путем ее буксировки в выбранной полосе ледового поля результаты эксперимента с буксируемыми моделями будут иметь погрешность и будут недостоверными.

Задачей предлагаемого изобретения является создание способа, обеспечивающего оперативное и неразрушающий лед определение прочности моделированного льда в темпе ведения эксперимента с буксируемыми моделями в ледовом опытовом бассейне для повышения точности и достоверности результатов модельного эксперимента при одновременном повышении эффективности использования ледового поля для проведения в нем указанных экспериментов.

Для этого в способе определения прочности льда в ледовом опытовом бассейне, включающем измерение средней солености льда и средней температуры льда по его толщине и определение прочностных свойств льда на изгиб методом разрушения консольных балок льда на плаву, по изобретению предварительно в выбранном опытовом ледовом бассейне намораживают моделированные ледяные покровы, имеющие различные среднюю температуру, среднюю соленость и структуру, в которых затем проводят эксперименты по упомянутому определению прочности льда путем разрушения консольных балок льда на плаву с измерением средней солености льда S и средней температуры t по его толщине, в результате которых получают данные о прочности льда σ в виде зависимости σ=f(S,t), и структуры льда для выбранного опытового бассейна. А перед проведением модельных испытаний перед каждым экспериментом с буксируемыми моделями измеряют в ледовом опытовом бассейне среднюю соленость льда и температуру приледного слоя воды, которые вводят в бортовой компьютер. После чего, в процессе проведения испытаний с буксируемыми моделями, в темпе ведения эксперимента определяют температуру поверхности льда непосредственно перед буксируемой моделью на расстоянии, равном не менее восьми толщинам ледового покрова опытового бассейна перед буксируемой моделью в полосе шириной в 1,1-1,2 ширины испытуемой модели с помощью измерительного тепловизора, сканирующего поверхность льда в указанной полосе, значения которой постоянно регистрируют на бортовом компьютере, который на основе полученных данных вычисляет среднюю температуру льда по формуле:

где tпов. - температура поверхности льда, tприл. - температура приледного слоя воды. И с использованием полученных результатов измерений характеристик льда и результатов расчета компьютером и с применением ранее полученной зависимости σ=f(S,t), после обработки на компьютере, получают в процессе буксировки модели информацию о прочности льда вдоль полосы буксировки.

Предварительное определение прочности льда путем разрушения консольных балок льда на плаву в моделированных ледовых покровах, имеющие различную среднюю температуру, среднюю соленость и структуру с получением данных о прочности льда σ в виде зависимости σ=f(S,t) для выбранного опытового бассейна, позволяет использовать полученную кривую зависимости в компьютере при определении прочности льда в процессе ведения эксперимента с буксируемыми моделями в ледовом опытовом бассейне.

Определение температуры поверхности льда непосредственно перед буксируемой моделью на расстоянии, равном не менее восьми толщинам ледового покрова опытового бассейна, с помощью измерительного тепловизора обосновано тем, что на указанном расстоянии перед движущейся моделью лед не имеет признаков разрушения, и благодаря этому обеспечивается выполнение измерений с получением данных по температуре поверхности не разрушенного перед буксируемой моделью льда, имеющего исходные физико-механические свойства.

Определение прочности льда одновременно в процессе проведения эксперимента с моделями в ледовом опытовом бассейне позволяет повысить эффективность использования ледового поля за счет исключения сокращения его площади для проведения испытаний моделей, имеющего место при определении прочности льда известным методом разрушения консольных балок на плаву.

Определение прочности льда в темпе ведения эксперимента с буксируемыми моделями в выбранной полосе ледового поля позволяет повысить точность и достоверность результатов модельного эксперимента, проводимого в ледовом поле.

Предлагаемый способ определения прочности льда в ледовом опытовом бассейне осуществляется с помощью приведенного на рисунках устройства, где на фиг. 1 показан общий вид устройства, а на фиг. 2 - вид сверху на устройство на фиг. 1.

Устройство включает размещенную в ледовом опытовом бассейне буксировочную тележку 1, к которой прикреплена испытуемая модель 2 и на которой размещен измеритель температуры поверхности льда ледового покрова 3 бассейна в виде сканирующего поверхность льда измерительного тепловизора 4 (фиг. 1). Измерительный тепловизор 4 расположен на штанге 5, закрепленной на буксировочной тележке 1, и размещен непосредственно перед моделью 2 на расстоянии L, равном не менее восьми толщинам ледового покрова 3 опытового бассейна (фиг. 1). Тепловизор 4 установлен с возможностью осуществления по штанге 5 возвратно-поступательных движений поперек направления движения модели 2 в зоне шириной в пределах 1,1-1,2 ширины испытуемой (буксируемой) модели 2 со скоростью, заданной в зависимости от скорости буксировки испытуемой модели 2 (фиг. 2). Устройство содержит измеритель солености льда и средство разрушения консольных балок с динамометром, связанным с регистрирующей аппаратурой (на рисунке не показаны), и бортовой компьютер 6, который расположен на буксировочной тележке 1 и связан с измерительным тепловизором 4.

Предлагаемый способ определения прочности льда в ледовом опытовом бассейне осуществляется с помощью предлагаемого устройства следующим образом.

Предварительно в выбранном опытовом ледовом бассейне намораживают моделированные ледяные покровы, имеющие различные среднюю температуру, среднюю соленость по толщине и структуру, в которых затем определяют прочность льда при соответствующей солености S и средней температуре t по его толщине путем разрушения консольных балок льда на плаву, в результате чего получают данные о прочности льда σ в виде зависимости σ=f(S,t) и структуры льда для выбранного опытового бассейна.

Перед проведением модельных испытаний, перед каждым экспериментом с буксируемыми моделями 2, измеряют в ледовом опытовом бассейне среднюю соленость льда 3 и температуру приледного слоя воды, которые вводят в бортовой компьютер 6.

Затем при проведении эксперимента в процессе буксировки испытуемой модели 2 непрерывно измеряют температуру поверхности льда 3 перед моделью 2 в полосе ледового покрова в пределах зоны шириной в 1,1-1,2 ширины модели 2 на расстоянии, равном не менее восьми толщинам ледового покрова бассейна, с помощью измерительного тепловизора 4, сканирующего поверхность льда 3 в указанной полосе, совершая возвратно-поступательные движения поперек закрепленной на испытательной тележке 1 штанге 5 со скоростью, предусмотренной режимом буксировки модели 2. Полученные данные измерительного тепловизора 4 вводятся в бортовой компьютер 6, в котором непрерывно в темпе ведения эксперимента регистрируются в виде значений температуры поверхности льда в испытуемой полосе льда 3, и вычисляется средняя температура льда по его толщине в указанной полосе как среднеарифметическое между температурой поверхности льда и приледного слоя воды. Одновременно, обрабатывая бортовым компьютером 6 полученные данные о средней температуре льда по его толщине и о его средней солености с применением предварительно полученной кривой зависимости прочности льда σ=f(S,t), получают в процессе буксировки модели 2 информацию о прочности льда вдоль полосы буксировки модели 2.

Используя полученные данные о прочности льда вдоль полосы буксировки испытуемой модели 2, вводят поправки в результаты экспериментов с моделями тел 2, проводимых в ледовом опытовом бассейне.

Предлагаемый способ определения прочности льда в ледовом опытовом бассейне позволяет обеспечить оперативное, не разрушая при этом ледового покрова бассейна, определение прочности моделированного льда в темпе ведения эксперимента с буксируемыми моделями в ледовом опытовом бассейне для повышения точности и достоверности результатов модельного эксперимента, при одновременном повышении эффективности использования ледового поля для проведения в нем указанных экспериментов, что их выгодно отличает от прототипов.

Способ определения прочности льда в ледовом опытовом бассейне, включающий измерение средней солености льда и средней температуры льда по его толщине и определение прочностных свойств льда на изгиб методом разрушения консольных балок льда на плаву, отличающийся тем, что предварительно в выбранном опытовом ледовом бассейне намораживают моделированные ледяные покровы, имеющие различные среднюю температуру, среднюю соленость и структуру, в которых затем проводят эксперименты по упомянутому определению прочности льда путем разрушения консольных балок льда на плаву с измерением средней солености льда S и средней температуры t по его толщине, в результате которых получают данные о прочности льда σ в виде зависимости σ=f (S, t), и структуры льда для выбранного опытового бассейна, а перед проведением модельных испытаний перед каждым экспериментом с буксируемыми моделями измеряют в ледовом опытовом бассейне среднюю соленость льда и температуру приледного слоя воды, которые вводят в бортовой компьютер, после чего, в процессе проведения испытаний с буксируемыми моделями, в темпе ведения эксперимента определяют температуру поверхности льда непосредственно перед буксируемой моделью на расстоянии, равном не менее восьми толщинам ледового покрова опытового бассейна перед буксируемой моделью в полосе шириной в 1,1-1,2 ширины испытуемой модели с помощью измерительного тепловизора, сканирующего поверхность льда в указанной полосе, значения которой постоянно регистрируют на бортовом компьютере, который на основе полученных данных вычисляет среднюю температуру льда по формуле: где t - температура поверхности льда, t - температура приледного слоя воды, и с использованием полученных результатов измерений характеристик льда и с применением ранее полученной зависимости σ=f (S, t), после обработки на компьютере, получают в процессе буксировки модели информацию о прочности льда вдоль полосы буксировки.
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЧНОСТИ ЛЬДА В ЛЕДОВОМ ОПЫТОВОМ БАССЕЙНЕ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЧНОСТИ ЛЬДА В ЛЕДОВОМ ОПЫТОВОМ БАССЕЙНЕ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЧНОСТИ ЛЬДА В ЛЕДОВОМ ОПЫТОВОМ БАССЕЙНЕ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЧНОСТИ ЛЬДА В ЛЕДОВОМ ОПЫТОВОМ БАССЕЙНЕ
Источник поступления информации: Роспатент

Показаны записи 351-360 из 401.
20.05.2019
№219.017.5d60

Способ консервирования панцирьсодержащих отходов комплексной переработки криля

Изобретение относится к рыбоперерабатывающей промышленности. Способ предусматривает диспергирование панцирьсодержащих отходов комплексной переработки криля, смешивание их с консервантом, фасование полученной смеси в тару с последующим ее укупориванием. Смешивание с консервантом осуществляют в...
Тип: Изобретение
Номер охранного документа: 0002429726
Дата охранного документа: 27.09.2011
24.05.2019
№219.017.6028

Способ координированного маневрирования судна

Изобретение относится к технике управления движением судов и может быть использовано, в частности, для обеспечения режимов плавания судов класса «река-море» в специфических условиях внутренних водных путей и прибрежных районов морей при управлении курсом и скоростью хода при прохождении...
Тип: Изобретение
Номер охранного документа: 0002429161
Дата охранного документа: 20.09.2011
27.05.2019
№219.017.6207

Резонансный акустический уровнемер

Изобретение относится к области ультразвуковой измерительной техники и предназначено для автоматического дистанционного измерения уровней жидкости различных типов в производственных и транспортных емкостях в нефтехимической, химической, горнодобывающей, пищевой и других отраслях промышленности....
Тип: Изобретение
Номер охранного документа: 0002443981
Дата охранного документа: 27.02.2012
27.05.2019
№219.017.6209

Мягкий реданированный поплавок

Изобретение относится к экранопланостроению, авиастроению и судостроению, касается профилирования мягких реданированных поплавков, преимущественно для экранопланов. Мягкий реданированный поплавок имеет пневмооболочку, оснащенную элементами соединения с корпусом транспортного средства,...
Тип: Изобретение
Номер охранного документа: 0002442709
Дата охранного документа: 20.02.2012
27.05.2019
№219.017.620a

Датчик измерителя напряженности электростатического поля

Предложен датчик измерителя напряженности электростатического поля. Он содержит неподвижный заземленный экранирующий электрод с секторными вырезами, вращающийся заземленный электрод-модулятор и чувствительный электрод. Последний выполнен в виде диска с отверстием для прохода вала модулятора....
Тип: Изобретение
Номер охранного документа: 0002442183
Дата охранного документа: 10.02.2012
27.05.2019
№219.017.620b

Профилированная нижняя часть мягкого поплавка с поперечным реданом

Изобретение относится к авиастроению, судостроению и к экранопланостроению, касается профилирования нижней части мягкого поплавка с поперечным реданом. Профилированная нижняя часть мягкого поплавка выполнена с поперечным реданом. Мягкий поплавок образован пневмобаллонами, заключенными в...
Тип: Изобретение
Номер охранного документа: 0002442708
Дата охранного документа: 20.02.2012
29.05.2019
№219.017.681e

Способ и устройство для измерения постоянной времени релаксации объемного заряда в диэлектрических жидкостях

Изобретение относится к области измерительной техники, в частности к определению электрофизических свойств диэлектрических материалов, и может быть использовано для определения постоянной времени релаксации объемного заряда диэлектрических жидкостей. Способ состоит в том, что исследуемую...
Тип: Изобретение
Номер охранного документа: 0002453857
Дата охранного документа: 20.06.2012
29.05.2019
№219.017.683b

Устройство контроля постоянной времени релаксации объемного электрического заряда в потоке диэлектрической жидкости

Изобретение относится к измерительной технике и может быть использовано в объектах, связанных с транспортировкой и хранением углеводородных топлив. Устройство содержит дополнительный участок трубопровода, шунтирующий основной трубопровод, и размещенную в этом участке систему коаксиальных...
Тип: Изобретение
Номер охранного документа: 0002452971
Дата охранного документа: 10.06.2012
29.05.2019
№219.017.6873

Катализатор, способ его приготовления и способ получения синтез-газа из синтетических углеводородных топлив

Изобретение относится к катализаторам паровой конверсии синтетических топлив. Описан катализатор получения синтез-газа паровой конверсией синтетических углеводородных топлив, преимущественно метанола, характеризующийся тем, что он представляет собой каталитический структурированный блок с...
Тип: Изобретение
Номер охранного документа: 0002455068
Дата охранного документа: 10.07.2012
29.05.2019
№219.017.6885

Устройство управления судовой системой электродвижения на основе нечеткого регулятора

Устройство управления судовой системой электродвижения на основе нечеткого регулятора относится к судостроению, в частности к применению нечеткого регулятора при управлении трехфазным асинхронным двигателем, используемым в судовой системе электродвижения. Техническим результатом является...
Тип: Изобретение
Номер охранного документа: 0002450299
Дата охранного документа: 10.05.2012
Показаны записи 341-341 из 341.
16.05.2023
№223.018.607a

Спусковое устройство спасательной шлюпки персонала морского сооружения

Изобретение относится к области судостроения и океанотехники и касается вопроса обеспечения эвакуации и спасения персонала морских объектов. Предложено спусковое устройство спасательной шлюпки персонала морского сооружения, содержащее установленную на его корпусной конструкции лебедку для...
Тип: Изобретение
Номер охранного документа: 0002740323
Дата охранного документа: 13.01.2021
+ добавить свой РИД