×
20.01.2016
216.013.a38e

Результат интеллектуальной деятельности: ОРГАНО-НЕОРГАНИЧЕСКОЕ СВЯЗУЮЩЕЕ ДЛЯ ПОЛУЧЕНИЯ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ С ПОНИЖЕННОЙ ГОРЮЧЕСТЬЮ (ВАРИАНТЫ)

Вид РИД

Изобретение

Аннотация: Изобретение относится к органо-неорганическим (гибридным) связующим, которые могут применяться для получения композиционных материалов. Предложены три варианта органо-неорганических связующих: 1 - полученное термообработкой при 150-155°С смеси борной кислоты (БК) и полиэтиленполиамина (ПЭПА) при соотношении БК:ПЭПА = 70-80:30-20 мас.%, характеризующееся температурой размягчения 290-320°С и кислородным индексом не менее 90%, 2 - полученное термообработкой при 220-225°С смеси БК и имидазола при соотношении БК:имидазол = 50-70:50-30 мас.%, характеризующееся температурой размягчения 380-400°С и кислородным индексом не менее 88%, 3 - полученное термообработкой при 245-250°С смеси БК и капролактама (КЛ) при соотношении БК:КЛ = 59:36-37 мас.% в присутствии NaOH или НРО в качестве катализатора в количестве 4-5 мас.%, характеризующееся температурой размягчения 125-150°С и кислородным индексом не менее 45%. Связующие отличаются пониженной горючестью и низким количеством летучих продуктов термодеструкции. 3 н.п. ф-лы, 2 ил., 11 пр.

Изобретение относится к органо-неорганическим (гибридным) связующим, характеризующимся пониженной горючестью и низким содержанием летучих продуктов термодеструкции, которые могут применяться для получения композиционных материалов, используемых в различных отраслях промышленности.

Органические полимерные связующие характеризуются высокой горючестью и образуют большое количество токсичных экологически опасных газообразных продуктов при термической деструкции. Для снижения горючести композитов либо в органическое связующее вводят различные антипиреновые добавки (например, RU 2260022, C08L 63/00, C08L 61/00, C08J 5/24, В32В 17/10, 10.09.2005; RU 2411267, C08L 61/24, C08J 9/06, 10.02.2011), либо используют гибридные полимеры (Wilk Gath L., Wen J. Organicflnorganic Composites. The Polymeric Materials Encyclopedia/ New York: CRC Press/Inc., 1996).

Известно гибридное связующее, используемое в пресс-композиции для получения плитных материалов защитного и конструкционного назначения, на основе неорганических полимеров из группы металлофосфатов с катионами Al+3, Cr+3, В+3, Mg+2 или металлосиликатов с катионами Na+, K+, Li+, модифицированных водными растворами органических оснований с амидной связью, выбранных из группы таких веществ, как карбамид, акриламид, меламин. Связующее получают смешиванием водных растворов органических оснований с амидной связью с неорганическими полимерами: металлофосфатами или металлосиликатами при следующем соотношении компонентов, мас. %: металлофосфаты или металлосиликаты - 73,0-90,0; органическое основание с амидной связью - 5,0-13; вода - 5,0-13,5; полученный раствор нагревают до температуры 40-75°С и перемешивают 5-20 минут до получения вязкости раствора 16-27 сП. Пресс-композиция включает заполнитель из волокнистого материала растительного и/или синтетического происхождения (преимущественно древесное или целлюлозное волокно) (RU 2434907, C08L 97/02, B27N 3/00, 27.11.2011).

Недостатком данного известного связующего является необходимость его использования в виде водного раствора, что ограничивает область его применения. Кроме того, при высоком содержании неорганического компонента смесь становится высоковязкой, что усложняет технологию переработки.

Большой интерес исследователей вызывают неорганические полиоксиды, в частности полиоксид бора, в силу высокой термостойкости и негорючести.

В работе D.M. Shubert, M.Z. Visi and С.В. Knobler "Guanidinium and Imidasolium Borates Containing the First Examples of an Isolated Nonaborate Oxoanion: [B9O12(OH)6]3- ", Inorg. Chem. 2000, v. 39, No. 11, p. 2250-2251 исследованы реакции борной кислоты с карбонатом гуанидина и с имидазолом в водном растворе.

В работе А.Ю. Шаулова, В.К. Скачковой, О.Б. Саламатиной и др. Синтез смеси неорганического и органического полимеров из о-борной кислоты и капролактама. Высокомолек. соед., Серия А, 2006, том 48, №3, с. 397-403 изучена возможность получения органо-неорганической смеси полимеров из о-борной кислоты и капролактама. Взаимодействие о-борной кислоты (БК) и капролактама (КЛ) осуществляли путем термообработки в широком диапазоне температур: от 150 до 255°С при соотношении БК:КЛ = 70:30 мас. % без использования растворителей. Установлено, что при температуре 180°С образуется стабильный расплав, при 225°С и выше наблюдается резкая потеря текучести - расплав отверждается и теряет прозрачность (приобретает белый цвет), при 200°С отверждения не происходит. Различными аналитическими методами показано, что в указанных условиях - температура 225-250°С - образуются полиоксид бора и олигомер капролактама, связанные межмолекулярными донорно-акцепторными связями между атомами бора и азота, что приводит к получению гомогенного органо-неорганического полимерного продукта. Свойства полученного отвержденного гибридного полимера в качестве связующего не исследовались.

Задачей предлагаемого изобретения является создание органо-неорганического (гибридного) связующего (вариантов), которое будет отличаться пониженной горючестью, прозрачностью, низким содержанием летучих продуктов термодеструкции и сможет применяться для получения композиционных материалов с пониженной горючестью.

Решение поставленной задачи достигается предлагаемым связующим (вариантами):

- органо-неорганическим связующим для получения композиционных материалов с пониженной горючестью, полученным термообработкой при 150-155°С смеси борной кислоты (БК) и полиэтиленполиамина (ПЭПА) при соотношении БК: ПЭПА = 70-80:30-20 мас. %, характеризующееся температурой размягчения 290-320°С и кислородным индексом не менее 90%.

- органо-неорганическим связующим для получения композиционных материалов с пониженной горючестью, полученным термообработкой при 220-225°С смеси БК и имидазола при соотношении БК: имидазол = 50-70:50-30 мас. %, характеризующееся температурой размягчения 390-400°С и кислородным индексом не менее 88%.

- органо-неорганическим связующим для получения композиционных материалов с пониженной горючестью, полученным термообработкой при 245-250°С смеси БК и капролактама (КЛ) при соотношении БК:КЛ = 59:36-37 мас. % в присутствии NaOH или Н3РО4 в качестве катализатора в количестве 4-5 мас. %, характеризующееся температурой размягчения 125-150°С и кислородным индексом не менее 45%.

При создании предлагаемого изобретения были проведены подробные исследования влияния различных параметров процесса взаимодействия БК с азотсодержащим соединением на свойства получаемого гибридного полимера: температуры, соотношения БК : азотсодержащее соединение, катализатора полимеризации. Полученные результаты позволили определить оптимальные условия достижения наилучших свойств заявляемого связующего (вариантов).

Было установлено, что совместный расплав БК с ПЭПА отверждается уже при 150°С, тогда как для отверждения совместного расплава БК с имидазолом требуется температура 220-225°С, а БК с КЛ - 245-250°С, при более низких температурах отверждения не происходит.

На рис. 1 приведены зависимости температуры размягчения продуктов взаимодействия БК и ПЭПА (кривая 1) (150°С, 3 ч) и потери массы (кривая 2) в ходе этой реакции от содержания ПЭПА в реакционной смеси; на рис. 2 приведены аналогичные зависимости для продуктов взаимодействия БК и имидазола (220°С, 3 ч). Из рисунков видно, что указанные зависимости характеризуются аномальным увеличением измеряемых параметров - особенно заметным для температуры размягчения - в интервале содержания ПЭПА 20-30 мас. % и в случае имидазола - 30-50 мас. %.

Предлагаемое связующее (варианты) получали реакцией борной кислоты с азотсодержащими соединениями (ПЭПА, имидазол, КЛ) термообработкой при температуре отверждения (150-250°С) при оптимальных соотношениях реагентов. При нагревании компоненты реакционной смеси расплавляются и взаимно растворяются, образуя совместный расплав. Основным процессом при дальнейшей термообработке является поликонденсация, сопровождаемая отверждением расплава с образованием гомогенного прозрачного гибридного полимерного продукта. Реакция протекает с образованием донорно-акцепторных связей между атомами бора и азота В+…N-, что при высоком содержании неорганического компонента (50-80 мас. %) обеспечивает гибридному сополимеру высокую теплостойкость и пониженную горючесть.

В случае использования в качестве азотсодержащего соединения КЛ реакцию отверждения проводили в присутствии ионного катализатора кислотной или щелочной природы, что обеспечило увеличение скорости полимеризации КЛ и позволило получить прозрачный гибридный полимер повышенной теплостойкости (см. примеры 6-8). Следует отметить, что в отсутствие ионных катализаторов прозрачный продукт не образуется.

Приводим примеры синтеза заявляемого гибридного связующего (вариантов) и получения композитов на их основе.

Пример 1

1,6 г (80 мас. %) БК и 0,4 г (20 мас. %) ПЭПА тщательно перемешивали при комнатной температуре в течение 1-2 мин и нагревали. При 100°С образовался прозрачный совместный расплав. После его термообработки при 150°С в течение 3 ч получили твердый прозрачный материал; температура размягчения 295-310°С. Горючесть полученного связующего оценивали методом кислородного индекса; КИ = 91%.

Пример 2

1,6 г (80 мас. %) БК и 0,4 г (20 мас. %) ПЭПА тщательно перемешивали при комнатной температуре в течение 1-2 мин. Смесь нагревали до 100°С, затем расплав равномерно наносили на каждый слой базальтовой ткани (6 слоев) и прессовали при 155°С в течение 3 ч; массовое соотношение связующее/наполнитель 55/45. Образцы испытывали на изгиб, σизг = 120-130 МПа. Оценка горючести материала методом кислородного индекса показала, что материал не поддерживает горения в чистом кислороде.

Пример 3

1.0 г (50 мас. %) БК и 1,0 г (50 мас. %) имидазола тщательно перемешивали при комнатной температуре в течение 1-2 мин и нагревали. При 100°С образовался прозрачный совместный расплав. После его термообработки при 220°С в течение 3 ч получили твердый прозрачный материал; температура размягчения 390-400°С. Горючесть полученного связующего оценивали методом кислородного индекса; КИ = 88%.

Пример 4

1.0 г (50 мас. %) БК и 1,0 г (50 мас. %) имидазола тщательно перемешивали при комнатной температуре в течение 1-2 мин. Смесь нагревали до 100°С, затем расплав равномерно наносили на каждый слой базальтовой ткани (6 слоев), после чего прессовали при 225°С в течение 3 ч; массовое соотношение связующее/наполнитель 55/45. Образцы испытывали на изгиб, σизг = 70-80 МПа. Оценка горючести материала методом кислородного индекса показала, что материал не поддерживает горения в чистом кислороде.

Пример 5

1,4 г (70 мас. %) БК и 0,6 г (30 мас. %) имидазола тщательно перемешивали при комнатной температуре в течение 1-2 мин и нагревали. При 100°С образовался прозрачный совместный расплав. После его термообработки при 225°С в течение 3 ч получили твердый прозрачный материал; температура размягчения 380-390°С. Горючесть полученного связующего оценивали методом кислородного индекса; КИ = 89%.

Пример 6 (контрольный).

1,6 г (62 мас. %) БК и 1,0 г (38 мас. %) КЛ тщательно перемешивали при комнатной температуре в течение 1-2 мин. После термообработки при 250°С в течение 3 ч получили твердый непрозрачный материал белого цвета; температура размягчения 100-110°С. Горючесть полученного продукта оценивали методом кислородного индекса; КИ = 43%.

Пример 7

1,6 г (59 мас. %) БК и 1,0 г (37 мас. %) КЛ тщательно перемешивали при комнатной температуре в течение 1-2 мин в присутствии NaOH (0.1 г, 4 мас. %) в качестве катализатора. После термообработки при 250°С в течение 3 ч получили твердый прозрачный материал; температура размягчения 125-135°С. Горючесть полученного связующего оценивали методом кислородного индекса; КИ = 45%.

Пример 8

1,6 г (59 мас. %) БК и 1,0 г (36 мас. %) КЛ тщательно перемешивали при комнатной температуре в течение 1-2 мин в присутствии Н3РО4 (0.14 г, 5 мас. %) в качестве катализатора. После термообработки при 245°С в течение 3 ч получили твердый прозрачный материал; температура размягчения 145-150°С. Горючесть полученного связующего оценивали методом кислородного индекса; КИ = 53%.

Пример 9

1,6 г (59 мас. %) БК и 1,0 г (36 мас. %) КЛ тщательно перемешивали при комнатной температуре в течение 1-2 мин в присутствии Н3РО4 (0.14 г, 5 мас. %) в качестве катализатора. После термообработки при 250°С в течение 3 ч полученный твердый продукт размалывали, равномерно наносили на каждый слой базальтовой ткани (6 слоев) и прессовали при 150°С в течение 1 ч; массовое соотношение связующее/наполнитель 55/45. Образцы испытывали на изгиб, σизг=110-120 МПа. Оценка горючести материала методом кислородного индекса показала, что материал не поддерживает горения в чистом кислороде.

Пример 10 (контрольный).

1,6 г (61 мас. %) БК и 0,9 г (35 мас. %) КЛ тщательно перемешивали при комнатной температуре в течение 1-2 мин в присутствии NaOH (0.1 г, 4 мас. %) в качестве катализатора. После термообработки при 250°С в течение 3 ч получили твердый непрозрачный материал белого цвета; температура размягчения 100-110°С. Горючесть полученного продукта оценивали методом кислородного индекса; КИ=43%.

Пример 11 (контрольный).

1,5 г (58 мас. %) БК и 1,0 г (38 мас. %) КЛ тщательно перемешивали при комнатной температуре в течение 1-2 мин в присутствии Н3РО4 (0.1 г, 4 мас. %) в качестве катализатора. После термообработки при 250°С в течение 3 ч получили твердый прозрачный материал; температура размягчения 100-105°С. Горючесть полученного продукта оценивали методом кислородного индекса; КИ=43%.

Таким образом, как видно из приведенных примеров, предлагаемое органо-неорганическое связующее (варианты) благодаря большому содержанию неорганического компонента (50-80%) отличается пониженной горючестью, прозрачностью, низким количеством летучих продуктов термодеструкции и может применяться для получения композиционных материалов пониженной горючести. Предлагаемый гибридный полимер может использоваться также в качестве прозрачного теплостойкого материала.


ОРГАНО-НЕОРГАНИЧЕСКОЕ СВЯЗУЮЩЕЕ ДЛЯ ПОЛУЧЕНИЯ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ С ПОНИЖЕННОЙ ГОРЮЧЕСТЬЮ (ВАРИАНТЫ)
ОРГАНО-НЕОРГАНИЧЕСКОЕ СВЯЗУЮЩЕЕ ДЛЯ ПОЛУЧЕНИЯ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ С ПОНИЖЕННОЙ ГОРЮЧЕСТЬЮ (ВАРИАНТЫ)
Источник поступления информации: Роспатент

Показаны записи 31-38 из 38.
25.08.2017
№217.015.c547

Оптическая среда на основе кристалла галогенида рубидия-иттрия rbycl, содержащего примесные ионы одновалентного висмута, способная к широкополосной фотолюминесценции в ближнем ик-диапазоне, и способ ее получения

Изобретение относится к оптическим средам на основе кристаллических галогенидов, а также к способу их получения и может быть использовано в системах оптической связи. Предложена оптическая среда на основе кристалла галогенида, содержащего ионы низковалентного висмута в качестве единственного...
Тип: Изобретение
Номер охранного документа: 0002618276
Дата охранного документа: 03.05.2017
25.08.2017
№217.015.c66f

Способ выделения перфторбензола из биазеотропной смеси бензол-перфторбензол

Изобретение относится к способу выделения перфторбензола из биазеотропной смеси бензол-перфторбензол путем химической модификации бензола с образованием высококипящих соединений, для чего биазеотропную смесь бензол-перфторбензол подвергают каталитическому алкилированию, после чего перфторбензол...
Тип: Изобретение
Номер охранного документа: 0002618534
Дата охранного документа: 04.05.2017
26.08.2017
№217.015.d885

Жидкая фракция продукта окислительного крекинга отходов растительного сырья в качестве регулятора роста и развития растений и способ ее применения

Изобретение относится к сельскому хозяйству. Регулятор роста и развития растений представляет собой жидкую фракцию продукта окислительного крекинга отходов растительного сырья, полученную обработкой отходов растительного сырья пероксидом водорода в воде при нагревании до 60-70°С при массовом...
Тип: Изобретение
Номер охранного документа: 0002622735
Дата охранного документа: 19.06.2017
29.12.2017
№217.015.f303

Способ разрушения деталей отработавших космических аппаратов и устройство для его реализации

Изобретение относится к области космической техники и может быть использовано для исключения падения на Землю трудно сгораемых фрагментов космических аппаратов, отработавших свой ресурс, а именно деталей, изготовленных из тугоплавкого конструкционного материала. Для разрушения деталей...
Тип: Изобретение
Номер охранного документа: 0002637007
Дата охранного документа: 29.11.2017
13.02.2018
№218.016.263d

Теплопроводящий электроизоляционный композиционный материал

Изобретение относится к полимерным теплопроводящим электроизоляционным композиционным материалам (КМ) и может быть использовано при изготовлении теплоотводящих элементов, в том числе радиаторов охлаждения, в электротехнических и электронных устройствах различного назначения. Теплопроводящий КМ...
Тип: Изобретение
Номер охранного документа: 0002643985
Дата охранного документа: 06.02.2018
16.06.2018
№218.016.6335

Способ стимулирования роста растений на ранних стадиях развития воздействием электромагнитного поля крайневысокой частоты

Изобретение относится к сельскому хозяйству. Предложен способ стимулирования роста растений на ранних стадиях развития воздействием электромагнитного поля. При этом семена растений или черенки картофеля обрабатывают электромагнитным полем крайневысокой частоты при мощности потока излучения...
Тип: Изобретение
Номер охранного документа: 0002657476
Дата охранного документа: 14.06.2018
09.08.2018
№218.016.784d

Способ тестирования эффективности рострегулирующего воздействия на растения

Изобретение относится к сельскому хозяйству, а именно к способам тестирования эффективности регуляторов роста растений с помощью оптических характеристик, поскольку количество метаболитов, образующихся в процессе прорастания семян, характеризует степень их прорастания. Для этого водные...
Тип: Изобретение
Номер охранного документа: 0002663284
Дата охранного документа: 03.08.2018
01.11.2018
№218.016.9940

Нанокомпозит на основе сверхвысокомолекулярного полиэтилена и способ его получения

Изобретение относится к нанокомпозитам на основе полиэтилена и слоистых силикатов. Нанокомпозит получен путем обработки предварительно дегидратированного монтмориллонита (ММТ) компонентами катализатора, состоящего из соединения переходного металла VCl и алюминийорганического соединения...
Тип: Изобретение
Номер охранного документа: 0002671407
Дата охранного документа: 31.10.2018
Показаны записи 31-40 из 41.
29.12.2017
№217.015.f303

Способ разрушения деталей отработавших космических аппаратов и устройство для его реализации

Изобретение относится к области космической техники и может быть использовано для исключения падения на Землю трудно сгораемых фрагментов космических аппаратов, отработавших свой ресурс, а именно деталей, изготовленных из тугоплавкого конструкционного материала. Для разрушения деталей...
Тип: Изобретение
Номер охранного документа: 0002637007
Дата охранного документа: 29.11.2017
13.02.2018
№218.016.263d

Теплопроводящий электроизоляционный композиционный материал

Изобретение относится к полимерным теплопроводящим электроизоляционным композиционным материалам (КМ) и может быть использовано при изготовлении теплоотводящих элементов, в том числе радиаторов охлаждения, в электротехнических и электронных устройствах различного назначения. Теплопроводящий КМ...
Тип: Изобретение
Номер охранного документа: 0002643985
Дата охранного документа: 06.02.2018
29.05.2018
№218.016.5874

Листовой негорючий облицовочный материал повышенной водоустойчивости

Изобретение относится к негорючим композиционным облицовочным материалам, которые могут быть использованы для наружней и внутренней облицовки зданий и помещений, в качестве мебельных панелей, материалов корпусов суден, автомобилестроении, и касается листового негорючего листового облицовочного...
Тип: Изобретение
Номер охранного документа: 0002655139
Дата охранного документа: 23.05.2018
01.11.2018
№218.016.9940

Нанокомпозит на основе сверхвысокомолекулярного полиэтилена и способ его получения

Изобретение относится к нанокомпозитам на основе полиэтилена и слоистых силикатов. Нанокомпозит получен путем обработки предварительно дегидратированного монтмориллонита (ММТ) компонентами катализатора, состоящего из соединения переходного металла VCl и алюминийорганического соединения...
Тип: Изобретение
Номер охранного документа: 0002671407
Дата охранного документа: 31.10.2018
02.09.2019
№219.017.c624

Способ изготовления композиционного материала на основе углеродных волокон

Изобретение относится к химической промышленности и может быть использовано при изготовлении углепластиков с улучшенными прочностными свойствами. Сначала проводят плазмохимическую обработку наполнителя из углеродных волокон. Затем обработанный наполнитель металлизируют напылением слоя...
Тип: Изобретение
Номер охранного документа: 0002698809
Дата охранного документа: 30.08.2019
22.10.2019
№219.017.d8bc

Способ получения стеарата кальция

Изобретение относится к получению стеарата кальция и может быть использовано в производстве получения композитов поливинилхлорида (ПВХ), синтетических каучуков, нефтедобывающей и нефтеперерабатывающей области, в производстве искусственных кож и линолеума, лекарственных препаратов и...
Тип: Изобретение
Номер охранного документа: 0002703547
Дата охранного документа: 21.10.2019
22.10.2019
№219.017.d8c2

Способ получения стеарата цинка

Изобретение относится к получению стеарата цинка и может быть использовано в производстве получения композитов поливинилхлорида (ПВХ), синтетических каучуков, нефтедобывающей и нефтеперерабатывающей области, в производстве искусственных кож и линолеума, лекарственных препаратов и...
Тип: Изобретение
Номер охранного документа: 0002703549
Дата охранного документа: 21.10.2019
13.11.2019
№219.017.e0cb

Способ получения стеарата кальция-цинка

Изобретение относится к получению стеарата кальция-цинка и может быть использовано для производства жестких и пластифицированных композиций поливинилхлорида: профили, трубы, обои, шланги, тара, искусственная кожа, линолеум, при литье под давлением, непрозрачной и полупрозрачной изоляции...
Тип: Изобретение
Номер охранного документа: 0002705719
Дата охранного документа: 11.11.2019
13.02.2020
№220.018.01e6

Биодеградируемый сорбирующий материал для сбора нефти и нефтепродуктов и способ его получения

Изобретение относится к области очистки окружающей среды. Предложен биодеградируемый сорбирующий материал для сбора нефти и нефтепродуктов, представляющий собой нетканое полимерное волокнистое полотно, выполненное из одного или нескольких слоев волокон биополимера: полигидроксибутирата,...
Тип: Изобретение
Номер охранного документа: 0002714079
Дата охранного документа: 11.02.2020
27.05.2023
№223.018.7086

Радиопоглощающий материал холодного отверждения

Изобретение относится к негорючим, устойчивым к воздействию высоких температур радиопоглощающим материалам (РПМ), и может быть использовано в безэховых камерах. Предложен радиопоглощающий материал, содержащий диэлектрическое связующее и поглощающий электромагнитное излучение компонент,...
Тип: Изобретение
Номер охранного документа: 0002782419
Дата охранного документа: 26.10.2022
+ добавить свой РИД