×
27.02.2016
216.014.bfe7

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНОГО ПОРОШКА АЛЮМОИТТРИЕВОГО ГРАНАТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии получения соединений сложных оксидов со структурой граната, которые могут быть использованы для изготовления активных элементов твердотельных лазеров ближнего и среднего ИК-диапазонов, для разработки сцинтилляторов и люминофоров, а также в производстве термостойкой керамики. Способ получения наноразмерного порошка алюмоиттриевого граната включает приготовление исходных реакционных водных растворов, содержащих соли иттрия (III) и алюминия (III) в молярном отношении 3:5. Сначала реагент-осадитель, в качестве которого используют сильноосновный гелевый анионит АВ-17-8 в гидроксидной форме, приводят в контакт с раствором солей иттрия (III) при комнатной температуре в течение 20 мин, затем добавляют раствор солей алюминия (III). Из полученного раствора осаждают продукт-прекурсор, отделяют его от раствора, промывают водой, сушат и обжигают при температуре 900°С. Ионообменный способ обеспечивает получение наноразмерного порошка алюмоиттриевого граната, не содержащего катионов осадителя, без применения агрессивных сред и давлений. 3 ил., 2 пр.
Основные результаты: Способ получения наноразмерного порошка алюмоиттриевого граната, включающий приготовление исходных реакционных водных растворов, содержащих соли иттрия (III) и алюминия (III) в молярном отношении 3:5, приведение растворов в контакт, осаждение из полученного раствора продукта-прекурсора, отделение его от раствора, промывку водой, сушку и обжиг, отличающийся тем, что реагент-осадитель, в качестве которого используют сильноосновный гелевый анионит АВ-17-8 в гидроксидной форме, предварительно приводят в контакт с раствором солей иттрия (III) при комнатной температуре в течение 20 мин, а затем в систему добавляют раствор солей алюминия (III), при этом обжиг проводят при температуре не менее 900°С.

Изобретение относится к способу получения соединений сложных оксидов со структурой граната, которые могут быть использованы для изготовления активных элементов твердотельных лазеров ближнего и среднего ИК-диапазонов, для разработки сцинтилляторов и люминофоров, а также в производстве термостойкой керамики.

Алюмоиттриевый гранат представляет собой сложный оксид иттрия и алюминия с химической формулой Y3Al5O12 и структурой граната.

Известен способ получения алюмоиттриевого граната [Авторское свидетельство 544614, C01F 17/00, УДК 546.641, опубл. 30.01.77, Бюлл. №4], в котором в качестве исходных компонентов использовали безводные хлориды алюминия и иттрия и хлориды щелочных металлов, которые предварительно расплавляли при температуре 750-950°С. Для приготовления алюмоиттриевого граната состава Y3Al5O12 плавы 46 г хлоралюминатов KAlCl4 (NaAlCl4) щелочных металлов и 54 г хлориттратов K3YCl6 (NaYCl6) смешивали и нагревали в корундовом реакторе до температуры 750-950°С и в полученный расплав подавали газообразный кислород, скорость подачи которого составляет 10-15 л/ч на 100 г расплава. В ходе реакции в расплаве образовывались тонкодисперсные частицы алюмоиттриевого граната и выделялось большое количество газообразного хлора. Затем расплав охлаждали, промывали водой от солей, отфильтровывали и просушивали при температуре 120°С. Получали тонкодисперсный порошок алюмоиттриевого граната белого цвета высокой степени чистоты.

К недостаткам данного способа можно отнести использование дополнительной стадии расплавления исходных веществ, а также выделение газообразного хлора в ходе реакции.

Известен способ получения алюмоиттриевого граната [патент RU №2137715, C01F 17/00, С01В 13/32, C01G 49/00, С30В 29/22, С30В 29/28, опубл. 20.09.1999], в соответствии с которым оксиды иттрия Y2O3 и железа Al2O3, взятые в молярном отношении (3:5), перемешивали в изопропаноле в течение 10 мин под действием ультразвука и после удаления изопропанола с помощью испарителя и вакуумной сушилки обжигали в кварцевом муфеле при температуре 1100°С в течение 60 минут в атмосфере хлористого водорода. Полученный продукт, по данным РФА, представлял собой чистую фазу иттрий-алюминиевого граната с размером частиц 52 мкм.

К недостаткам данного способа можно отнести использование органического растворителя, который далее нужно отгонять; необходимость применения кварцевого муфеля из-за использования хлороводорода на стадии обжига, а также высокие температуры обжига.

Известен также способ получения алюмоиттриевого граната золь-гель методом [Ramanujam P.A comparative study of the synthesis of nanocrystalline yttrium aluminium garnet using sol-gel and co-precipitation methods / P. Ramanujam, B. Vaidhynatan, J. Binner, A. Anshuman, C. Spacie // Ceramics International. - 2014. - №40. - P. 4179-4186]. Синтез проводили следующим образом: смешали нитратные водные растворы иттрия (0,6 М), алюминия (1 М) и лимонную кислоту (1 М) и нагревали на масляной бане при температуре 90°С в течение 24 ч. Полученный гель высушивали при 100°С 24 ч и обжигали при 900-1000°С 1 ч. Размер частиц составил 30-60 нм. Согласно данным рентгенофазного анализа чистая фаза граната Y3Al5O12 получается при 1000°С.

Недостатком данного способа является длительное время контакта фаз, а также необходимость отмывки конечного продукта от анионов и катионов.

Наиболее близким техническим решением, выбранным в качестве прототипа, является способ получения алюмоиттриевого граната, легированного редкоземельными элементами, методом соосаждения [патент RU №2503754, С30В 29/28, C09K 11/80]. В качестве исходных веществ используют нитраты алюминия, иттрия и редкоземельных элементов (с общей концентрацией ионов металла 1 моль/л), а в качестве осадителя - гидрокарбонат аммония (2 моль/л), содержащий фторид аммония (в количестве 0,1-5% атомов фтора относительно количества осадителя). Смесь водных растворов нитратов алюминия, иттрия и редкоземельного элемента заливают в капельную воронку и приливают ее к осадителю со скоростью 60 мл/мин при перемешивании 300-500 об/мин. Полученный осадок отфильтровывают, промывают водой, сушат при температуре 100-150°С в течение 8-12 часов, обжигают при температуре 1100°С 5 часов.

К недостаткам данного способа можно отнести загрязнение полученного осадка анионами исходной соли и катионами осадителя.

Техническим результатом заявляемого изобретения является разработка анионообменного способа получения алюмоиттриевого граната, являющегося достаточно простым, не предполагающего применения агрессивных сред и давлений.

Технический результат достигается тем, что в способе получения наноразмерного порошка алюмоиттриевого граната, включающем приготовление исходных реакционных водных растворов, содержащих соли иттрия (III) и алюминия (III) в молярном отношении 3:5, осаждение из раствора продукта-прекурсора, отделение от раствора, промывку водой, сушку и обжиг, новым является то, что в качестве реагента-осадителя используют сильноосновный гелевый анионит АВ-17-8 в гидроксидной форме, который приводят сначала в контакт с раствором иттрия (III), а затем с раствором алюминия (III), обжиг проводят при температуре не менее 900°С.

Эти отличия позволяют сделать вывод о соответствии заявляемого технического решения критерию «новизна». Признаки, отличающие заявляемый способ от прототипа, не выявлены в других технических решениях при изучении данной и смежных областей химии и, следовательно, обеспечивают заявляемому решению соответствие критерию «изобретательский уровень».

Изобретение поясняется чертежами. На фиг. 1 представлен ИК-спектр алюмоиттриевого граната: а - полученного из хлоридного раствора; б - полученного из нитратного раствора. На фиг. 2 показаны рентгеновские спектры алюмоиттриевого граната: а - полученного из хлоридного раствора; б - полученного из нитратного раствора. На фиг. 3 представлена микрофотография алюмоиттриевого граната, полученного из хлоридного раствора (а) и нитратного раствора (б).

Необходимость создания настоящего изобретения обусловлена тем, что при анионообменном синтезе, проводимом из смеси солей, образуются прекурсоры, обладающие высокой активностью, поэтому формирование сложных оксидов протекает при более низкой температуре. Поскольку данный способ позволяет получать прекурсоры состава, близкого к стехиометрическому, при термообработке формируется однофазный материал с узким распределением частиц по размерам.

При создании заявленного изобретения были использованы гелевые и пористые сильноосновные аниониты в ОН-форме. Полученные данные свидетельствуют, что использование пористых анионитов нецелесообразно, так как значительная доля осадка (более 50%) удерживается анионитом. Поэтому выбор сильноосновного анионита АВ-17-8 является предпочтительным.

Заявляемый способ осуществляется следующим образом.

Переводят анионит АВ-17-8 (сильноосновной анионит с полистирольной матрицей, содержащий четвертичные аммониевые основания - N+(СН3)3 (ГОСТ 20301-74)) в ОН-форму, осуществляют контакт анионита с раствором солей иттрия (III) и алюминия (III), отделение и промывку осадка, прокаливание.

Перевод анионита в ОН-форму проводят, заливая исходный АВ-17-8 в хлоридной форме 1 М раствором NaOH (т:ж=1:3), затем 2 М раствором NaOH 3 раз, выдерживая каждую порцию в течение часа. После чего анионит промывают дистиллированной водой до отрицательной реакции на хлорид-ион. Полученный анионит высушивают при температуре около 60°С.

Массу анионита, необходимую для синтеза, рассчитывают по формуле:

где CY, CAl - концентрация исходных растворов иттрия (III) и алюминия (III), М; VY, VAl - объем исходных растворов, мл; СОЕ - статическая обменная емкость анионита в OH-форме, ммоль-экв·г-1.

Рассчитанное количество анионита, выступающего в качестве реагента-осадителя, приводят в контакт с 19 мл 0,24 М раствора иттрия (III). Систему перемешивают на шейкере со скоростью 120 мин-1 при комнатной температуре в течение 20 мин, затем в систему добавляют 31 мл 0,24 М раствора алюминия (III) и перемешивают еще 40 мин. После чего анионит отделяют, пропуская смесь через сито с диаметром отверстий 0,25 мм. Для отделения осадка проводят фильтрование на воронке Бюхнера под вакуумом. Осадок (прекурсор) после промывания водой сушат при температуре 100°С. Далее прекурсор обжигают при температуре 900°С в течение 60 мин для получения чистой фазы алюмоиттриевого граната.

Пример 1. Получение наноразмерного порошка алюмоиттриевого граната из хлоридных растворов иттрия (III) и железа (III) при температуре обжига 900°С.

Навеску анионита массой 34 г приводят в контакт с 19 мл 0,24 М раствора YCl3. Систему перемешивают на шейкере со скоростью 120 мин-1 при комнатной температуре в течение 20 мин, затем в систему добавляют 31 мл 0,24 М раствора AlCl3 и оставляют контактировать еще 40 мин при перемешивание на шейкере. После чего анионит отделяют, пропуская смесь через сито с диаметром отверстий 0,25 мм. Для отделения осадка проводят фильтрование на воронке Бюхнера под вакуумом. Полученный осадок (прекурсор) промывают водой, высушивают при 100°С в сушильном шкафу. Далее прекурсор обжигают при температуре 900°С в течение 60 мин для получения чистой фазы алюмоиттриевого граната.

На фиг. 1а представлен ИК-спектр продукта. В спектре активны семь колебательных мод при 788, 722, 689, 567, 532, 522, 463 и 432 см-1, относящиеся к связям Al-O и Y-O и подтверждающие формирование структуры алюмоиттриевого граната. Также на спектре отсутствуют полосы поглощения, характерные для анионов исходной соли.

На фиг. 2а представлен рентгеновский спектр продукта, обожженного при 900°С. Основные пики на рентгенограмме 4,88, 4,254, 3,22, 2,90, 2,69, 2,39, 1,663 характерны для кубической структуры граната.

На фиг. 3а представлена электронная микрофотография алюмоиттриевого граната, полученного при 900°С. Видны крупные агломераты, близкие к сферической форме, порядка 326 нм.

Пример 2. Получение алюмоиттриевого граната из нитратных растворов иттрия (III) и алюминия (III) при температуре обжига 900°С.

Навеску анионита массой 34 г приводят в контакт с 19 мл 0,24 М раствора Y(NO3)3. Систему перемешивают на шейкере со скоростью 120 мин-1 при комнатной температуре в течение 20 мин, затем добавляют 31 мл 0,24 М раствора Al(NO3)3 и оставляют контактировать еще 40 мин при перемешивание на шейкере. После чего анионит отделяют, пропуская смесь через сито с диаметром отверстий 0,25 мм. Для отделения осадка проводят фильтрование на воронке Бюхнера под вакуумом. Полученный осадок (прекурсор) промывают водой, высушивают при 100°С в сушильном шкафу. Далее прекурсор обжигают при температуре 900°С в течение 60 мин для получения чистой фазы алюмоиттриевого граната.

На фиг. 1б представлен ИК-спектр продукта. В спектре активны семь колебательных мод при 788, 722, 689, 567, 532, 522, 463 и 432 см-1, относящиеся к связям Al-O и Y-O и подтверждающие формирование структуры алюмоиттриевого граната. Также на спектре отсутствуют полосы поглощения, характерные для анионов исходной соли.

На фиг. 2б представлен рентгеновский спектр продукта, обожженного при 900°С. Основные пики на рентгенограмме 4,88, 4,254, 3,22, 2,90, 2,69, 2,39, 1,663 характерны для кубической структуры граната.

На фиг. 3б представлена электронная микрофотография алюмоиттриевого граната, полученного при 900°С. Видны крупные агломераты, близкие к сферической форме, порядка 300 нм.

Преимущества предлагаемого способа заключаются в том, что он достаточно прост, не предполагает применения агрессивных сред и давлений. Используя данное техническое решение, можно добиться получения продукта, не содержащего катионов осадителя, что освобождает в дальнейшем от необходимости длительной промывки полученного осадка. Кроме того, формирование структуры граната происходит при более низкой температуре. Также, предложенный анионообменный метод синтеза алюмоиттриевого граната приводит к образованию высокодисперсного продукта с воспроизводимыми физико-химическими свойствами.

Способ получения наноразмерного порошка алюмоиттриевого граната, включающий приготовление исходных реакционных водных растворов, содержащих соли иттрия (III) и алюминия (III) в молярном отношении 3:5, приведение растворов в контакт, осаждение из полученного раствора продукта-прекурсора, отделение его от раствора, промывку водой, сушку и обжиг, отличающийся тем, что реагент-осадитель, в качестве которого используют сильноосновный гелевый анионит АВ-17-8 в гидроксидной форме, предварительно приводят в контакт с раствором солей иттрия (III) при комнатной температуре в течение 20 мин, а затем в систему добавляют раствор солей алюминия (III), при этом обжиг проводят при температуре не менее 900°С.
СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНОГО ПОРОШКА АЛЮМОИТТРИЕВОГО ГРАНАТА
СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНОГО ПОРОШКА АЛЮМОИТТРИЕВОГО ГРАНАТА
СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНОГО ПОРОШКА АЛЮМОИТТРИЕВОГО ГРАНАТА
Источник поступления информации: Роспатент

Показаны записи 41-50 из 55.
10.04.2016
№216.015.2bb7

Способ получения нитрозильно-хлоридных соединений палладия

Изобретение может быть использовано для приготовления металлорганических соединений палладия или палладийсодержащих материалов. Способ получения нитрозильно-хлоридных соединений палладия включает взаимодействие азотнокислого палладия с раствором муравьиной кислоты или раствором муравьиной...
Тип: Изобретение
Номер охранного документа: 0002579593
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2dc9

Способ получения дипропионата бетулинола

Изобретение относится к получению дипропионата бетулинола - биологически активного вещества, проявляющего противоопухолевую активность. Дипропионат бетулинола получают в одну стадию кипячением бетулинола с пропионовой кислотой в присутствии каталитических количеств ортофосфорной кислоты в среде...
Тип: Изобретение
Номер охранного документа: 0002579519
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2e8d

Способ получения бетулоновой кислоты

Изобретение относится к способу получения бетулоновой кислоты из наружного слоя коры березы (бересты), которая является промежуточным продуктом для получения бетулиновой кислоты и других биологически активных веществ. Способ заключается в том, что измельченную бересту окисляют при интенсивном...
Тип: Изобретение
Номер охранного документа: 0002580106
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.3324

Способ получения активного угля

Изобретение относится к области химической переработки древесины, в частности к способу получения микропористых углеродных сорбентов. Способ получения активного угля включает смешивание измельченной исходной или предварительно термообработанной при 280-350°C бересты с гидроксидом калия, взятым...
Тип: Изобретение
Номер охранного документа: 0002582132
Дата охранного документа: 20.04.2016
10.06.2016
№216.015.4878

Способ получения высокодисперсных порошков оксида индия

Изобретение относится к способу получения высокодисперсных порошков оксида индия InО, которые могут быть использованы в качестве полупроводников и газовых сенсоров. Способ получения субмикронного порошка оксида индия включает приготовление исходного водного раствора сульфата индия, который...
Тип: Изобретение
Номер охранного документа: 0002587083
Дата охранного документа: 10.06.2016
12.01.2017
№217.015.606e

Способ извлечения скандия из хлоридных растворов

Изобретение может быть использовано в гидрометаллургии редких металлов и предназначено для извлечения скандия из хлоридных растворов. Для осуществления способа в качестве экстрагента скандия используют смесь трибутилфосфата с элементным йодом, взятым в количестве 12,5-76 г/л, реэкстрагируют...
Тип: Изобретение
Номер охранного документа: 0002590550
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.60d5

Способ получения целлюлозы

Изобретение относится к переработке отходов древесины, в частности к способу получения целлюлозы, которая может быть использована в целлюлозно-бумажной и химико-фармацевтической областях промышленности как сорбент и фильтрационный материал в технике, а также как сырье для получения биотоплив....
Тип: Изобретение
Номер охранного документа: 0002590882
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.77b0

Смазочная композиция с использованием углеродных нанотрубок и нановолокон

Настоящее изобретение относится композиционному смазочному материалу на основе смазочных коммерческих масел, при этом он содержит углеродные наноматерилы - нанотрубки и нановолокна - в соотношении 70:30 мас. % с концентрацией в масле от 0,004 до 0,01 мас. %. Техническим результатом настоящего...
Тип: Изобретение
Номер охранного документа: 0002599632
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7baf

Способ получения глюкозного гидролизата из древесины березы

Способ получения глюкозного гидролизата из древесины березы включает предобработку опилок березы водным раствором, содержащим 30 мас.% уксусной кислоты и 4-5 мас.% пероксида водорода, при нагревании. Затем проводят гидролиз концентрированной серной кислотой, разбавление водой и инверсию при...
Тип: Изобретение
Номер охранного документа: 0002600134
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.7c59

Способ флотации сульфидных медно-никелевых руд

Изобретение относится к области обогащения руд цветных металлов и может быть использовано при обогащении сульфидных медно-никелевых руд. Способ включает измельчение и кондиционирование руды в присутствии сульфгидрильного собирателя - бутилового ксантогената калия, и вспенивателя, выделение...
Тип: Изобретение
Номер охранного документа: 0002600251
Дата охранного документа: 20.10.2016
Показаны записи 41-50 из 74.
10.04.2015
№216.013.3926

Способ получения производных 3-сульфата аллобетулина

Изобретение относится к способу получения производных 3-сульфата аллобетулина. Сульфатирование аллобетулина проводят в N,N-диметилформамиде смесью сульфаминовой кислоты и мочевины при температуре 70-75°C в течение 2-3 часов, а выделение продукта проводят охлаждением реакционной массы,...
Тип: Изобретение
Номер охранного документа: 0002546118
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3c75

Способ получения сульфатированных производных арабиногалактана

Изобретение относится к способам получения сульфатированного арабиногалактана, используемого в химико-фармацевтической промышленности. Способ включает взаимодействие арабиноногалактана с сульфатирующим комплексом сульфаминовая кислота-мочевина в диметилсульфоксиде при непрерывном перемешивании...
Тип: Изобретение
Номер охранного документа: 0002546965
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3f49

Способ получения целлюлозы

Изобретение относится к целлюлозно-бумажной промышленности и может быть использовано для получения целлюлозы из древесного сырья. Способ получения целлюлозы заключается в варке древесной щепы при температуре 98-100°С, интенсивном перемешивании и атмосферном давлении в смеси, содержащей 3,0-5,6...
Тип: Изобретение
Номер охранного документа: 0002547689
Дата охранного документа: 10.04.2015
10.05.2015
№216.013.4a09

Способ извлечения иридия (iii) из хлоридных растворов

Изобретение относится к области гидрометаллургии благородных металлов, в частности к аффинажному производству металлов платиновой группы (МПГ). Способ заключается в переводе хлоридных комплексов иридия (III) в хорошо экстрагируемое трибутилфосфатом комплексное соединение иридия (IV) путем...
Тип: Изобретение
Номер охранного документа: 0002550460
Дата охранного документа: 10.05.2015
20.05.2015
№216.013.4d6a

Способ переработки железистых редкоземельных фосфатных руд

Изобретение относится к технологии редких и радиоактивных элементов и может быть использовано при переработке железосодержащего и другого фосфатного редкоземельного сырья. Задачами заявляемого изобретения является упрощение способа переработки труднообогатимых железистых руд с использованием...
Тип: Изобретение
Номер охранного документа: 0002551332
Дата охранного документа: 20.05.2015
27.06.2015
№216.013.591f

Способ получения диоксида платины (iv) на поверхности носителя

Изобретение относится к синтезу диоксида платины, применяемого в качестве прекурсора дисперсной платины - составной части катализаторов, например гидрирования и изомеризации углеводородов, а также для получения металл-углеродных композиций на основе высокодисперсной платины. Способ получения...
Тип: Изобретение
Номер охранного документа: 0002554356
Дата охранного документа: 27.06.2015
27.07.2015
№216.013.66c9

Способ извлечения золота из щелочных цианидных растворов

Изобретение относится к способу извлечения золота, в частности сорбции золота из водных цианидных растворов. Способ извлечения золота из щелочных цианидных растворов включает контактирование водного раствора цианида золота с анионитом, имеющим в своем составе аминогруппы. При этом для...
Тип: Изобретение
Номер охранного документа: 0002557866
Дата охранного документа: 27.07.2015
10.08.2015
№216.013.6a6b

Способ брикетного выщелачивания

Изобретение относится к извлечению полезных компонентов из руд. Способ выщелачивания полезных компонентов из руды включает подготовку исходной руды, укладку рудного материала, подачу выщелачивающих растворов и сбор продукционных растворов. При этом из исходного рудного материала формируют...
Тип: Изобретение
Номер охранного документа: 0002558796
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6abf

Способ сульфатирования микрокристаллической целлюлозы

Изобретение относится к химической переработке древесины и касается сульфатирования микрокристаллической целлюлозы. Водорастворимые соли сульфатов микрокристаллической целлюлозы широко используются как антикоагулянты крови, сорбенты токсичных металлов, иммуномодуляторы и антивирусные препараты....
Тип: Изобретение
Номер охранного документа: 0002558885
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.71d4

Способ получения производных 3-ацетата-28-сульфата бетулина

Изобретение относится к фармацевтической промышленности, а именно к способу получения производных 3-ацетата-28-сульфата бетулина. Способ получения заключается в том, что проводят сульфатирование 3-ацетата бетулина смесью сульфаминовой кислоты и мочевины в 1,4-диоксане при определенных условиях....
Тип: Изобретение
Номер охранного документа: 0002560710
Дата охранного документа: 20.08.2015
+ добавить свой РИД