×
10.04.2016
216.015.2bb7

СПОСОБ ПОЛУЧЕНИЯ НИТРОЗИЛЬНО-ХЛОРИДНЫХ СОЕДИНЕНИЙ ПАЛЛАДИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002579593
Дата охранного документа
10.04.2016
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение может быть использовано для приготовления металлорганических соединений палладия или палладийсодержащих материалов. Способ получения нитрозильно-хлоридных соединений палладия включает взаимодействие азотнокислого палладия с раствором муравьиной кислоты или раствором муравьиной кислоты и формиата натрия или последовательное взаимодействие с оксидом азота NO и муравьиной кислотой. Затем вводят в образовавшийся раствор смесь соляной и ледяной уксусной кислоты и осаждают нитрозильно-хлоридные соединения палладия состава Pd(NO)Cl или Pd(NO)Cl. Нитрозил-хлорид палладия состава Pd(NO)Cl получают твердофазным разложением нитрозил-хлорида палладия состава Pd(NO)Cl. Изобретение позволяет стабильно получать нитрозильно-хлоридные соединения палладия с высоким выходом, в химически чистом и фазово-однородном состоянии. 4 н. и 14 з.п. ф-лы, 12 ил., 10 табл., 10 пр.
Реферат Свернуть Развернуть

Изобретение относится к области химии платиновых металлов, в частности синтезу соединений палладия, а именно синтезу нитрозильных соединений палладия, применяемых в качестве прекурсоров металлорганических соединений палладия или приготовления различных палладийсодержащих материалов.

Известен способ получения нитрозильно-хлоридного соединения палладия взаимодействием раствора PdCl2 (0.05 моль/л) в 0.01 моль/л соляной кислоте с окисью азота (J. Smidt, R. Jira // Chem. Ber. 1960. v. 93. p. 162-165). Недостатком способа является низкий выход целевого соединения (менее 50%), так как только половина палладия идет на образование малорастворимого нитрозильного соединения, другая часть образует нитрито-трихлоридный комплекс:

При этом оксид азота подается в раствор в виде газа, который только частично растворяется в растворе, и поэтому трудно добиться его содержания в стехиометрическом количестве для взаимодействия (1). В водном растворе соляной кислоты избыток NO способен к образованию дополнительного нитрозил-хлорида, который может взаимодействовать с PdNOCl, образуя Pd(NO)2Cl2. В связи с этим результатом процесса (1) может являться образование смеси нитрозильно-хлоридных соединений палладия (Pd(NO)Cl и Pd(NO)2Cl2).

Известен способ получения нитрозильно-хлоридного соединения состава Pd(NO)Cl взаимодействием PdCl2 и NaNO2 в мольном соотношении 1:1 в водном растворе, подкисленном H2SO4 и в присутствии пропилена или бутилена, который пропускается через раствор (J. Smidt, R. Jira // Chem. Ber. 1960. v. 93. p. 162-165; T.A. Stromnova, D.V. Paschenko, L.I. Boganova, et al. // Inorganica Chimica Acta. 2003. v. 350. p. 283-288; W. Beck. G. Fischer, M. Gobel, et al. // Z. Anorg. Allg. Chem. 2013. v. 639. i. 8-9. p. 1332-1339). Недостатком способа является то, что образующийся в таком процессе биядерный комплекс:

(где R - СН3 или С2Н5)

из-за избытка хлорид-ионов, в кислой среде, частично разлагается до биядерного хлоридного комплекса [Pd2Cl6]2-:

что может быть причиной загрязнения целевого продукта хлоридом палладия, который появляется из-за разложения комплекса [Pd2Cl6]2- на [PdCl4]2- и PdCl2. При этом образующийся в процессе (2)-(3), Pd(NO)Cl не является веществом с удовлетворительной окристаллизованностью, что затрудняет его рентгено-фазовый анализ, и поэтому не позволяет достичь полноты комплексного анализа и представлять вещество как индивидуальное.

Известен способ получения пропионата палладия, заключающийся в получении раствора азотнокислого палладия растворением металлического палладия в концентрированной азотной кислоте, его упаривании и обработке полученного раствора оксидом азота(II) при последующем добавлении пропионовой кислоты или ее ангидрида (Р.Ф. Мулагалеев, С.Д. Кирик // Патент РФ №2425023). Образующийся раствор, до обработки оксидом азота, может являться прекурсором палладия для образования его нитрозильно-хлоридных соединений. Данный способ принят за прототип.

Недостатком способа является образование палладием нитритных комплексов, что при добавлении соляной кислоты приводит к образованию растворимых нитрито-хлоридных и хлоридных соединений палладия.

Техническим результатом, на достижение которого направлено предлагаемое изобретение, является усовершенствование способа получения нитрозильно хлоридных соединений палладия, повышение стабильности синтеза и качества целевых продуктов, а также достижение высокого выхода целевого соединения.

Задача изобретения состоит в разработке нового способа получения нитрозильно-хлоридных соединений палладия, обеспечивающего стабильность синтеза, высокое качество целевых продуктов и их высокий выход.

Технико-экономический эффект от изобретения обусловлен получением нитрозильно-хлоридных соединений палладия с более высоким качеством и выходом.

Заданный технический результат достигается тем, что в раствор азотнокислого палладия с концентрацией палладия не менее 100 г/л и свободной азотной кислоты не более 500 г/л при температуре (60-80)°C порционно добавляют смесь (30-99)%-го водного раствора муравьиной кислоты и (20-50)%-го водного раствора формиата натрия в мольном соотношении (1-2):1 до прекращения интенсивного выделения оксидов азота и перехода цвета раствора от коричневого до бордового и затем вводят смешанный раствор концентрированной соляной кислоты в количестве (90-100)% от мольного количества палладия в растворе и ледяной уксусной кислоты, в (10-20) раз превышающей объем соляной кислоты, при этом образуется соединение состава Pd(NO)Cl с максимальным упорядочением в расположении нитрозильных групп. Образование соединения состава Pd(NO)Cl со средним разупорядочением в расположении нитрозильных групп происходит при аналогичных параметрах процесса, но при замене смешанного раствора муравьиной кислоты и формиата натрия на (75-99)%-ный водный раствор муравьиной кислоты. Соединение состава Pd(NO)Cl с максимальным разупорядочением в расположении нитрозильных групп образуется также при добавлении муравьиной кислоты, и при дополнительном вводе в раствор азотнокислого палладия концентрированной хлорной кислоты в количестве (0.5-5)% от мольного количества палладия в растворе. Соединение состава Pd(NO)2Cl2 образуется из раствора азотнокислого палладия, в который при температуре (60-80)°С порционно добавляют (75-99)%-ный водный раствор муравьиной кислоты до перехода цвета раствора от коричневого до красного, затем при интенсивном выделении оксидов азота вводят смешанный раствор концентрированной соляной кислоты в количестве (190-200)% от мольного количества палладия в растворе и ледяной уксусной кислоты, в (10-20) раз превышающей объем соляной кислоты. Также образование соединения состава Pd(NO)2Cl2, но с более высоким выходом, происходит при аналогичных параметрах процесса, но при введении в раствор азотнокислого палладия хлорной кислоты в количестве (0.5-5)% от мольного количества палладия в растворе.

Также образование соединения состава Pd(NO)Cl с максимальным упорядочением в расположении нитрозильных групп происходит при пропускании NO, с примесью оксидов азота(IV) не более 30%, в раствор азотнокислого палладия с концентрацией палладия не менее 100 г/л и свободной азотной кислоты не более 500 г/л при температуре (15-40)°С до прекращения образования осадка нитрито-нитрозильного соединения палладия, затем в образовавшуюся суспензию вводят (75-99)%-ный водный раствор муравьиной кислоты в количестве (200-500)% от мольного количества палладия в растворе и прогревают суспензию до (40-60)°С до растворения осадка, выдерживают образовавшийся раствор до прекращения интенсивного выделения диоксида азота и окрашивания раствора в бордовый цвет, затем приливают смешанный раствор концентрированной соляной кислоты в количестве (90-100)% от мольного количества палладия в растворе и ледяной уксусной кислоты, в (10-20) раз превышающей объем соляной кислоты. Также образование соединения состава Pd(NO)Cl максимальным упорядочением в расположении нитрозильных групп происходит при аналогичных параметрах процесса, но при фильтровании осадка нитрозильно-нитритного соединения палладия, его растворении в смеси муравьиной и уксусной кислот, в которой объем ледяной уксусной кислоты в (10-100) раз превышает объем муравьиной кислоты. При этом для повышения выхода промежуточного нитрозильно-нитритного соединения палладия в раствор азотнокислого палладия, перед пропусканием NO добавляется концентрированная хлорная кислота в количестве (0.5-5)% от мольного количества палладия.

В аналогичной системе образование соединения состава Pd(NO)2Cl2 происходит при пропускании NO в раствор азотнокислого палладия при температуре (15-40)°С до прекращения образования осадка нитрито-нитрозильного соединения палладия, затем в образовавшуюся суспензию вводят (75-99)%-ный водный раствор муравьиной кислоты в количестве (200-500)% от мольного количества палладия в растворе и прогревают до (40-60)°С до растворения осадка и окрашивания раствора в красный цвет, затем при интенсивном выделении оксидов азота добавляют смешанный раствор концентрированной соляной кислоты в количестве (190-200)% от мольного количества палладия в растворе и ледяной уксусной кислоты, в (10-20) раз превышающей объем соляной кислоты. Также образование соединения состава Pd(NO)2Cl2 происходит при аналогичных параметрах процесса, но при фильтровании осадка нитрозильно-нитритного соединения палладия, его растворении в смеси муравьиной и уксусной кислот, в которой объем ледяной уксусной кислоты в (10-100) раз превышает объем муравьиной кислоты. При этом для повышения выхода промежуточного нитрозильно нитритного соединения палладия в раствор азотнокислого палладия перед пропусканием NO добавляется концентрированная хлорная кислота в количестве (0.5-5)% от мольного количества палладия.

При этом образование соединения состава Pd2(NO)Cl2 происходит при твердофазном прогревании нитрозил-хлоридного соединения состава Pd(NO)Cl до температуры (190-220)°С.

Сущность способа состоит в том, что синтез нитрозильно-хлоридных соединений палладия осуществляется восстановлением нитратных соединений в растворе азотнокислого палладия, который образовался при растворении палладия в концентрированной азотной кислоте. В результате происходит последовательное изменение координационного окружения палладия от нитратного, сначала в нитрито-нитрозильное, затем в нитрозильно-формиатное, за счет более прочного комплексообразования Pd(II-IV) с кислородными соединениями азота(II-III) и формиатной группой, по сравнению с нитратными лигандами. Используемым восстановителем, для такого процесса, является концентрированная муравьиная кислота или последовательное действие оксида азота и муравьиной кислоты. При этом происходит окисление муравьиной кислоты до CO2 и NO до NO2, с образованием нитрозирующих агентов, которые способны к комплексообразованию с палладием. Формально начальную стадию процесса можно представить следующими химическими уравнениями:

При таком изменении реакционной системы происходит образование палладиевого комплекса состава Pd(NO)NO2, которое можно выделить в кристаллическом состоянии, при более умеренном нитрозировании. Например, используя при восстановлении раствора азотнокислого палладия только NO (Патент РФ №2482065). Поэтому формально можно представить последовательный ряд нитрозирования нитрата палладия и образование in situ предполагаемых интермедиатов:

Равновесия (9-11) сдвигаются как за счет большей устойчивости образуемых палладиевых комплексов, так и за счет восстановления образующегося (in situ) N2O5 муравьиной кислотой (6-7) и/или NO (8). Ввод в реакционную систему соляной кислоты позволяет зафиксировать образование нитрозильных соединений за счет образования устойчивой связи Pd-Cl и способности кристаллизоваться в малорастворимое соединение:

Проведенные исследования по выделению нитрозильно-хлоридных соединений показали, что образование соединения состава Pd(NO)Cl происходит в виде трех кристаллических фаз [Pd(NO)Cl3/3]n, отличающихся разориентацией в расположении NO-групп. Некоторые характеристики кристаллических фаз показаны в приложении 1 на рисунках 1-5 и приложении 4 на рисунке 12.

При этом, если в реакционной системе концентрация нитрозильных агентов достаточно высока и в растворе присутствует избыток соляной кислоты, на стадии формирования нитрозильно-хлоридного соединения палладия(II) может происходить его повторное нитрозирование с образованием нитрозильно-хлоридного соединения палладия(IV):

Проведенные исследования по выделению нитрозильно-хлоридных соединений показали, что образование соединения состава Pd(NO)2Cl2 происходит в виде кристаллической фазы [Pd(NO)2Cl4/2]n. Ее характеристики показаны в приложении 2 на рисунках 6-8 и приложении 4 на рисунке 12.

Если при взаимодействии раствора азотнокислого палладия и муравьиной кислоты вводить большой избыток соляной кислоты, то происходит разложение нитрозильно хлоридного соединения:

с конечным образованием в растворе тетрахлоридного комплекса (H2PdCl4). Также разложением нитрозильно-хлоридных комплексов будет сопровождаться процесс, если в растворе после добавления соляной кислоты поддерживать повышенную температуру. В случае разложения (PdIV(NO)2Cl2) в растворе или твердом состоянии температурой начала удаления NO-групп является 80°C:

В случае твердофазной декомпозиции Pd(NO)Cl удаление нитрозильных групп происходит ступенчато и начинается со 190°C образованием соединения состава Pd2(NO)Cl2:

По данным рентгено-фазового анализа соединение фазовооднородно, по данным структурного анализа из порошковой рентгенографии соединение образует кристаллическую фазу [Pd4(NO)2Cl12/3]n. В соляной кислоте и в твердом состоянии выше 220°C Pd2(NO)Cl2 разлагается с образованием металлического палладия и хлорида палладия(II) в эквимолярных количествах. Характеристики кристаллической фазы [Pd4(NO)2Cl4/2]n приведены в приложении 3 на рисунках 9-11 и в приложении 4 на рисунке 12.

В исследованных экспериментальных условиях не удалось добиться образования Pd2(NO)Cl2 в растворе в фазовооднородном состоянии. Примесями всегда являются Pd(NO)Cl или металлический палладий. Поэтому можно предполагать, что в растворе взаимодействия раствора азотнокислого палладия и муравьиной кислоты нет области кристаллизации только Pd2(NO)Cl2. Так при температурах менее 80-90°C в растворе происходит образование смеси Pd(NO)Cl и Pd2(NO)Cl2, а при температурах более 80-90°C образуется Pd2(NO)Cl2 в смеси с металлическим палладием.

При этом, если в раствор взаимодействия раствора азотнокислого палладия и муравьиной кислоты не добавлять соляную кислоту, то конечным продуктом взаимодействия будет формиат палладия, кристаллизующийся в малорастворимый полимер (Патент РФ №2536684):

Присутствие хлорной кислоты в системе взаимодействия раствора азотнокислого палладия и муравьиной кислоты увеличивает интенсивность нитрозирования палладиевого комплекса за счет стабилизации катиона нитрозония образованием ионной пары . Поэтому в присутствии HClO4 можно быстрее и более количественно застабилизировать образование PdIV(NO)2Cl2 и, также за счет более быстрой кристаллизации, получить фазу Pd(NO)Cl с разориентированным расположением нитрозильных групп.

В ходе проведенных исследований установлено, что для проведения процесса получения нитрозильно-хлоридных соединений палладия из раствора азотнокислого палладия, оптимальными условиями являются:

- концентрация палладия в исходном растворе азотнокислого палладия - не менее 100 г/л;

- концентрация свободной азотной кислоты - не более 500 г/л;

- температура взаимодействия раствора азотнокислого палладия с раствором муравьиной кислоты с формиатом натрия или без него - (60-80)°C;

- содержание муравьиной кислоты для получения соединения состава Pd(NO)Cl с максимальным упорядочением в расположении нитрозильных групп - (30-99)%;

- содержание формиата натрия - (20-50)%;

- мольное соотношение муравьиная кислота:формиат натрия - (1-2):1;

- мольное количество соляной кислоты для образования соединения состава Pd(NO)Cl - (90-100)% от мольного количества палладия в растворе;

- мольное количество соляной кислоты для образования соединения состава Pd(NO)2Cl2 - (190-200)% от мольного количества палладия в растворе;

- объем уксусной кислоты для разбавления раствора концентрированной соляной кислоты, в (10-20) раз превышающий объем соляной кислоты;

- содержание муравьиной кислоты для получения соединения состава Pd(NO)Cl с разупорядочением в расположении нитрозильных групп и соединения с составом Pd(NO)2Cl2, а также при получении Pd(NO)Cl и Pd(NO)2Cl2 c применением NO - (75-99)%;

- количество хлорной кислоты при выделении соединения состава Pd(NO)Cl с максимальным разупорядочением в расположении нитрозильных групп, при выделении соединения состава Pd(NO)2Cl2, при выделении промежуточного нитрозильно-нитритного соединения палладия - (0.5-5)% от мольного количества палладия в растворе;

- температура взаимодействия NO с раствором азотнокислого палладия - (15-40)°C;

- содержание оксидов азота(IV) в NO - не более 30%;

- количество муравьиной кислоты для взаимодействия раствора после ввода NO - (200-500)% от мольного количества палладия в растворе;

- температура прогревания нитрозил-хлорида палладия состава Pd(NO)Cl для образования нитрозил-хлорида палладия состава Pd2(NO)Cl2 - (190-200)°C.

Уменьшение концентрации палладия в исходном азотнокислом растворе менее 100 г/л приводит к разбавлению реакционного раствора при проведении взаимодействия, что в конечном счете приводит к уменьшению выхода нитрозильно хлоридных соединений палладия.

Увеличение концентрации свободной азотной кислоты более 500 г/л в исходном растворе азотнокислого палладия приводит к увеличению расхода муравьиной кислоты, формиата натрия или NO при его взаимодействии с азотнокислым раствором, что удорожает процесс и увеличивает его продолжительность.

Увеличение температуры взаимодействия раствора азотнокислого палладия с раствором муравьиной кислоты с формиатом натрия или без него более 80°C может приводить к разложению нитрито-нитрозильных соединений, что в дальнейшем, при добавлении соляной кислоты, приведет к уменьшению выхода нитрозильно-хлоридных соединений палладия. Уменьшение температуры взаимодействия раствора азотнокислого палладия с раствором муравьиной кислоты с формиатом натрия или без него до менее 60°C увеличивает индукционный период их взаимодействия, что увеличивает продолжительность процесса.

Увеличение содержания муравьиной кислоты в водном растворе более 99% нецелесообразно, так как в таком процессе это не сказывается на ее реакционной способности, при этом в исходном растворе азотнокислого палладия существенное содержание воды. При этом повышение содержания муравьиной кислоты выше 99% потребует дополнительных методов очистки, что увеличивает ее стоимость и удорожает весь процесс. Уменьшение содержания муравьиной кислоты в водном растворе при смешивании с водным раствором формиата натрия менее 30% приводит к разбавлению раствора реагента, что разбавляет весь реакционный раствор и приводит к понижению выхода целевого продукта. Уменьшение содержания муравьиной кислоты в водном растворе для взаимодействия с раствором азотнокислого палладия после пропускания в него NO менее 75% может приводить к уменьшению реакционной способности муравьиной кислоты, что приводит к увеличению продолжительности растворения нитрозильно-нитритного соединения и разбавлению раствора, из-за этого увеличивается продолжительность процесса и снижается выход нитрозильно-хлоридного соединения.

Увеличение содержания формиата натрия более 50% делает раствор реагента слишком вязким и может приводить к неравномерности взаимодействия с раствором азотнокислого палладия. Уменьшение содержания формиата натрия менее 20% приводит к излишнему разбавлению раствора реагента, что приводит к разбавлению всего реакционного раствора и снижает выход нитрозил-хлоридного соединения.

Увеличение мольного содержания муравьиной кислоты по отношению к формиату натрия, в водном растворе муравьиная кислота-формиат натрия, более чем в 2 раза может приводить к кристаллизации соединения с составом Pd(NO)Cl с частичным разупорядочением в расположении нитрозильных групп. Увеличение мольного содержания формиата натрия по отношению к муравьиной кислоте, в водном растворе муравьиная кислота-формиат натрия, более чем в 1 раз может приводить к более глубокому восстановлению раствора азотнокислого палладия с образованием соединения состава Pd2(NO)Cl2 и/или металлического палладия, что приведет к загрязнению целевого продукта.

Увеличение мольного количества соляной кислоты для образования соединения состава Pd(NO)Cl более 100% от мольного количества палладия в растворе может приводить к разложению нитрозильных комплексов палладия до хлоридных и частичной кристаллизации хлорида палладия, что приведет к понижению выхода целевого продукта и его загрязнению. Уменьшение мольного количества соляной кислоты для образования соединения состава Pd(NO)Cl менее 90% от мольного количества палладия в растворе приводит к недостатку хлоридного лиганда и снижению выхода целевого соединения.

Увеличение мольного количества соляной кислоты для образования соединения состава Pd(NO)2Cl2 более 200% от мольного количества палладия в растворе может приводить к разложению нитрозильных комплексов палладия до хлоридных, что приведет к понижению выхода целевого продукта. Уменьшение мольного количества соляной кислоты для образования соединения состава Pd(NO)2Cl2 менее 190% от мольного количества палладия в растворе приводит к недостатку хлоридного лиганда и снижению выхода целевого соединения.

Увеличение объема уксусной кислоты для разбавления раствора концентрированной соляной кислоты, более чем в 20 раз превышающего объем соляной кислоты, приводит к излишнему расходованию уксусной кислоты, что приводит к удорожанию процесса. Уменьшение объема уксусной кислоты для разбавления раствора концентрированной соляной кислоты, менее чем в 10 раз превышающего объем соляной кислоты, приводит к увеличению концентрации соляной кислоты в растворе реагента, что при добавлении его к раствору азотнокислого палладия может приводить к чрезмерно быстрой кристаллизации нитрозильно-хлоридного соединения, что вызывает образование в кристаллической массе полостей непрореагировавшего раствора и приводит к избытку в реакционной системе хлоридного лиганда. Это может привести к понижению выхода целевого соединения и/или загрязнению его хлоридом палладия.

Увеличение количества хлорной кислоты при выделении соединения состава Pd(NO)Cl с максимальным разупорядочением в расположении нитрозильных групп более 5% от мольного количества палладия в растворе приводит к увеличению устойчивой кислотности в реакционном растворе, что вызывает повышенное разложение нитрозильных соединений и, как следствие, уменьшает выход целевого соединения. Уменьшение количества хлорной кислоты при выделении соединения состава Pd(NO)Cl с максимальным разупорядочением в расположении нитрозильных групп менее 0.5% от мольного количества палладия в растворе снижает каталитический эффект добавки, что не приводит к значительному усилению нитрозирования и не вызывает кристаллизацию соединения с максимальным разупорядочением в расположении нитрозильных групп.

Увеличение количества муравьиной кислоты для растворения суспензии Pd(NO)NO2 после ввода NO более 500% от мольного количества палладия в растворе может приводить к более полному удалению кислородных соединений азота из раствора, что при добавлении соляной кислоты приводит к образованию хлоридных комплексов палладия и уменьшает выход целевого соединения. Это также может быть причиной образования более восстановленных форм палладиевых нитрозильных комплексов или образования металлического палладия, что приводит к загрязнению целевого продукта. Уменьшение количества муравьиной кислоты для растворения суспензии Pd(NO)NO2 после ввода NO менее 200% от мольного количества палладия в растворе может приводить к неполному растворению нитрозильно нитритного соединения палладия и, как следствие, к загрязнению целевого продукта.

Увеличение температуры взаимодействия раствора азотнокислого палладия с NO более 40°C приводит к растворимости образующегося нитрито-нитрозильного соединения палладия, что делает незаметной его стадию образования и приводит к увеличению расходования NO. Это удорожает весь процесс. Уменьшение начальной температуры взаимодействия раствора азотнокислого палладия с NO менее 15°C увеличивает индукционный период их взаимодействия, что увеличивает продолжительность процесса и расход оксида азота, и также удорожает весь процесс.

Увеличение содержания оксидов азота(IV) в NO при взаимодействии с раствором азотнокислого палладия более 30% от мольного количества NO ведет к увеличению концентрации азотной кислоты в растворе выделения промежуточного нитрозильно-нитритного соединения палладия, что увеличивает расход добавляемой далее муравьиной кислоты и удорожает весь процесс.

Примеры осуществления способа

Пример 1

Получение соединения состава Pd(NO)Cl с максимальным упорядочением в расположении нитрозильных групп

В приготовленный раствор азотнокислого палладия с содержанием палладия 250 г/л и свободной азотной кислоты 400 г/л подогрели до необходимой температуры и при перемешивании порционно добавили рассчитанное количество смешанного водного раствора муравьиной кислоты и формиата натрия до прекращения интенсивного выделения оксидов азота и перехода цвета раствора от коричневого до бардового. Затем в образовавшийся раствор прилили рассчитанное количество раствора смеси концентрированной соляной и уксусной кислот. Через несколько секунд происходит образование целевого соединения. Образовавшуюся суспензию охлаждали до комнатной температуры и отфильтровывали осадок. Промывали ледяной уксусной кислотой и затем эфиром. Подсушивали на фильтре в токе проходящего воздуха. Сушили в воздушной атмосфере в вакуумном сушильном шкафу без дополнительного подогрева до постоянной массы продукта. Маточный и промывной раствор отправляли на регенерацию палладия. Данные опытов приведены в таблице 1. Эксперименты 1-11 показывают процесс при граничных условиях. Эксперименты 12-13 являются близкими к оптимальным.

Пример 2

Получение соединения состава Pd(NO)Cl со средним разупорядочением в расположении нитрозильных групп

Процесс получения соединения проводили по примеру 1, но в раствор азотнокислого палладия с содержанием палладия 300 г/л и свободной азотной кислоты 400 г/л вместо смеси водного раствора муравьиной кислоты и формиата натрия добавляли рассчитанное количество водного раствора муравьиной кислоты. Данные опытов приведены в таблице 2. Эксперименты 1-7 показывают процесс при граничных условиях. Эксперименты 8-9 являются близкими к оптимальным.

Пример 3

Получение соединения состава Pd(NO)Cl с максимальным разупорядочением в расположении нитрозильных групп

Процесс получения соединения проводили по примеру 1, но в раствор азотнокислого палладия с содержанием палладия 250 г/л и свободной азотной кислоты 450 г/л добавляли рассчитанное количество концентрированной хлорной кислоты, а вместо смеси водного раствора муравьиной кислоты и формиата натрия добавляли рассчитанное количество водного раствора муравьиной кислоты. Данные опытов приведены в таблице 3. Эксперименты 1-9 показывают процесс при граничных условиях. Эксперименты 10-11 являются близкими к оптимальным.

Пример 4

Получение соединения состава Pd(NO)2Cl2

В приготовленный раствор азотнокислого палладия с содержанием палладия 300 г/л и свободной азотной кислоты 400 г/л, подогретый до необходимой температуры, при перемешивании порционно добавили рассчитанное количество водного раствора муравьиной кислоты до перехода цвета раствора от коричневого до красного. Затем при интенсивном выделении оксидов азота приливают рассчитанное количество раствора смеси концентрированной соляной и уксусной кислот. Через несколько секунд происходит образование целевого соединения. Образовавшуюся суспензию охлаждали до комнатной температуры, и отфильтровывали осадок. Затем поступали аналогично процедуре, описанной в примере 1. Данные опытов приведены в таблице 4. Эксперименты 1-7 показывают процесс при граничных условиях. Эксперименты 8-9 являются близкими к оптимальным.

Пример 5

Получение соединения состава Pd(NO)2Cl2

Процесс получения соединения проводили по примеру 4, но в раствор азотнокислого палладия с содержанием палладия 300 г/л и свободной азотной кислоты 400 г/л, перед добавлением муравьиной кислоты, добавляли рассчитанное количество концентрированной хлорной кислоты. Данные опытов приведены в таблице 5. Эксперименты 1-9 показывают процесс при граничных условиях. Эксперименты 10-11 являются близкими к оптимальным.

Пример 6

Получение соединения состава Pd(NO)2Cl2

В приготовленный раствор азотнокислого палладия с содержанием палладия 400 г/л и свободной азотной кислоты 300 г/л, при необходимой температуре и перемешивании пропускали NO до прекращения образования буро-красного осадка промежуточного нитрито-нитрозильного соединения палладия. В образовавшуюся суспензию вливали рассчитанное количество водного раствора муравьиной кислоты и прогревали до необходимой температуры до растворения осадка и окрашивания раствора в красный цвет. Затем при интенсивном выделении оксидов азота вливали необходимое количество раствора концентрированной соляной кислоты в ледяной уксусной кислоте. Через несколько секунд происходит образование целевого соединения. Образовавшуюся суспензию охлаждали до комнатной температуры, и отфильтровывали осадок. Затем поступали аналогично процедуре, описанной в примере 1. Данные опытов приведены в таблице 6. Эксперименты 1-12 показывают процесс при граничных условиях. Эксперименты 13-14 являются близкими к оптимальным.

Пример 7

Получение соединения состава Pd(NO)2Cl2

Получали суспензию промежуточного нитрито-нитрозильного соединения палладия пропусканием NO в раствор азотнокислого палладия как описано в примере 6, но перед пропусканием NO добавляли концентрированную хлорную кислоту в необходимом количестве. Осадок отфильтровывали и растворяли в рассчитанном количестве смеси муравьиной и уксусной кислот до окрашивания раствора в красный цвет, затем при выделении оксидов азота приливали необходимое количество концентрированной соляной кислоты в ледяной уксусной кислоте. Через несколько секунд происходит образование целевого соединения. Образовавшуюся суспензию охлаждали до комнатной температуры и отфильтровывали осадок. Затем поступали аналогично процедуре, описанной в примере 1. Данные опытов приведены в таблице 7. Эксперименты 1-14 показывают процесс при граничных условиях. Эксперименты 15-16 являются близкими к оптимальным.

Пример 8

Получение соединения состава Pd(NO)Cl с максимальным упорядочением в расположении нитрозильных групп

Получали суспензию промежуточного нитрито-нитрозильного соединения палладия пропусканием NO в раствор азотнокислого палладия как описано в примере 6. В образовавшуюся суспензию влили необходимое количество водного раствора муравьиной кислоты, прогрели до необходимой температуры до растворения осадка, выдержали до прекращения интенсивного выделения оксидов азота и окрашивания раствора в бардовый цвет, затем влили необходимое количество раствора концентрированной соляной кислоты в ледяной уксусной кислоте. Через несколько секунд происходит образование целевого соединения. Образовавшуюся суспензию охладили до комнатной температуры, и отфильтровали осадок. Затем поступали аналогично процедуре, описанной в примере 1. Данные опытов приведены в таблице 8. Эксперименты 1-12 показывают процесс при граничных условиях. Эксперименты 13-14 являются близкими к оптимальным.

Пример 9

Получение соединения состава Pd(NO)Cl с максимальным упорядочением в расположении нитрозильных групп

Получали суспензию промежуточного нитрито-нитрозильного соединения палладия пропусканием NO в раствор азотнокислого палладия как описано в примере 6, но перед пропусканием NO добавляли концентрированную хлорную кислоту в необходимом количестве. Осадок отфильтровывали и растворяли в рассчитанном количестве смеси муравьиной и уксусной кислот до окрашивания раствора в бордовый цвет, затем при слабом выделении оксидов азота приливали необходимое количество концентрированной соляной кислоты в ледяной уксусной кислоте. Через несколько секунд происходит образование целевого соединения. Образовавшуюся суспензию охлаждали до комнатной температуры и отфильтровывали осадок. Затем поступали аналогично процедуре, описанной в примере 1. Данные опытов приведены в таблице 9. Эксперименты 1-14 показывают процесс при граничных условиях. Эксперименты 15-16 являются близкими к оптимальным.

Пример 10

Получение соединения состава Pd2(NO)Cl2

Соединение состава Pd(NO)Cl, полученное по примерам 1, 2, 3, 7, 8, прогревали до необходимой температуры. Выход соединения при оптимальных условиях - количественный. Данные опытов приведены в таблице 10. Эксперименты 1-2 показывают процесс при граничных условиях. Эксперименты 3-6 являются близкими к оптимальным.

Пояснения к таблицам:

I - температура раствора азотнокислого палладия при взаимодействии со смешанным раствором муравьиной кислоты и формиата натрия (°C);

II - содержание муравьиной кислоты в водном растворе для приготовления смешанного раствора (%);

III - содержание формиата натрия в водном растворе для приготовления смешанного раствора с муравьиной кислотой (%);

IV - мольное соотношение муравьиной кислоты и формиата натрия в смешанном растворе, соответственно;

V - количество соляной кислоты для осаждения нитрозильно-хлоридного соединения палладия (% от мольного количества палладия в растворе);

VI - соотношение объемов уксусной кислоты и соляной кислоты в смеси для осаждения нитрозильно-хлоридного соединения, соответственно;

VII - выход нитрозильно-хлоридного соединения палладия;

VIII - данные рентгено-фазового анализа продукта;

IX - содержание муравьиной кислоты в водном растворе для введения в раствор азотнокислого палладия (%);

X - количество хлорной кислоты для добавления в раствор азотнокислого палладия (% от мольного количества палладия в растворе);

XI - температура раствора азотнокислого палладия при взаимодействии с NO (°C);

XII - температура прогревания раствора для растворения промежуточного нитрозильно нитритного соединения (°C);

XIII - количество примеси оксидов азота(IV) в NO при взаимодействии с раствором азотнокислого палладия (% от мольного количества NO); (количество оксидов азота(IV) определяли по изменению рН водного раствора рассчитанного количества NaOH от количества пропускаемого через него газа);

XIV - количество муравьиной кислоты для добавления в суспензию нитрозильно нитритного соединения (% от мольного количества палладия в растворе);

XV - температура прогревания Pd(NO)Cl (°C).

Как показано в приведенных примерах, использование заявляемого способа позволяет стабильно получать нитрозильно хлоридные соединения палладия с высоким выходом в фазово-однородном состоянии.


СПОСОБ ПОЛУЧЕНИЯ НИТРОЗИЛЬНО-ХЛОРИДНЫХ СОЕДИНЕНИЙ ПАЛЛАДИЯ
СПОСОБ ПОЛУЧЕНИЯ НИТРОЗИЛЬНО-ХЛОРИДНЫХ СОЕДИНЕНИЙ ПАЛЛАДИЯ
СПОСОБ ПОЛУЧЕНИЯ НИТРОЗИЛЬНО-ХЛОРИДНЫХ СОЕДИНЕНИЙ ПАЛЛАДИЯ
СПОСОБ ПОЛУЧЕНИЯ НИТРОЗИЛЬНО-ХЛОРИДНЫХ СОЕДИНЕНИЙ ПАЛЛАДИЯ
СПОСОБ ПОЛУЧЕНИЯ НИТРОЗИЛЬНО-ХЛОРИДНЫХ СОЕДИНЕНИЙ ПАЛЛАДИЯ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 56.
20.05.2013
№216.012.406f

Способ получения оксида палладия(ii) на поверхности носителя

Изобретение относится к области получения соединений платиновых металлов, в частности к способу получения оксида палладия(II) на поверхности носителя. Способ включает взаимодействие раствора азотнокислого палладия с NO путем пропускания оксида азота(II) в раствор азотнокислого палладия до...
Тип: Изобретение
Номер охранного документа: 0002482065
Дата охранного документа: 20.05.2013
20.06.2013
№216.012.4c99

Способ извлечения никеля (ii) из водных кислых растворов, содержащих другие металлы

Изобретение относится к извлечению никеля экстракцией из водных кислых растворов в присутствии железа или цветных металлов. В качестве экстрагента используют гидразиды на основе синтетических α-разветвленных третичных карбоновых кислот общей формулы CHRRCC(O)NHNH, где R и R - алкильные...
Тип: Изобретение
Номер охранного документа: 0002485191
Дата охранного документа: 20.06.2013
20.08.2013
№216.012.60b0

Способ получения целлюлозы

Изобретение относится к целлюлозно-бумажной промышленности и может быть использовано для получения целлюлозы из древесного сырья. Способ получения целлюлозы заключается в варке древесной щепы при температуре 90-98°C, интенсивном перемешивании и атмосферном давлении 740-760 мм рт.ст. в смеси,...
Тип: Изобретение
Номер охранного документа: 0002490384
Дата охранного документа: 20.08.2013
20.10.2013
№216.012.75d6

Способ получения карбида титана

Изобретение относится к металлургии тугоплавких соединений. Способ получения карбида титана включает использование в качестве исходных компонентов субхлорида алюминия, тетрахлорида титана и углерода. Углерод подают на реакцию в форме порошка или нити. Синтез карбида титана проводят в две...
Тип: Изобретение
Номер охранного документа: 0002495826
Дата охранного документа: 20.10.2013
27.12.2013
№216.012.90fe

Способ переработки окисленных никелевых руд

Изобретение относится к цветной металлургии. Способ переработки окисленных никелевых руд включает селективное галогенирование бромоводородом окисленной никелевой руды при температуре 1100°С с получением смеси летучих бромидов железа, никеля и кобальта, а также с получением в конденсированной...
Тип: Изобретение
Номер охранного документа: 0002502811
Дата охранного документа: 27.12.2013
10.01.2014
№216.012.93a1

Способ получения хлора из хлорида кальция

Изобретение может быть использовано для получения хлора, в частности, из хлорида кальция. Для этого после предварительного прокаливания для удаления гидратированной воды хлорид кальция спекается с алюмосиликатом или смесью оксидов алюминия и кремния в мольном соотношении СаО:AlO:SiO=1:1:2 при...
Тип: Изобретение
Номер охранного документа: 0002503487
Дата охранного документа: 10.01.2014
27.05.2014
№216.012.c8bf

Композиция на основе диацетата бетулина

Изобретение относится к фармацевтической промышленности, в частности к композиции производного бетулина с биосовместимым носителем. Композиция, содержащая диацетат бетулина с арабиногалактаном, при определенном соотношении компонентов. Вышеописанная композиция обладает улучшенной...
Тип: Изобретение
Номер охранного документа: 0002517157
Дата охранного документа: 27.05.2014
10.06.2014
№216.012.d213

Способ получения ванилина

Изобретение относится к способу получения ванилина, который используют в кондитерской, фармацевтической и парфюмерно-косметической отраслях промышленности. Способ заключается в окислении кислородом воздуха лигнина, полученного ферментативным гидролизом древесины хвойных пород или древесины,...
Тип: Изобретение
Номер охранного документа: 0002519550
Дата охранного документа: 10.06.2014
27.06.2014
№216.012.d796

Способ получения топливной присадки 1,1-диэтоксиэтана

Настоящее изобретение относится к способу получения оксигенатной топливной присадки 1,1-диэтоксиэтана к дизельным топливам и бензинам, улучшающей их качество. Способ заключается в конверсии этанола при повышенной температуре и давлении в присутствии катализатора. При этом конверсию этанола...
Тип: Изобретение
Номер охранного документа: 0002520968
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d799

Способ получения производных 3,28-дисульфата бетулина

Изобретение относится к способу получения производных 3,28-дисульфата бетулина, обладающего свойством ингибитора комплемента. Сульфатирование бетулина проводят в N,N-диметилформамиде смесью сульфаминовой кислоты и мочевины при температуре 60-70°C в течение 2-3 часов, выделение продукта проводят...
Тип: Изобретение
Номер охранного документа: 0002520971
Дата охранного документа: 27.06.2014
Показаны записи 1-10 из 74.
10.03.2013
№216.012.2dea

Способ получения 3-ацетата-28-сульфата бетулина

Изобретение относится к химико-фармацевтической промышленности и касается способа получения 3-ацетата-28-сульфата бетулина формулы I - биологически активного вещества, представляющего большой интерес для медицины. Сульфатирование 3-ацетата бетулина проводят в N,N-диметилформамиде комплексом...
Тип: Изобретение
Номер охранного документа: 0002477285
Дата охранного документа: 10.03.2013
27.03.2013
№216.012.310f

Способ получения 5-фторметилфурфурола

Изобретение относится к области органического синтеза, конкретно - к технологии получения 5-фторметилфурфурола, который можно использовать для получения фармацевтических препаратов, продуктов сельскохозяйственной химии. 5-Фторметил фурфурол получают взаимодействием 5-бромметилфурфурола с...
Тип: Изобретение
Номер охранного документа: 0002478097
Дата охранного документа: 27.03.2013
20.04.2013
№216.012.36bf

Способ выделения ванилина из продуктов окисления лигнинов

Настоящее изобретение относится к способу выделения ванилина, который широко используется в пищевой, парфюмерно-косметической и фармацевтической отраслях, из продуктов окисления лигнинов взаимодействием ванилинсодержащих экстрактов с водными растворами гидросульфита натрия NaHSO. При этом...
Тип: Изобретение
Номер охранного документа: 0002479568
Дата охранного документа: 20.04.2013
20.04.2013
№216.012.36d3

Способ получения динатриевой соли 3-сульфата бетулиновой кислоты

Изобретение относится к химико-фармацевтической промышленности и касается способа получения динатриевой соли 3-сульфата бетулиновой кислоты - биологически активного вещества, являющегося ингибитором комплемента и представляющего большой интерес для медицины. Сульфатирование бетулиновой кислоты...
Тип: Изобретение
Номер охранного документа: 0002479588
Дата охранного документа: 20.04.2013
20.05.2013
№216.012.406f

Способ получения оксида палладия(ii) на поверхности носителя

Изобретение относится к области получения соединений платиновых металлов, в частности к способу получения оксида палладия(II) на поверхности носителя. Способ включает взаимодействие раствора азотнокислого палладия с NO путем пропускания оксида азота(II) в раствор азотнокислого палладия до...
Тип: Изобретение
Номер охранного документа: 0002482065
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.40a9

Способ получения динатриевой соли 3-сульфата бетулиновой кислоты

Изобретение относится к химико-фармацевтической промышленности и касается способа получения динатриевой соли 3-сульфата бетулиновой кислоты - биологически активного вещества, являющегося ингибитором комплемента и представляющего большой интерес для медицины. Сульфатирование бетулиновой кислоты...
Тип: Изобретение
Номер охранного документа: 0002482123
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.40aa

Способ получения натриевой соли 3-ацетата-28-сульфата бетулина

Изобретение относится к химико-фармацевтической промышленности и касается улучшенного способа получения натриевой соли 3-ацетата-28-сульфата бетулина - биологически активного вещества, представляющего большой интерес для медицины. Сульфатирование 3-ацетата бетулина проводят в 1,4-диоксане...
Тип: Изобретение
Номер охранного документа: 0002482124
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.40ab

Способ получения натриевой соли 3-сульфата аллобетулина

Изобретение относится к химико-фармацевтической промышленности и касается способа получения натриевой соли 3-сульфата аллобетулина - биологически активного вещества, представляющего большой интерес для медицины. Сульфатирование аллобетулина проводят в 1,4-диоксане комплексом SO-диоксан при...
Тип: Изобретение
Номер охранного документа: 0002482125
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.40ac

Способ получения натриевой соли 3-сульфата аллобетулина

Изобретение относится к химико-фармацевтической промышленности и касается способа получения натриевой соли 3-сульфата аллобетулина - биологически активного вещества, представляющего большой интерес для медицины. Сульфатирование аллобетулина проводят в N,N-диметилформамиде комплексом...
Тип: Изобретение
Номер охранного документа: 0002482126
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.40b4

Биодеградируемые сополимеры на основе стирола и полиангеликалактона

Настоящее изобретение относится к области получения биоразлагаемых полимеров. Описаны биодеградируемые сополимеры стирола и полиангеликалактона, характеризующиеся тем, что они представляют собой стирол, модифицированный полиангеликалактоном, содержащим полиэфирные межзвенные связи, при...
Тип: Изобретение
Номер охранного документа: 0002482134
Дата охранного документа: 20.05.2013
+ добавить свой РИД