×
20.01.2016
216.013.a224

Результат интеллектуальной деятельности: ОПОРНЫЙ УЗЕЛ

Вид РИД

Изобретение

№ охранного документа
0002573150
Дата охранного документа
20.01.2016
Аннотация: Изобретение относится к машиностроению и может быть использовано, например, в установках погружных электроцентробежных насосов для добычи нефти. Опорный узел содержит основание со встроенным радиальным подшипником, корпус, головку со встроенным радиальным подшипником, последовательно соединенные между собой, вал, расположенные вдоль оси вала опорные секции, каждая из которых содержит пяту, установленную на валу с возможностью вращения совместно с валом и восприятия осевой силы со стороны вала и без возможности вращения относительно него, подпятник, выполненный с возможностью восприятия осевой силы со стороны пяты и закрепленный в корпусе. Опорная поверхность пяты и опорная поверхность подпятника содержат твердосплавное покрытие, в частности, из карбида вольфрама со связкой из кобальта или карбида вольфрама со связкой из никеля, при этом опорная поверхность пяты твердосплавным покрытием контактирует с твердосплавным покрытием опорной поверхности подпятника, образуя пару трения. Опорная поверхность пяты и опорная поверхность подпятника содержат твердосплавное покрытие толщиной 0,1 мм - 1,0 мм и более каждая. Пята опорной секции со стороны, противоположной опорной поверхности с твердосплавным покрытием, содержит закрепленный на валу упругий элемент. Подпятник выполнен в виде корпуса с опорной поверхностью, контактирующей с пятой образованием пары трения, и сопрягаемого с ним основания, при этом поверхность корпуса подпятника, противоположная опорной поверхности, выполнена сферической или торовой, а сопрягаемая с ней поверхность основания подпятника выполнена конической или сферической. Технический результат: увеличение грузоподъемности опорного узла, повышение надежности его работы, увеличение межремонтного периода и долговечности его работы путем создания конструкции опорного узла работоспособной при повышенных осевых нагрузках, частотах вращения вала и температуре окружающей рабочей среды. 9 з.п. ф-лы, 6 ил.

Изобретение относится к машиностроению и может быть использовано, например, в установках погружных электроцентробежных насосов для добычи нефти.

Известен упорный подшипник, содержащий пяту, установленную на валу с возможностью вращения совместно с валом и восприятия осевой силы со стороны вала и без возможности вращения относительно него, подпятник, содержащий самоустанавливающиеся сегменты и выполненный с возможностью восприятия осевой силы со стороны пяты (см. Патент РФ №2305212, МПК 51 F16C 17/04, опубл. 27.08.2007 г. ). В такой конструкции опорные поверхности самоустанавливающихся сегментов, контактирующие с опорной поверхностью пяты, образуя пару трения, содержат антифрикционное покрытие. В качестве антифрикционного покрытия используются пластмассовые покрытия, например, типа полиэфирэфиркэтон (PEEK), политетрафторэтилен (PTFE), композиционные материалы или другие пластмассовые материалы. Данное техническое решение широко используется в современном машиностроении, т.к. в процессе вращения пяты совместно с валом самоустанавливающиеся сегменты подпятника в зависимости от частоты вращения вала занимают оптимальные положения для передачи осевой нагрузки, создавая гидродинамическую (аэродинамическую) подъемную силу на пяту. Тем самым снижается износ трущихся поверхностей.

Однако при повышении температуры в зоне трения, соответственно и пластмассовых покрытий самоустанавливающихся сегментов, падает несущая способность упорного подшипника, так как пластмассы теряют несущую способность с повышением температуры. С повышением частоты вращения вала, с повышением нагрузки на вал, соответственно на упорный подшипник, увеличивается выделение тепла и повышение температуры в зоне трения пяты с подпятником. При этом снижается надежность, долговечность, несущая способность упорного подшипника. В то же время ограничение во многих случаях площади трущихся поверхностей в связи с ограничением наружного диаметра упорного подшипника, например, в установках погружных электроцентробежных насосов для добычи пластовой жидкости, ограничивает грузоподъемность упорного подшипника, не позволяя достигнуть необходимых значений. Это ограничивает применение их при высоких температурах и осевых нагрузках.

Сегодня возникает значительная потребность в упорных подшипниках (опорных узлах), работоспособных при высоких температурах окружающей среды, при высоких оборотах вала и высоких осевых нагрузках от вала на упорные подшипники в условиях ограничения наружных диаметров упорных подшипников. Особенно высока потребность в таких упорных подшипниках (опорных узлах) в нефтедобывающей, газодобывающей отраслях, в атомной энергетике.

Известен опорный узел, содержащий корпус, вал, расположенные вдоль оси вала, по крайней мере, две опорные секции, каждая из которых содержит упругий элемент, закрепленный на валу упор и закрепленную в корпусе опору, в кольцевой проточке, выполненной на внутренней торцевой поверхности упора, закреплено антифрикционное кольцо, контактирующее с антифрикционным кольцом, установленным в держателе, который закреплен на основании опоры (см. Патент РФ №2235226, МПК 7 F16C 17/26, опубл. 10.04.2004 г.).

В такой конструкции допускаемая удельная нагрузка на антифрикционные вставки, изготовленные из керамики или из твердосплавных материалов, имеющих повышенную твердость и теплостойкость по сравнению с металлическими, пластмассовыми и композиционными материалами, позволяет использовать эти вставки в конструкциях опорного узла (упорного подшипника) повышенной грузоподъемности.

Недостатком данной конструкции является то, что антифрикционные кольца изготовлены из хрупких материалов - керамики или твердого сплава. В настоящее время наиболее часто для таких условий работы применяются вставки и кольца из керамики или из твердых сплавов карбида вольфрама со связкой из кобальта типа ВК8 или карбида вольфрама со связкой из никеля типа СН8. Эти материалы являются дорогостоящими, что приводит удорожанию упорного подшипника. В то же время детали из этих материалов хрупкие, это предъявляет повышенные требования бережного отношения к ним при сборке узла, транспортировке, эксплуатации, ремонтных работах. Особые требования предъявляются к конструкции изделий из этих материалов при повышенных нагрузках на них. Детали из этих материалов не должны иметь концентраторов напряжений, резких переходов с одной толщины на другую, должны иметь равномерную нагрузку по всей поверхности трения. Каналы для охлаждения внутри и на опорных поверхностях пяты и подпятника из этих материалов создают концентраторы напряжения. Отсутствие охлаждения приводит к перегреву и разрушению опор, перегреву масла, например, погружного электродвигателя и ухудшению электроизоляционных свойств масла, к отказу электродвигателя. Изделия из этих материалов разрушаются при вибрационных нагрузках. Недостаточная надежность крепления антифрикционных вставок и колец снижает грузоподъемность опорного узла. Все это приводит к снижению надежности опорного узла, в конечном счете всей установки, в которую он установлен, приводить к необходимости частого ремонта опорного узла для замены антифрикционных вставок и колец узла, к снижению межремонтного периода опорного узла, установки в целом, может привести к разрушению установки, в которую он установлен.

Технической задачей изобретения является увеличение грузоподъемности опорного узла, повышение надежности его работы, увеличение межремонтного периода и долговечности его работы путем создания конструкции опорного узла работоспособной при повышенных осевых нагрузках, частотах вращения вала и температуре окружающей рабочей среды.

Данная техническая задача решается тем, что опорный узел, содержащий основание со встроенным радиальным подшипником, корпус, головку со встроенным радиальным подшипником, последовательно соединенные между собой, вал, расположенные вдоль оси вала опорные секции, каждая из которых содержит пяту, установленную на валу насоса с возможностью вращения совместно с валом и восприятия осевой силы со стороны вала и без возможности вращения относительно него, подпятник, выполненный с возможностью восприятия осевой силы со стороны пяты и закрепленный в корпусе. Опорная поверхность пяты и опорная поверхность подпятника содержат твердосплавное покрытие, в частности, из карбида вольфрама со связкой из кобальта или карбида вольфрама со связкой из никеля, при этом опорная поверхность пяты твердосплавным покрытием контактирует с твердосплавным покрытием опорной поверхности подпятника, образуя пару трения.

Кроме того, опорная поверхность пяты и опорная поверхность подпятника содержат твердосплавное покрытие толщиной 0.1 мм - 1.0 мм и более каждая.

Кроме того, пята опорной секции со стороны, противоположной опорной поверхности с твердосплавным покрытием, содержит закрепленный на валу упругий элемент.

Кроме того, подпятник выполнен в виде корпуса с опорной поверхностью, контактирующей с пятой образованием пары трения, и сопрягаемого с ним основания, при этом поверхность корпуса подпятника, противоположная опорной поверхности, выполнена сферической или торовой, а сопрягаемая с ней поверхность основания подпятника выполнена конической или сферической.

Кроме того, подпятник на контактируемой с пятой поверхности имеет радиальные каналы.

Кроме того, опорная поверхность подпятника может содержать гидродинамические уклоны.

Кроме того, опорная поверхность подпятника может быть выполнена на упругих площадках-секторах.

Кроме того, опорная поверхность подпятника, выполненная на упругих площадках-секторах, может содержать гидродинамические уклоны.

Кроме того, опорный узел содержит упор-ограничитель, содержащий опорную секцию, расположенную на валу симметрично остальным опорным секциям, имеющую пяту и подпятник, при этом подпятник закреплен в корпусе, пята, закрепленная на валу без возможности вращения относительно него, установлена с возможностью передачи усилия от вала на подпятник, опорная поверхность пяты и опорная поверхность подпятника содержат твердосплавное покрытие, в частности, из карбида вольфрама со связкой из кобальта или карбида вольфрама со связкой из никеля, при этом опорная поверхность пяты твердосплавным покрытием может контактировать с твердосплавным покрытием опорной поверхности подпятника, образуя пару трения.

Кроме того, между основанием и головкой опорного узла перед опорными секциями установлены один или более теплообменников, содержащих корпус, закрепленный в корпусе опорного узла, и циркуляционный насос в виде шнека, закрепленный на валу.

На фиг. 1 представлен продольный разрез заявляемого опорного узла.

На фиг. 2 представлен выносной элемент I фиг. 1, на котором в увеличенном масштабе показана опорная секция опорного узла.

На фиг. 3 представлен разрез А-А фиг. 2, на котором показаны гидродинамические уклоны опорной поверхности подпятника.

На фиг. 4 представлен выносной элемент I фиг. 1, на котором показана опорная секция где опорная поверхность подпятника выполнена на упругих площадках-секторах.

На фиг. 5 представлен разрез Б-Б I фиг. 1, на котором опорная поверхность упругих площадок-секторов подпятника содержат гидродинамические уклоны.

На фиг. 6 представлен продольный разрез заявляемого опорного узла, на котором между основанием и головкой перед опорными секциями установлены один или более теплообменников.

Опорный узел содержит основание 1 со встроенным радиальным подшипником 2, корпус 3, головку 4 со встроенным радиальным подшипником 5, последовательно соединенные между собой, вал 6, расположенные вдоль оси вала опорные секции 7, каждая из которых содержит пяту 8, установленную на валу 6 насоса с возможностью вращения совместно с валом 6 и восприятия осевой силы со стороны вала 6 и без возможности вращения относительно него, подпятник 9, выполненный с возможностью восприятия осевой силы со стороны пяты 8 и закрепленный в корпусе 3. Опорная поверхность 10 пяты 8 и опорная поверхность 11 подпятника 9 содержат твердосплавные покрытия 12 и 13 соответственно, в частности, из карбида вольфрама со связкой из кобальта или карбида вольфрама со связкой из никеля, при этом опорная поверхность 10 пяты 8 твердосплавным покрытием 12 контактирует с твердосплавным покрытием 13 опорной поверхности 11 подпятника 9, образуя пару трения. Поверхности пар трения могут формироваться и из покрытий других твердых сплавов.

Основание 1, корпус 3 и головка 4 последовательно соединены между собой, например, посредством резьбы 14.

Пята 8 установлена на валу 6 с возможностью вращения совместно с валом 6 и восприятия осевой силы со стороны вала 6 и без возможности вращения относительно него. Пята 8 может быть установлена на валу 6 с помощью шпонки 15 или шпонок. Для восприятия пятой 8 осевой силы (нагрузки) со стороны вала 6 на валу может быть установлено упорное кольцо 16 с упором 17. Для обеспечения одновременного контакта всех опорных поверхностей 10 пят 8 и с опорными поверхностями 11 подпятников 9 при работе и компенсации зазоров, возникающих при изготовлении вследствие технологических допусков, пята 8 опорной секции 7 со стороны противоположной опорной поверхности 10 с твердосплавным покрытием 12 содержит закрепленный на валу 6 упругий элемент 18. В качестве упругого элемента могут применяться, например, тарельчатые пружины.

Подпятник 9 выполнен с возможностью восприятия осевой силы со стороны пяты 8 и закреплен в корпусе 3 с помощью втулок распорных 19. В распорных втулках 19 для удобства сборки опорного узла могут быть выполнены отверстия 20. Для компенсации зазоров могут быть применены шайбы 21. Шайбы 21 могут служить для обеспечения необходимого вылета или заглубления торцов вала 6 от посадочных поверхностей 22 и 23 основания 1 и головки 4.

Кроме того, подпятник 9 выполнен в виде корпуса 24 с опорной поверхностью 11, контактирующей с пятой 8 образованием пары трения, и сопрягаемого с ним основания 25. Поверхность 26 корпуса 24 подпятника 9, противоположная опорной поверхности 11, выполнена сферической или торовой, а сопрягаемая с ней поверхность 27 основания 25 подпятника 9 выполнена конической или сферической. Выполнение поверхности 26 корпуса 24 сферической или торовой, а поверхности 27 основания 25 подпятника конической или сферической зависит от технологических возможностей изготовителя и материалов сопрягаемых пар. Два штифта 28 одним концом закреплены на основании 25 подпятника 9 со стороны конической (или сферической) поверхности 27, а другим своим концом размещены в отверстиях, выполненных на торце корпуса 24 подпятника 9, содержащего сферическую (или торовую) поверхность 26, фиксируя его от вращения относительно продольной оси основания 25. Основание 25 подпятника 9 закреплено в корпусе 3 опорного узла с помощью втулок распорных 19. На контактируемой с пятой 8 поверхности 11 подпятника 9 выполнены радиальные каналы 29.

Кроме того, опорная поверхность 11 подпятника 9 может содержать гидродинамические уклоны 30.

Кроме того, опорная поверхность 11 подпятника 9 опорной секции 7 может быть выполнена на упругих площадках-секторах 31. Упругие площадки-сектора 31 могут быть расположены на ребрах 32, соединяющих эти площадки 31 с основанием 33 корпуса 24 подпятника 9, размещенным на основании 25 пяты 9. Опорная поверхность 11 площадок-секторов 31 подпятника 9 может содержать гидродинамические уклоны 30.

Кроме того, опорный узел содержит упор-ограничитель 34, содержащий опорную секцию 35, имеющую пяту 36 и подпятник 37 и расположенную на валу 6 симметрично остальным опорным секциям 7, при этом подпятник 37 закреплен в корпусе 3 опорного узла с помощью втулок распорных 38. Пята 36 закреплена на валу 6 без возможности вращения относительно вала 6 и установлена с возможностью передачи усилия от вала 6 на подпятник 37. Пята 36 может быть установлена на валу 6 с помощью шпонки 15 или шпонок. Для восприятия пятой 36 осевой силы со стороны вала 6 на валу 6 может быть установлено упорное кольцо 39 с упором 40. Упорное кольцо 39 предназначено для восприятия осевой нагрузки (при возникновении таковой) от вала 6, противоположной осевым нагрузкам, воспринимаемым упорными кольцами 16 от вала 6. Опорная поверхность 10 пяты 36 твердосплавным покрытием 12 может контактировать с твердосплавным покрытием 13 опорной поверхности 11 подпятника 37, образуя пару трения. Упорное кольцо 39 ограничивает перемещение вала 6 в одном направлении вдоль оси опорного узла, а упорное кольцо 16 ограничивает перемещение вала 6 в другом направлении вдоль оси опорного узла. Таким образом, все опорные секции 7, 35 и вал 6 находятся зафиксированными в корпусе 3 опорного узла в продольном направлении, при этом основную продольную (осевую) нагрузку воспринимают опорные секции 7. При возникновении обратной осевой нагрузки эту нагрузку воспринимает опорная секция 35. Для циркуляции рабочей жидкости (масла) вокруг опорных секций с целью их охлаждения между упором 40 и пятой 36 может быть установлен переходник 41 с отверстиями 42 и выполнены отверстия 43 в пяте 36. Для обеспечения необходимого зазора или натяга между пятой и подпятником опорной секции 35 может быть установлено одно или несколько компенсационных колец 44.

Кроме того, между основанием 1 и головкой 4 перед опорными секциями 7, 35 могут быть установлены один или более теплообменников 45, содержащие корпус 46, закрепленный в корпусе 3 опорного узла, и циркуляционный насос 47 в виде шнека, закрепленный на валу 6. Циркуляционный насос 47 в виде шнека скреплен посредством шпонки 48 с валом 6 с возможностью вращения относительно корпуса 46 теплообменника 45. Теплообменник может содержать фильтр 49 для очистки рабочей жидкости (масла). На наружной поверхности корпуса 46 теплообменника 45 для передачи тепла на корпус 3 опорного узла и далее в окружающую среду выполнены каналы 50. По этим каналам 50 рабочая жидкость проходит между корпусом 46 теплообменника 45 и корпусом 3 опорного узла.

В процессе работы опорного узла осевая нагрузка от вала 6 равномерно распределяется между всеми опорные секциями 7. Упорные кольца 16, установленные на валу 6, передают осевое усилие от вала 6 посредством упоров 17 пятам 8 опорных секций 7. Передача осевых усилий от упоров 17 пятам 8 может проводиться посредством упругих элементов 18. Упругие элементы 18 способствуют одновременному контакту в опорных секциях 7 всех опорных поверхностей 10 пят 8 и с опорными поверхностями 11 подпятников 9 при работе и компенсируют зазоры в опорных секциях 7, возникающих при изготовлении опорного узла вследствие технологических допусков на размеры деталей опорного узла. Пята 8, закрепленная на валу 6, например, с помощью шпонки 15 или шпонок, в процессе работы вращается совместно с валом и передает осевое усилие подпятнику 9. Подпятник 9 выполнен с возможностью восприятия осевой силы со стороны пяты 8 и закреплен в корпусе 3 с помощью втулок распорных 19. Для компенсации зазоров между подпятником 9 и втулок распорных 19 могут быть применены шайбы 21. Подпятник 9 посредством втулок распорных 19 и шайбы 21 передает осевое усилие корпусу 3. Радиальные нагрузки от вала 6 воспринимают радиальные подшипники 2 и 5, встроенные в основание 1 и головку 4 опорного узла. Опорная поверхность 10 пяты 8 и опорная поверхность 11 подпятника 9 содержат твердосплавные покрытия 12 и 13 соответственно, в частности, из карбида вольфрама со связкой из кобальта или карбида вольфрама со связкой из никеля. Опорная поверхность 10 пяты 8 твердосплавным покрытием 12 контактирует с твердосплавным покрытием 13 опорной поверхности 11 подпятника 9, образуя пару трения.

Твердосплавное покрытие на опорные поверхности может наноситься, например, методом сверхзвукового газовоздушного напыления. При этом обеспечивается повышенная адгезия слоя твердого материала к опорным поверхностям за счет диффузии расплавленного сплава в материал опорной поверхности, механического сцепления с неровностями опорной поверхности, химического соединения сплава с материалом опорной поверхности. Это позволяет получить особо прочные твердосплавные покрытия. После нанесения покрытия поверхности трения обрабатываются с шероховатостью, необходимой для поверхностей трения подшипников скольжения. Высокая твердость опорных поверхностей из твердосплавных покрытий увеличивает срок службы пар трения опорного узла, как пяты, так и подпятника, приводит к увеличению грузоподъемности, повышению надежности, снижению себестоимости упорного подшипника и к увеличению межремонтного периода эксплуатации опорного узла, соответственно и установки, в которую установлен опорный узел. Высокая температурная стойкость твердосплавного покрытия по сравнению полимерными, композиционными, металлическими, например, баббитовыми, покрытиями позволяет повысить грузоподъемность и надежность опорного узла особенно при работе их при высоких оборотах вала и при высоких температурах окружающей среды. Высокая теплопроводность твердосплавного покрытия способствует повышенному отводу тепла из зоны трения пар трения, что повышает надежность и долговечность работы опорного узла. Малая толщина твердосплавного покрытия по сравнению с вставками и кольцами из антифрикционных материалов, как карбид кремния и твердые сплавы, позволяет уменьшить стоимость, габариты опорного узла.

Метод сверхзвукового газовоздушного напыления позволяет получить нано структурированные покрытия при использовании нанопорошка исходного материала, например, карбида вольфрама со связкой из кобальта или карбида вольфрама со связкой из никеля. Это позволяет получить сверхпрочные твердосплавные покрытия для пар трения опорного узла.

Толщина твердосплавного покрытия выполняется исходя из применяемого метода нанесения покрытия, из условий работы опорного узла, в первую очередь она зависит от удельной осевой нагрузки на пяту, соответственно и на подпятник, частоты вращения вала, соответственно пяты, и необходимого срока службы опорного узла. В современном машиностроении востребованы упорные подшипники (опорные узлы) способные работать при повышенных температурах окружающей среды, высоких осевых нагрузках и повышенных частотах вращения вала. Например, сегодня возникает необходимость добычи пластовой жидкости с высокой температурой, более 170°С, из глубоких и сверхглубоких скважин, 4000 м и более. Это накладывают на упорные подшипники (опорные секции) устройств для гидравлической защиты погружного электродвигателя все более повышенные требования по надежности и грузоподъемности, требования по восприятию значительных осевых нагрузок при высоких температурах пластовой жидкости. Это особенно актуально для насосных установок с насосами без осевых опор компрессионной схемы исполнения насосов. При необходимости работы при высоких температурах окружающей среды относительно непродолжительное время (1-2 года) и с частотой вращения вала до 3000 об/мин, толщина твердосплавного покрытия на опорных поверхностях пар трения выполняется в пределах 0,1-0,3 мм. При частотах вращения вала до 6000 об/мин при средней продолжительности работы опорного узла толщина твердосплавного покрытия на опорных поверхностях выполняется в пределах 0,2-0,5 мм. Для высоконагруженных опорных секций опорных узлов с высокой частой вращения вала, более 6000 об/мин, например, для гидравлических защит погружных электродвигателей, работающих в высокотемпературной среде, для насосных установок без осевой опоры в секциях насосов с компрессионной схемой сборки в зависимости от напора насосной установки, частоты вращения вала насоса, глубины добычи нефти, продолжительного срока службы (5 лет и более) опорного узла толщина твердосплавного покрытия на опорных поверхностях пар трения выполняется в пределах 0,4-1,0 мм и более. Применение того или иного карбида вольфрама со связкой из кобальта или того или иного карбида вольфрама со связкой из никеля определяется наличием компонентов для твердосплавного покрытия и необходимостью получения требуемых характеристик твердосплавного покрытия. Поверхности пар трения могут формироваться и из других твердых сплавов.

Упругие элементы 18 пяты 8, закрепленные на валу 6 со стороны, противоположной опорной поверхности 10 с твердосплавным покрытием 12, позволяют одновременно во всех опорных секциях обеспечить равномерный контакт опорных поверхностей 10 пят 8 и с опорными поверхностями 11 подпятников 9 и компенсировать зазоры, возникающие при изготовлении опорного узла. Упругие элементы 18 позволяют подпятнику самоустанавливаться в процессе работы, способствуя прилеганию трущихся поверхностей 10 и 11 пяты 8 и подпятника 9. Тем самым создается благоприятные условия для долговечной работы опорного узла за счет равномерного распределения осевой нагрузки по поверхности пяты 8 и подпятника 9, что значительно снижает износ трущихся поверхностей 10 и 11, повышает надежность, долговечность опорного узла, повышает межремонтный период опорного узла.

Выполнение подпятника 9 в виде корпуса 24 с опорной поверхностью 11, контактирующей с пятой 8 образованием пары трения, и сопрягаемого с ним основания 25, где поверхность 26 корпуса 24 подпятника 9, противоположная опорной поверхности 11, выполнена сферической или торовой, а сопрягаемая с ней поверхность 27 основания 25 подпятника 9 выполнена конической или сферической, при работе опорного узла позволяет за счет возможности смещения сферической (или торовой) поверхности 26 корпуса 24 подпятника 9 относительно конической (или сферической) поверхности 27 основания 25 подпятника 9 обеспечить параллельность трущихся поверхностей 10 и 11 пяты 8 и подпятника 9. Это приводит к полному контакту этих сопрягающихся поверхностей 10 и 11 трения, приводит к увеличению поверхности трения, приводит к снижению удельного давления на единицу площади и уменьшению вибраций. Это позволит повысить грузоподъемность, надежность, увеличит межремонтный период и долговечность опорного узла.

Радиальные канавки 29 на контактируемой с пятой поверхности подпятника 9, постоянно пропуская через себя циркулирующее масло, способствуют эффективному охлаждению трущихся поверхностей пяты 8 и подпятника 9, тем самым повышают надежность и долговечность работы опорного узла.

Гидродинамические уклоны 30 на опорной поверхности 11 подпятника 9 при работе опорного узла способствуют вращающейся пяте 8 увлекать рабочую жидкость в клиновой зазор 51 между трущимися поверхностями 10 и 11 пяты 8 и подпятника 9. Гидродинамические уклоны 30 при меньших частотах вращения вала 6, соответственно и пяты 8, позволяют созданию условий, при котором между поверхностями трения 10 и 11 появляется устойчивый слой рабочей жидкости, например, масла, воды или газа, полностью разделяющий их. Тем самым способствуют созданию и повышению гидродинамической подъемной силы на пяту 8, снижению износа поверхностей трения 10 и 11 опорного узла, повышению грузоподъемности, надежности, долговечности опорного узла, увеличению межремонтного периода опорного узла, соответственно и установки в которую установлен опорный узел.

Выполнение опорной поверхности 12 подпятника 9 на упругих площадках-секторах 31 позволяет каждой отдельно взятой площадке 31 за счет своей упругости, также за счет упругости ребра 32, на котором он установлен, в зависимости от нагрузки на опорную секцию 7 и в зависимости от частоты вращения вала 6, соответственно и пяты 8, занимать соответствующее положение вследствие гидродинамических сил, возникающих при вращении пяты 8, и создать подъемную силу на пяту 8. Тем самым исключается прямой контакт трущихся поверхностей 10 и 11, резко снижается трение и выделение тепла в паре трения опорной секции 7, повышается надежность и долговечность работы узла опоры. Также развитая поверхность подпятника 9 за счет площадок-секторов 31, ребер 32 и основания 33 корпуса 24 подпятника 9 способствует усиленному теплоотводу от поверхностей трения 10 и 12, тем самым увеличивая надежность и долговечность опорного узла.

Гидродинамические уклоны 30 опорной поверхности подпятника при работе опорного узла способствуют вращающейся пяте 8 увлекать масло в клиновой зазор 51 между трущимися поверхностями 10 и 11 пяты 8 и подпятника 9. Гидродинамические уклоны 30 при меньших частотах вращения вала 6, соответственно и пяты 8, позволяют созданию условий, при котором между поверхностями трения 10 и 11 появляется устойчивый слой рабочей жидкости (масла), полностью разделяющей их. Тем самым гидродинамические уклоны способствуют созданию и повышению гидродинамической подъемной силы на пяту 8, способствуют увеличению грузоподъемности, снижению износа пар трения опорной секции, повышению надежности, долговечности опорного узла, увеличению межремонтного периода опорного узла.

Размещение между основанием 1 и головкой 2 перед опорными секциями 7 и 35 одного или более теплообменников 45, содержащих корпус 46, закрепленный в корпусе 3 опорного узла, циркуляционный насос 47 в виде шнека, закрепленный на валу 3, обеспечивает при работе опорного узла интенсивный отвод тепла из зоны трения опорных поверхностей 10 и 11 за счет циркуляции масла вокруг корпуса 46 теплообменника 45. При этом циркуляционный насос 47 подает охлажденную рабочую жидкость (масло) в зону трения, тем самым охлаждает трущиеся поверхности 10 и 11. Корпус 46 теплообменника 45 отводит тепло к корпусу 3 опорного узла за счет циркуляции масла, корпус 3 опорного узла передает тепло окружающей ей среде. Это создает благоприятные условия для работы опорного узла, предотвращает перегрев рабочей жидкости (масла), что повышает грузоподъемность, надежность, увеличивает межремонтный период опорного узла.

Выполнение таким образом опорного узла позволяет увеличить грузоподъемность опорного узла, повысить надежность его работы, увеличить межремонтный период и долговечность его работы путем создания конструкции опорного узла работоспособной при повышенных осевых нагрузках, частотах вращения вала и температуре окружающей рабочей среды.


ОПОРНЫЙ УЗЕЛ
ОПОРНЫЙ УЗЕЛ
ОПОРНЫЙ УЗЕЛ
ОПОРНЫЙ УЗЕЛ
ОПОРНЫЙ УЗЕЛ
ОПОРНЫЙ УЗЕЛ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 13.
10.01.2013
№216.012.19ea

Устройство для дистанционного измерения давления

Устройство относится к приборостроению и может быть использовано в системах дистанционного сбора информации о давлении в различных отраслях промышленности. Техническим результатом изобретения является повышение чувствительности устройства при измерении малых фазовых сдвигов, соответствующих...
Тип: Изобретение
Номер охранного документа: 0002472126
Дата охранного документа: 10.01.2013
10.09.2013
№216.012.68fc

Способ контроля движения специальных транспортных средств

Изобретение относится к области контроля движения городского наземного транспорта, мусоровозов, обеспечивающих вывоз бытового и промышленного мусора на специальные свалки или в места их переработки, инкассаторских машин, перевозящих денежные средства из банка различным организациям и из...
Тип: Изобретение
Номер охранного документа: 0002492523
Дата охранного документа: 10.09.2013
10.07.2014
№216.012.dc4f

Способ определения качества компаундирования обмоток электрических машин

Изобретение относится к технике электрических измерений и предназначено для определения качества компаундирования обмоток электрических машин на этапах испытания изоляции обмоток при изготовлении и эксплуатации, в частности обмоток статора маслонаполненных погружных асинхронных...
Тип: Изобретение
Номер охранного документа: 0002522177
Дата охранного документа: 10.07.2014
10.08.2015
№216.013.68e5

Упорный подшипник

Изобретение относится к машиностроению и может быть использовано, например, в установках погружных электроцентробежных насосов для добычи нефти. Упорный подшипник содержит пяту, установленную на валу с возможностью вращения совместно с валом и восприятия осевой силы со стороны вала и без...
Тип: Изобретение
Номер охранного документа: 0002558406
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.72fa

Способ лечения онкологических больных

Изобретение относится к области медицины, в частности к области онкологии и психотерапии, и может быть использовано для лечения онкологических больных, а также для профилактики онкологических заболеваний. Комплексное лечение проводят в стационаре в условиях умеренного климата на фоне полной...
Тип: Изобретение
Номер охранного документа: 0002561004
Дата охранного документа: 20.08.2015
10.09.2015
№216.013.780c

Фильтрующий элемент (варианты)

Группа изобретений может быть использована в погружных электроцентробежных насосах для добычи нефти, в скважинных фильтрах, фильтрах для очистки воды и в других фильтрующих оборудованиях. Фильтрующий элемент содержит силовой каркас (1) из стержней (2) и скрепленную с ним сваркой (3) фильтрующую...
Тип: Изобретение
Номер охранного документа: 0002562321
Дата охранного документа: 10.09.2015
10.10.2015
№216.013.817b

Модульная секция погружного центробежного насоса

Изобретение относится к машиностроению и может быть использовано в погружных центробежных насосах для добычи пластовой жидкости из скважин. Модульная секция погружного центробежного насоса содержит основание и головку со встроенными радиальными подшипниками, переходники с промежуточными...
Тип: Изобретение
Номер охранного документа: 0002564744
Дата охранного документа: 10.10.2015
10.12.2015
№216.013.9701

Ступень погружного многоступенчатого центробежного насоса и способ ее изготовления

Группа изобретений относится к машиностроению и может быть использована в установках погружных электроцентробежных насосов для добычи нефти. Рабочее колесо и направляющий аппарат ступени погружного многоступенчатого центробежного насоса выполнены литьем из чугуна следующего состава, масс.%:...
Тип: Изобретение
Номер охранного документа: 0002570277
Дата охранного документа: 10.12.2015
27.03.2016
№216.014.c704

Способ изготовления рабочего колеса и направляющего аппарата ступени погружного многоступенчатого центробежного насоса

Изобретение относится к машиностроению и может быть использовано в способах изготовления рабочих колес и направляющих аппаратов ступеней погружных многоступенчатых электроцентробежных насосов для добычи нефти. Способ изготовления включает ввод алюминия под поверхность расплава при температуре...
Тип: Изобретение
Номер охранного документа: 0002578921
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c957

Погружной многоступенчатый центробежный насос

Изобретение относится к машиностроению и может быть использовано, например, в установках погружных электроцентробежных насосов для добычи нефти. Погружной многоступенчатый центробежный насос содержит корпус (1), вал (2), ступени (3), состоящие из рабочего колеса (4) и направляющего аппарата...
Тип: Изобретение
Номер охранного документа: 0002578924
Дата охранного документа: 27.03.2016
Показаны записи 1-10 из 15.
10.01.2013
№216.012.19ea

Устройство для дистанционного измерения давления

Устройство относится к приборостроению и может быть использовано в системах дистанционного сбора информации о давлении в различных отраслях промышленности. Техническим результатом изобретения является повышение чувствительности устройства при измерении малых фазовых сдвигов, соответствующих...
Тип: Изобретение
Номер охранного документа: 0002472126
Дата охранного документа: 10.01.2013
10.09.2013
№216.012.68fc

Способ контроля движения специальных транспортных средств

Изобретение относится к области контроля движения городского наземного транспорта, мусоровозов, обеспечивающих вывоз бытового и промышленного мусора на специальные свалки или в места их переработки, инкассаторских машин, перевозящих денежные средства из банка различным организациям и из...
Тип: Изобретение
Номер охранного документа: 0002492523
Дата охранного документа: 10.09.2013
10.07.2014
№216.012.dc4f

Способ определения качества компаундирования обмоток электрических машин

Изобретение относится к технике электрических измерений и предназначено для определения качества компаундирования обмоток электрических машин на этапах испытания изоляции обмоток при изготовлении и эксплуатации, в частности обмоток статора маслонаполненных погружных асинхронных...
Тип: Изобретение
Номер охранного документа: 0002522177
Дата охранного документа: 10.07.2014
10.08.2015
№216.013.68e5

Упорный подшипник

Изобретение относится к машиностроению и может быть использовано, например, в установках погружных электроцентробежных насосов для добычи нефти. Упорный подшипник содержит пяту, установленную на валу с возможностью вращения совместно с валом и восприятия осевой силы со стороны вала и без...
Тип: Изобретение
Номер охранного документа: 0002558406
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.72fa

Способ лечения онкологических больных

Изобретение относится к области медицины, в частности к области онкологии и психотерапии, и может быть использовано для лечения онкологических больных, а также для профилактики онкологических заболеваний. Комплексное лечение проводят в стационаре в условиях умеренного климата на фоне полной...
Тип: Изобретение
Номер охранного документа: 0002561004
Дата охранного документа: 20.08.2015
10.09.2015
№216.013.780c

Фильтрующий элемент (варианты)

Группа изобретений может быть использована в погружных электроцентробежных насосах для добычи нефти, в скважинных фильтрах, фильтрах для очистки воды и в других фильтрующих оборудованиях. Фильтрующий элемент содержит силовой каркас (1) из стержней (2) и скрепленную с ним сваркой (3) фильтрующую...
Тип: Изобретение
Номер охранного документа: 0002562321
Дата охранного документа: 10.09.2015
10.10.2015
№216.013.817b

Модульная секция погружного центробежного насоса

Изобретение относится к машиностроению и может быть использовано в погружных центробежных насосах для добычи пластовой жидкости из скважин. Модульная секция погружного центробежного насоса содержит основание и головку со встроенными радиальными подшипниками, переходники с промежуточными...
Тип: Изобретение
Номер охранного документа: 0002564744
Дата охранного документа: 10.10.2015
10.12.2015
№216.013.9701

Ступень погружного многоступенчатого центробежного насоса и способ ее изготовления

Группа изобретений относится к машиностроению и может быть использована в установках погружных электроцентробежных насосов для добычи нефти. Рабочее колесо и направляющий аппарат ступени погружного многоступенчатого центробежного насоса выполнены литьем из чугуна следующего состава, масс.%:...
Тип: Изобретение
Номер охранного документа: 0002570277
Дата охранного документа: 10.12.2015
27.03.2016
№216.014.c704

Способ изготовления рабочего колеса и направляющего аппарата ступени погружного многоступенчатого центробежного насоса

Изобретение относится к машиностроению и может быть использовано в способах изготовления рабочих колес и направляющих аппаратов ступеней погружных многоступенчатых электроцентробежных насосов для добычи нефти. Способ изготовления включает ввод алюминия под поверхность расплава при температуре...
Тип: Изобретение
Номер охранного документа: 0002578921
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c957

Погружной многоступенчатый центробежный насос

Изобретение относится к машиностроению и может быть использовано, например, в установках погружных электроцентробежных насосов для добычи нефти. Погружной многоступенчатый центробежный насос содержит корпус (1), вал (2), ступени (3), состоящие из рабочего колеса (4) и направляющего аппарата...
Тип: Изобретение
Номер охранного документа: 0002578924
Дата охранного документа: 27.03.2016
+ добавить свой РИД