×
27.03.2016
216.014.c7a8

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЧНОСТИ ЛЬДА В ЛЕДОВОМ ОПЫТОВОМ БАССЕЙНЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области судостроения, а более конкретно - к ледовым опытовым бассейнам для проведения испытаний моделей судов и инженерных сооружений, касается вопроса определения прочности льда в ледовом опытовом бассейне. Способ определения прочности льда в ледовом опытовом бассейне включает измерение средней солености льда и средней температуры льда по его толщине и определение прочностных свойств льда на изгиб методом разрушения консольных балок льда на плаву. При этом предварительно в выбранном опытовом ледовом бассейне намораживают моделированные ледяные покровы, имеющие различную среднюю температуру, среднюю соленость и структуру, в которых затем проводят эксперименты по упомянутому определению прочности льда путем разрушения консольных балок льда на плаву с измерением средней солености льда S и средней температуры t по его толщине, в результате которых получают данные о прочности льда σ в виде зависимости σ=f(S,t), и структуры льда для выбранного опытового бассейна. А перед проведением модельных испытаний перед каждым экспериментом с буксируемыми моделями измеряют в ледовом опытовом бассейне среднюю соленость льда и температуру приледного слоя воды, которые вводят в бортовой компьютер. После чего, в процессе проведения испытаний с буксируемыми моделями, в темпе ведения эксперимента определяют температуру поверхности льда непосредственно перед буксируемой моделью на расстоянии, равном не менее восьми толщинам ледового покрова опытового бассейна перед буксируемой моделью в полосе шириной в 1,1-1,2 ширины испытуемой модели с помощью измерительного тепловизора, сканирующего поверхность льда в указанной полосе, значения которой постоянно регистрируют на бортовом компьютере, который на основе полученных данных вычисляют среднюю температуру льда по формуле: где t - температура поверхности льда, t - температура приледного слоя воды. С использованием полученных результатов измерений характеристик льда и результатов расчета компьютера и с применением ранее полученной зависимости σ=f(S,t), после обработки на компьютере, получают в процессе буксировки модели информацию о прочности льда вдоль полосы буксировки. Техническим результатом является повышение точности и достоверности результатов модельного эксперимента при одновременном повышении эффективности использования ледового поля для проведения в нем указанных экспериментов, что их выгодно отличает от прототипов. 2 ил.
Основные результаты: Способ определения прочности льда в ледовом опытовом бассейне, включающий измерение средней солености льда и средней температуры льда по его толщине и определение прочностных свойств льда на изгиб методом разрушения консольных балок льда на плаву, отличающийся тем, что предварительно в выбранном опытовом ледовом бассейне намораживают моделированные ледяные покровы, имеющие различные среднюю температуру, среднюю соленость и структуру, в которых затем проводят эксперименты по упомянутому определению прочности льда путем разрушения консольных балок льда на плаву с измерением средней солености льда S и средней температуры t по его толщине, в результате которых получают данные о прочности льда σ в виде зависимости σ=f (S, t), и структуры льда для выбранного опытового бассейна, а перед проведением модельных испытаний перед каждым экспериментом с буксируемыми моделями измеряют в ледовом опытовом бассейне среднюю соленость льда и температуру приледного слоя воды, которые вводят в бортовой компьютер, после чего, в процессе проведения испытаний с буксируемыми моделями, в темпе ведения эксперимента определяют температуру поверхности льда непосредственно перед буксируемой моделью на расстоянии, равном не менее восьми толщинам ледового покрова опытового бассейна перед буксируемой моделью в полосе шириной в 1,1-1,2 ширины испытуемой модели с помощью измерительного тепловизора, сканирующего поверхность льда в указанной полосе, значения которой постоянно регистрируют на бортовом компьютере, который на основе полученных данных вычисляет среднюю температуру льда по формуле: где t - температура поверхности льда, t - температура приледного слоя воды, и с использованием полученных результатов измерений характеристик льда и с применением ранее полученной зависимости σ=f (S, t), после обработки на компьютере, получают в процессе буксировки модели информацию о прочности льда вдоль полосы буксировки.

Изобретение относится к области судостроения, а более конкретно - к ледовым опытовым бассейнам для проведения испытаний моделей судов и инженерных сооружений, и может быть использовано для оперативного определения и контроля прочности моделированного льда в процессе проведения гидродинамических экспериментов с буксируемыми моделями в ледовых опытовых бассейнах.

Известен способ определения прочности льда, согласно которому прочность льда определяют путем разрушения консольных балок льда на плаву и с использованием силового динамометра, при этом измеряют соленость льда и его среднюю по толщине температуру. Полученные результаты выводят на регистрирующую аппаратуру (Е.Б. Карулин, М.М. Карулина, А.С. Шестов и А.В. Марченко. Исследование прочности льда на изгиб в Фиордах западного Шпицбергена. Труды Центрального научно-исследовательского института имени академика А.Н. Крылова, вып. 63(347). - Спб., 2011, стр. 131-142) - прототип.

Однако определение прочности льда методом его разрушения приводит к сокращению площади ледового поля, необходимого для проведения испытаний моделей, и, кроме того, в различных точках ледового поля средняя температура льда по его толщине как правило не одинакова и, соответственно, не одинакова прочность льда в этих точках, поэтому в процессе испытаний модели путем ее буксировки в выбранной полосе ледового поля результаты эксперимента с буксируемыми моделями будут иметь погрешность и будут недостоверными.

Задачей предлагаемого изобретения является создание способа, обеспечивающего оперативное и неразрушающий лед определение прочности моделированного льда в темпе ведения эксперимента с буксируемыми моделями в ледовом опытовом бассейне для повышения точности и достоверности результатов модельного эксперимента при одновременном повышении эффективности использования ледового поля для проведения в нем указанных экспериментов.

Для этого в способе определения прочности льда в ледовом опытовом бассейне, включающем измерение средней солености льда и средней температуры льда по его толщине и определение прочностных свойств льда на изгиб методом разрушения консольных балок льда на плаву, по изобретению предварительно в выбранном опытовом ледовом бассейне намораживают моделированные ледяные покровы, имеющие различные среднюю температуру, среднюю соленость и структуру, в которых затем проводят эксперименты по упомянутому определению прочности льда путем разрушения консольных балок льда на плаву с измерением средней солености льда S и средней температуры t по его толщине, в результате которых получают данные о прочности льда σ в виде зависимости σ=f(S,t), и структуры льда для выбранного опытового бассейна. А перед проведением модельных испытаний перед каждым экспериментом с буксируемыми моделями измеряют в ледовом опытовом бассейне среднюю соленость льда и температуру приледного слоя воды, которые вводят в бортовой компьютер. После чего, в процессе проведения испытаний с буксируемыми моделями, в темпе ведения эксперимента определяют температуру поверхности льда непосредственно перед буксируемой моделью на расстоянии, равном не менее восьми толщинам ледового покрова опытового бассейна перед буксируемой моделью в полосе шириной в 1,1-1,2 ширины испытуемой модели с помощью измерительного тепловизора, сканирующего поверхность льда в указанной полосе, значения которой постоянно регистрируют на бортовом компьютере, который на основе полученных данных вычисляет среднюю температуру льда по формуле:

где tпов. - температура поверхности льда, tприл. - температура приледного слоя воды. И с использованием полученных результатов измерений характеристик льда и результатов расчета компьютером и с применением ранее полученной зависимости σ=f(S,t), после обработки на компьютере, получают в процессе буксировки модели информацию о прочности льда вдоль полосы буксировки.

Предварительное определение прочности льда путем разрушения консольных балок льда на плаву в моделированных ледовых покровах, имеющие различную среднюю температуру, среднюю соленость и структуру с получением данных о прочности льда σ в виде зависимости σ=f(S,t) для выбранного опытового бассейна, позволяет использовать полученную кривую зависимости в компьютере при определении прочности льда в процессе ведения эксперимента с буксируемыми моделями в ледовом опытовом бассейне.

Определение температуры поверхности льда непосредственно перед буксируемой моделью на расстоянии, равном не менее восьми толщинам ледового покрова опытового бассейна, с помощью измерительного тепловизора обосновано тем, что на указанном расстоянии перед движущейся моделью лед не имеет признаков разрушения, и благодаря этому обеспечивается выполнение измерений с получением данных по температуре поверхности не разрушенного перед буксируемой моделью льда, имеющего исходные физико-механические свойства.

Определение прочности льда одновременно в процессе проведения эксперимента с моделями в ледовом опытовом бассейне позволяет повысить эффективность использования ледового поля за счет исключения сокращения его площади для проведения испытаний моделей, имеющего место при определении прочности льда известным методом разрушения консольных балок на плаву.

Определение прочности льда в темпе ведения эксперимента с буксируемыми моделями в выбранной полосе ледового поля позволяет повысить точность и достоверность результатов модельного эксперимента, проводимого в ледовом поле.

Предлагаемый способ определения прочности льда в ледовом опытовом бассейне осуществляется с помощью приведенного на рисунках устройства, где на фиг. 1 показан общий вид устройства, а на фиг. 2 - вид сверху на устройство на фиг. 1.

Устройство включает размещенную в ледовом опытовом бассейне буксировочную тележку 1, к которой прикреплена испытуемая модель 2 и на которой размещен измеритель температуры поверхности льда ледового покрова 3 бассейна в виде сканирующего поверхность льда измерительного тепловизора 4 (фиг. 1). Измерительный тепловизор 4 расположен на штанге 5, закрепленной на буксировочной тележке 1, и размещен непосредственно перед моделью 2 на расстоянии L, равном не менее восьми толщинам ледового покрова 3 опытового бассейна (фиг. 1). Тепловизор 4 установлен с возможностью осуществления по штанге 5 возвратно-поступательных движений поперек направления движения модели 2 в зоне шириной в пределах 1,1-1,2 ширины испытуемой (буксируемой) модели 2 со скоростью, заданной в зависимости от скорости буксировки испытуемой модели 2 (фиг. 2). Устройство содержит измеритель солености льда и средство разрушения консольных балок с динамометром, связанным с регистрирующей аппаратурой (на рисунке не показаны), и бортовой компьютер 6, который расположен на буксировочной тележке 1 и связан с измерительным тепловизором 4.

Предлагаемый способ определения прочности льда в ледовом опытовом бассейне осуществляется с помощью предлагаемого устройства следующим образом.

Предварительно в выбранном опытовом ледовом бассейне намораживают моделированные ледяные покровы, имеющие различные среднюю температуру, среднюю соленость по толщине и структуру, в которых затем определяют прочность льда при соответствующей солености S и средней температуре t по его толщине путем разрушения консольных балок льда на плаву, в результате чего получают данные о прочности льда σ в виде зависимости σ=f(S,t) и структуры льда для выбранного опытового бассейна.

Перед проведением модельных испытаний, перед каждым экспериментом с буксируемыми моделями 2, измеряют в ледовом опытовом бассейне среднюю соленость льда 3 и температуру приледного слоя воды, которые вводят в бортовой компьютер 6.

Затем при проведении эксперимента в процессе буксировки испытуемой модели 2 непрерывно измеряют температуру поверхности льда 3 перед моделью 2 в полосе ледового покрова в пределах зоны шириной в 1,1-1,2 ширины модели 2 на расстоянии, равном не менее восьми толщинам ледового покрова бассейна, с помощью измерительного тепловизора 4, сканирующего поверхность льда 3 в указанной полосе, совершая возвратно-поступательные движения поперек закрепленной на испытательной тележке 1 штанге 5 со скоростью, предусмотренной режимом буксировки модели 2. Полученные данные измерительного тепловизора 4 вводятся в бортовой компьютер 6, в котором непрерывно в темпе ведения эксперимента регистрируются в виде значений температуры поверхности льда в испытуемой полосе льда 3, и вычисляется средняя температура льда по его толщине в указанной полосе как среднеарифметическое между температурой поверхности льда и приледного слоя воды. Одновременно, обрабатывая бортовым компьютером 6 полученные данные о средней температуре льда по его толщине и о его средней солености с применением предварительно полученной кривой зависимости прочности льда σ=f(S,t), получают в процессе буксировки модели 2 информацию о прочности льда вдоль полосы буксировки модели 2.

Используя полученные данные о прочности льда вдоль полосы буксировки испытуемой модели 2, вводят поправки в результаты экспериментов с моделями тел 2, проводимых в ледовом опытовом бассейне.

Предлагаемый способ определения прочности льда в ледовом опытовом бассейне позволяет обеспечить оперативное, не разрушая при этом ледового покрова бассейна, определение прочности моделированного льда в темпе ведения эксперимента с буксируемыми моделями в ледовом опытовом бассейне для повышения точности и достоверности результатов модельного эксперимента, при одновременном повышении эффективности использования ледового поля для проведения в нем указанных экспериментов, что их выгодно отличает от прототипов.

Способ определения прочности льда в ледовом опытовом бассейне, включающий измерение средней солености льда и средней температуры льда по его толщине и определение прочностных свойств льда на изгиб методом разрушения консольных балок льда на плаву, отличающийся тем, что предварительно в выбранном опытовом ледовом бассейне намораживают моделированные ледяные покровы, имеющие различные среднюю температуру, среднюю соленость и структуру, в которых затем проводят эксперименты по упомянутому определению прочности льда путем разрушения консольных балок льда на плаву с измерением средней солености льда S и средней температуры t по его толщине, в результате которых получают данные о прочности льда σ в виде зависимости σ=f (S, t), и структуры льда для выбранного опытового бассейна, а перед проведением модельных испытаний перед каждым экспериментом с буксируемыми моделями измеряют в ледовом опытовом бассейне среднюю соленость льда и температуру приледного слоя воды, которые вводят в бортовой компьютер, после чего, в процессе проведения испытаний с буксируемыми моделями, в темпе ведения эксперимента определяют температуру поверхности льда непосредственно перед буксируемой моделью на расстоянии, равном не менее восьми толщинам ледового покрова опытового бассейна перед буксируемой моделью в полосе шириной в 1,1-1,2 ширины испытуемой модели с помощью измерительного тепловизора, сканирующего поверхность льда в указанной полосе, значения которой постоянно регистрируют на бортовом компьютере, который на основе полученных данных вычисляет среднюю температуру льда по формуле: где t - температура поверхности льда, t - температура приледного слоя воды, и с использованием полученных результатов измерений характеристик льда и с применением ранее полученной зависимости σ=f (S, t), после обработки на компьютере, получают в процессе буксировки модели информацию о прочности льда вдоль полосы буксировки.
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЧНОСТИ ЛЬДА В ЛЕДОВОМ ОПЫТОВОМ БАССЕЙНЕ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЧНОСТИ ЛЬДА В ЛЕДОВОМ ОПЫТОВОМ БАССЕЙНЕ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЧНОСТИ ЛЬДА В ЛЕДОВОМ ОПЫТОВОМ БАССЕЙНЕ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЧНОСТИ ЛЬДА В ЛЕДОВОМ ОПЫТОВОМ БАССЕЙНЕ
Источник поступления информации: Роспатент

Показаны записи 231-240 из 401.
13.01.2017
№217.015.6a45

Радиопоглощающее покрытие

Изобретение относится к области радиотехники, к материалам для поглощения электромагнитных волн, и может найти применение для повышения скрытности и уменьшения вероятности обнаружения радиолокаторами объектов морской, наземной, авиационной и космической техники, а также обеспечения...
Тип: Изобретение
Номер охранного документа: 0002592898
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.6ac2

Научно-исследовательский тренажерный комплекс моделирования операций управления ледовой обстановкой вокруг морских плавучих и гравитационных сооружений

Научно-исследовательский тренажерный комплекс моделирования операций управления ледовой обстановкой вокруг морских плавучих и гравитационных сооружений содержит универсальный навигационный тренажер, блок физического моделирования движения ледокольных судов. Универсальный навигационный тренажер...
Тип: Изобретение
Номер охранного документа: 0002593171
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.725d

Система добычи железомарганцевых конкреций

Изобретение относится к горному делу и может быть применено для освоения минеральных ресурсов дна морей и океанов при отработке поверхностных россыпных месторождений твердых полезных ископаемых. Система содержит добывающее судно, самоходный агрегат сбора, соединенный с трубопроводом гибкой...
Тип: Изобретение
Номер охранного документа: 0002598010
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.75e6

Экологически безопасные антипирены на основе оксиэтилированных полиэфиров метоксиметилфосфоновой кислоты

Изобретение относится к применимым в качестве антипиренов оксиалкилированным эфирам трис-этиленгликоль-тетра-метоксиметил (I) и пентаэритрит-тетра-метоксиметил (II) фосфоновых кислот формул Предложены новые экологически безопасные антипирены и эффективный способ их получения. Предложенный...
Тип: Изобретение
Номер охранного документа: 0002598603
Дата охранного документа: 27.09.2016
13.01.2017
№217.015.7cb8

Способ изготовления заготовок в форме стакана из прутка

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении заготовки корпуса снаряда, имеющей форму стакана. В металлообрабатывающем центре от прутка отделяют мерную штучную заготовку и формируют на ее торце зацентровку. Затем заготовку продольно...
Тип: Изобретение
Номер охранного документа: 0002600594
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7d27

Модель оценивания параметров запуска объектов управления

Изобретение относится к автоматизированным системам управления и системам управления запуском летательных аппаратов. Модель основана на методе имитационного статистического моделирования, содержит блок функциональных задач вычислительной системы (ВС), блок задания/приема параметров решения,...
Тип: Изобретение
Номер охранного документа: 0002600964
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.883f

Способ получения быстрорежущей стали из кусковых отходов изношенного режущего инструмента

Изобретение относится к области металлургии и может быть использовано при получении быстрорежущей стали из кусковых отходов изношенного режущего инструмента и штамповой оснастки методом электрошлакового переплава. Кусковые отходы предварительно сортируют и перед сваркой подбирают таким...
Тип: Изобретение
Номер охранного документа: 0002602579
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.9ef7

Устройство для измерения микровозмущений водной поверхности, вызванных процессами в стратифицированной по плотности среде

Изобретение относится к измерительной технике, а именно к устройствам для измерения параметров поверхностного волнения жидкостей. Данное устройство может быть применено для исследования волновых процессов на поверхности жидкости, как в натурных, так и в лабораторных условиях, например для...
Тип: Изобретение
Номер охранного документа: 0002606203
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.9f44

Способ определения акустических частотных характеристик звукопоглощающих конструкций

Изобретение относится к метрологии и гидроакустике. Способ предполагает излучение широкополосного сигнала, его отражение и прием. Принятый сигнал, полученный суммированием с сигналом, отраженным от образца звукопоглощающей конструкции и с многочисленными ложными отражениями от стенок,...
Тип: Изобретение
Номер охранного документа: 0002606172
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a02e

Способ измерения параметров магнитного поля надводного или подводного объекта на стационарном магнитном стенде

Изобретение относится к области магнитной защиты надводных или подводных объектов. Измерения параметров магнитного поля надводного или подводного объекта на стационарном магнитном стенде выполняют не менее чем в двух его различных фиксированных положениях относительно стенда. Расположение...
Тип: Изобретение
Номер охранного документа: 0002606649
Дата охранного документа: 10.01.2017
Показаны записи 231-240 из 341.
20.04.2016
№216.015.36a0

Опытовый бассейн для испытаний моделей судов и морских инженерных сооружений преимущественно во льдах

Изобретение относится к области судостроения, более конкретно к экспериментальной гидромеханике корабля. Предложен опытовый бассейн для испытаний моделей судов и морских инженерных сооружений преимущественно во льдах, включающий холодильную камеру с системой охлаждения и каналом, заполненным...
Тип: Изобретение
Номер охранного документа: 0002581446
Дата охранного документа: 20.04.2016
10.05.2016
№216.015.3aac

Гидроакустический широкополосный преобразователь

Изобретение относится к гидроакустике, а именно к конструкциям стержневых широкополосных пьезокерамических преобразователей, предназначенных для работы в составе антенн гидроакустических приемоизлучающих систем. Сущность: гидроакустический преобразователь содержит стержневой пьезокерамический...
Тип: Изобретение
Номер охранного документа: 0002583131
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3b9d

Способ динамической калибровки винтовых динамометров

Изобретение относится к измерительной технике, а именно к динамической калибровке винтовых динамометров, используемых для измерения крутящих моментов на гребных валах в опытных гидродинамических лабораториях. Способ динамической калибровки винтовых динамометров включает измерение крутящего...
Тип: Изобретение
Номер охранного документа: 0002583129
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3bb7

Жидкостной охладитель наддувочного воздуха в двигателях внутреннего сгорания

Изобретение относится к области машиностроения и может быть использовано в двигателях внутреннего сгорания. Предложен жидкостной охладитель наддувочного воздуха в двигателях внутреннего сгорания, содержащий водовоздушный теплообменник, жидкостной насос и радиатор охлаждения, также в состав...
Тип: Изобретение
Номер охранного документа: 0002583483
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3c13

Система коллективного спасения персонала с морских нефтегазовых сооружений в ледовых условиях

Изобретение относится к области судостроения и может быть использовано для обеспечения эвакуации и спасения персонала с морских нефтегазовых объектов. Система коллективного спасения персонала с морских нефтегазовых сооружений в ледовых условиях содержит спусковую платформу с закрепленными на...
Тип: Изобретение
Номер охранного документа: 0002583828
Дата охранного документа: 10.05.2016
20.05.2016
№216.015.3dfe

Флэш элемент памяти электрически перепрограммируемого постоянного запоминающего устройства

Флэш элемент памяти электрически перепрограммируемого постоянного запоминающего устройства предназначен для хранения информации при отключенном питании. На полупроводниковой подложке с истоком и стоком между последними выполнены туннельный слой, дополнительный туннельный слой, запоминающий...
Тип: Изобретение
Номер охранного документа: 0002584728
Дата охранного документа: 20.05.2016
27.05.2016
№216.015.4289

Способ изготовления промежуточных опорных фундаментных конструкций из полимерных композиционных материалов

Изобретение относится к области судостроения и может использоваться в конструкции судовых фундаментов и фундаментных рамах. Для изготовления промежуточных опорных фундаментных конструкций из полимерных композиционных материалов составляют балки коробчатого профиля из вибропоглощающего...
Тип: Изобретение
Номер охранного документа: 0002585205
Дата охранного документа: 27.05.2016
27.05.2016
№216.015.4362

Водометный двигательно-движительный комплекс

Изобретение относится к области судостроения, а именно к водометным движителям. Водометный двигательно-движительный комплекс включает осесимметричный корпус в виде судовой кольцевой насадки, в котором размещены статор электродвигателя и подвижно установленное круговое кольцо. На внутренней...
Тип: Изобретение
Номер охранного документа: 0002585207
Дата охранного документа: 27.05.2016
27.05.2016
№216.015.4428

Ледокольное судно

Изобретение относится к области судостроения и касается вопроса создания ледокольных судов, предназначенных для прокладки широкого канала, обеспечивающего безопасную проводку крупнотоннажных судов во льдах. Предложено ледокольное судно, включающее корпус, состоящий из основного головного...
Тип: Изобретение
Номер охранного документа: 0002585393
Дата охранного документа: 27.05.2016
20.08.2016
№216.015.4b1e

Соединение труб

Изобретение относится к соединениям трубопроводной арматуры. Соединение труб содержит законцовки труб, каждая из которых снабжена парой выступов для фиксации кольцевого уплотняющего элемента, вставленного между выступами, корпус с выступом на внутренней поверхности с одной стороны и резьбой на...
Тип: Изобретение
Номер охранного документа: 0002594847
Дата охранного документа: 20.08.2016
+ добавить свой РИД