×
20.01.2016
216.013.a21a

Результат интеллектуальной деятельности: СПОСОБ ПРОВЕДЕНИЯ АНАЛИЗА ДОЛГОВЕЧНОСТИ РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области информационных технологий и может быть использовано при конструировании на компьютере сложных электротехнических изделий. Технический результат заключается в сокращении временных и вычислительных ресурсов, затрачиваемых на конструирование таких изделий, а также в повышении надежности проектируемых изделий за счет раннего выявления дефектов конструкции при проведении анализа долговечности радиоэлектронной аппаратуры (РЭА) и унифицированных электронных модулей (ЭМ) в ее составе. Способ проведения анализа долговечности РЭА основан на анализе напряженно-деформированного состояния и подробной расчетной модели (РМ), которая включает подробные модели электрорадиоизделий (ЭРИ) и элементов конструкции. Анализ долговечности РЭА осуществляют с использованием тепловых, деформационных и прочностных РМ РЭА последовательно в четыре этапа: подготовительный этап, этап глобального анализа, этап промежуточного анализа и этап локального анализа. На подготовительном этапе создают тепловые РМ без детализации моделей элементов конструкции, деформационные РМ с детализацией ЭРИ и элементов конструкции, оказывающих влияние на жесткость конструкции, и подробные прочностные РМ конкретных элементов. На этапе глобального анализа проводят расчет температур РЭА, когда используют тепловые РМ. На этапе промежуточного анализа проводят расчет деформаций (перемещений) в РЭА по результатам теплового расчета РЭА этапа глобального анализа, при этом проводят выбор конкретного узла РЭА с использованием деформационных РМ. Затем выполняют локальный анализ, когда проводят расчет напряженно-деформированного состояния ЭРИ и элементов конструкции узла РЭА, по окончании расчета напряженно-деформированного состояния проводят расчет долговечности элементов РЭА, при этом используют прочностные РМ. 2 з.п. ф-лы, 3 ил.

Изобретение относится к области информационных технологий и может быть использовано при конструировании на компьютере сложных электротехнических изделий. Реализация изобретения позволяет сократить временные и вычислительные ресурсы, затрачиваемые на конструирование таких изделий, а также повысить надежность проектируемых изделий за счет раннего выявления дефектов конструкции при проведении анализа долговечности радиоэлектронной аппаратуры (РЭА) и электронных модулей (ЭМ) в ее составе.

Известен способ проведения анализа долговечности ЭМ. (Прогнозирование надежности узлов и блоков радиотехнических устройств космического назначения на основе моделирования напряженно-деформируемых состояний: моногр. / С.Б. Сунцов, В.П. Алексеев, В.М. Карабан, С.В. Пономарев. - Томск: Изд-во Томск, гос. ун-та систем упр. и радиоэлектроники, 2012. - 114 с.). Детализация используемой при этом расчетной модели (РМ) определяется анализом напряженно-деформированного состояния (НДС) и, как правило, соответствует подробной РМ ЭМ, которая включает: подробные модели электрорадиоизделий (ЭРИ), клеевые соединения, герметизацию, пайку, печатные проводники, переходные отверстия и их металлизацию и др. Данный способ взят за прототип.

Данный способ имеет существенные недостатки:

- использование единой РМ ЭМ с высокой степенью детализации приводит к значительному увеличению временных и вычислительных ресурсов, необходимых для проведения расчета;

- использование нескольких РМ для каждого типа проводимого анализа (тепловой, деформационный, прочностной) создает значительные трудности при формализации краевой задачи и передачи результатов с одной РМ на другую в связи с тем, что имеется большое расхождение в количестве узлов и элементов.

Задачей предлагаемого в изобретении способа проведения анализа долговечности является устранение указанных выше недостатков, а именно:

- снижение временных затрат при проведении расчетов;

- сокращение требуемых вычислительных ресурсов;

- облегчение формализации краевой задачи.

Предлагается проведение анализа долговечности выполнять в четыре этапа, при этом:

- использовать расчетные модели, оптимизированные под конкретный анализ;

- использовать интерполяцию результатов анализов для облегчения формализации краевой задачи и повышения точности передачи результатов с одной РМ на другую.

Поставленная задача решается за счет того, что анализ долговечности РЭА, заключающийся в прогнозировании надежности узлов и блоков РЭА космического назначения, осуществляют поэтапно с использованием созданных тепловых, деформационных и прочностных РМ РЭА, оптимизированных для проведения последующих этапов анализа долговечности, при этом на подготовительном этапе проводят создание тепловых РМ с игнорированием детализации моделей базовых несущих конструкций (скругления, отверстия), печатного узла (электрорадиоизделий, паяное соединение, печатные проводники, переходные отверстия и их металлизация), деформационных РМ с детализацией конкретных ЭРИ, базовых несущих конструкций (металлическая рамка, печатный узел), а также прочих конструктивных элементов РЭА (разъемы, заглушки и пр.), оказывающих влияние на жесткость конструкции; в качестве прочностной РМ используют подробную (детализированную) РМ конкретных элементов конструкции ЭМ, когда учитывают пайку, печатные проводники, металлизацию переходных отверстий; затем на этапе глобального анализа проводят расчет температур ЭМ в составе РЭА, когда используют тепловые РМ ЭМ, при этом учитывают переизлучение с соседних поверхностей ЭМ и теплопередачу теплопроводностью (кондукция) с соседних ЭМ; далее на этапе промежуточного анализа проводят расчет деформаций (перемещений) в ЭМ по результатам теплового расчета РЭА этапа глобального анализа, при этом проводят выбор конкретного ЭМ с последующей передачей температур посредством интерполяции с использованием деформационных РМ ЭМ; затем выполняют локальный анализ, когда проводят расчет напряженно-деформированного состояния элементов печатного узла ЭМ (ЭРИ, пайка, печатные проводники, переходные отверстия) посредством интерполяции результатов расчета деформаций (перемещений) ЭМ, полученных на этапе промежуточного анализа, по окончании расчета напряженно-деформированного состояния проводят расчет долговечности элементов ЭМ, при этом используют прочностные РМ ЭМ.

Суть изобретения поясняется чертежами, где на фиг. 1 изображен алгоритм расчета посредством интерполяции, на фиг. 2 и 3 представлены изображения плоских линейных треугольного и четырехугольного элементов соответственно.

На фиг. 1 изображен алгоритм расчета посредством интерполяции, где:

- Этап 0. Подготовительный.

- Этап 1. Глобальный анализ.

- Этап 2. Промежуточный анализ.

- Этап 3. Локальный анализ.

Расчет можно произвести с применением метода конечных элементов. При этом расчетная область аппроксимируется системой элементов. В пределах элемента функция F(x,y,z) определяется следующим выражением:

где Ni - функции формы элемента, fi - значение функции F в i-м узле элемента, fi=F(xi,yi,zi).

Таким образом, если известны функции формы элементов и узловые значения функции, то можно определить значение функции F в произвольной точке x*, y*, z* расчетной области. Если точка x*, y*, z* совпадает с узловой точкой xj, yj, zj, то:

.

Для определения функции F(x*,y*,z*) точки x*, y*, z*, располагаемой внутри или на границе элемента, используется выражение (1).

Рассмотрим методику определения функции F в точке x*, y*, z* на примере элементов первого порядка - плоского треугольного элемента и плоского четырехугольного элемента.

1. Плоский линейный треугольный элемент

Функция F(x,y) на таком элементе (фиг. 2) представляется линейным полиномом:

где αi - коэффициенты полинома. Коэффициенты полинома (2) определяются по узловым значениям функции F(x,y). Для этого записывается система линейных алгебраических уравнений:

По правилу Крамера:

где ; ;

.

Детерминанты δi можно раскрыть по столбцу, содержащему узловые значения функции:

или

где dij - соответствующие детерминанты из (5).

При подстановке (4) и (6) в полином (2) получается:

В результате приходим к выражению (1), где функции формы элемента имеют вид:

Имея функции формы (8) элемента и узловые значения функции, можно вычислить значение функции в произвольной точке внутри элемента.

2. Плоский линейный четырехугольный элемент

Четырехугольный элемент (фиг. 3) в пространстве X, Y отображается на прямоугольник в пространстве ξ, η. Функции формы в пространстве ξ, η имеют вид:

Если для точки с координатами x*, y*, лежащей внутри четырехугольника, известны соответствующие координаты ξ*, η*, то по (1), используя (9), можно определить значение функции F(x(ξ,η), y(ξ,η)) в этой точке.

Зная координаты ξ, η, можно легко найти соответствующие им координаты x, y по формулам:

где xi, yi - координаты узлов четырехугольника. Однако обратный переход:

не имеет простого аналитического представления. Поэтому для выполнения этого перехода следует использовать численные методы. Возможно применение метода, аналогичного методу деления отрезка пополам. Его алгоритм содержит следующие этапы:

1. Среди координат x, y узлов четырехугольника существуют значения Xmin, Xmax и Ymin, Ymax, между которыми лежат величины x* и y*.

2. В пространстве ξ, η прямоугольник делится на четыре прямоугольника. Для каждого вновь получившегося прямоугольника с помощью формулы (10) определяются Xmin, Xmax и Ymin, Ymax.

3. Используя значения Xmin, Xmax и Ymin, Ymax находим прямоугольник, в который попадает точка с координатами x*, y*.

4. Если условия:

не выполняются, то возвращаются к п. 2. Если же условия выполняются, то переходят к п. 5.

5. Определяется координата ξ* как среднеарифметическое координат ξ по всем узлам прямоугольника. Таким же образом определяется координата η*.

6. По формуле:

определяется значение функции в точке с координатами x*, y*.

Способ проведения анализа долговечности РЭА с использованием автоматического построения расчетных моделей в системе геометрического моделирования программно проработан и прошел отладку при конструировании бортовой РЭА космических аппаратов. Практическое применение данного способа позволяет уменьшить сроки конструирования РЭА, что подтверждает эффективность предложенного способа проведения анализа долговечности ЭМ РЭА на основе компьютерного моделирования термопрочностных процессов.


СПОСОБ ПРОВЕДЕНИЯ АНАЛИЗА ДОЛГОВЕЧНОСТИ РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ
СПОСОБ ПРОВЕДЕНИЯ АНАЛИЗА ДОЛГОВЕЧНОСТИ РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ
СПОСОБ ПРОВЕДЕНИЯ АНАЛИЗА ДОЛГОВЕЧНОСТИ РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ
Источник поступления информации: Роспатент

Показаны записи 31-40 из 213.
27.09.2015
№216.013.7ec8

Способ измерения тепловых полей электрорадиоизделий

Изобретение относится к космической технике и может быть использовано при наземных тепловакуумных испытаниях бортовой радиоэлектронной аппаратуры (РЭА) негерметичных космических аппаратов (КА). Предложен способ измерения тепловых полей электрорадиоизделий, включающий использование...
Тип: Изобретение
Номер охранного документа: 0002564053
Дата охранного документа: 27.09.2015
10.10.2015
№216.013.8137

Устройство металлизации подвижных элементов конструкции

Изобретение относится к устройству металлизации подвижных элементов конструкции трансформируемых механических систем космических летательных аппаратов и предназначено для защиты приборов и кабельных систем трансформируемых механических систем космических летательных аппаратов от влияния зарядов...
Тип: Изобретение
Номер охранного документа: 0002564676
Дата охранного документа: 10.10.2015
20.10.2015
№216.013.830a

Способ тепловакуумных испытаний космических аппаратов и устройство для его реализации

Изобретение относится к области космической техники. Устройство для тепловакуумных испытаний содержит стационарный цилиндрический криогенный экран, расположенный в вакуумной камере, пространственно позиционируемый экран (ППКЭ) с размероизменяемым кронштейном и приводом трехмерной дислокации....
Тип: Изобретение
Номер охранного документа: 0002565149
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.8420

Кронштейн

Металлический кронштейн (1) состоит из двух концевых участков с пазами и имеет Г-образный профиль с продольными и поперечными пазами (2) различной толщины по всей его длине. Кронштейн закреплен с помощью болтового соединения (6) на двух противоположных элементах сложной конструкции, например...
Тип: Изобретение
Номер охранного документа: 0002565427
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.84ea

Способ изготовления космического аппарата

Способ изготовления космического аппарата относится к космической технике. Способ заключается в том, что производят сборку космического аппарата, проводят электрические испытания на функционирование, испытания на воздействие механических нагрузок, термовакуумные испытания определенным образом....
Тип: Изобретение
Номер охранного документа: 0002565629
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.859c

Система имитации невесомости

Изобретение относится к испытательной технике, в частности к наземным испытаниям механизмов, предназначенных для работы в невесомости, и может быть использовано для обезвешивания крупногабаритных трансформируемых конструкций. Устройство состоит из блока управления на основе компьютера и...
Тип: Изобретение
Номер охранного документа: 0002565807
Дата охранного документа: 20.10.2015
27.10.2015
№216.013.8984

Сигнальное токосъемное устройство

Изобретение относится к области электротехники, к токосъемным устройствам миниатюрного исполнения и может быть использовано в космической технике. Техническим результатом является повышение надежности устройства, снижение массы конструкции и повышение функциональных возможностей. Сигнальное...
Тип: Изобретение
Номер охранного документа: 0002566807
Дата охранного документа: 27.10.2015
27.11.2015
№216.013.9494

Способ электрических проверок космических аппаратов

Изобретение относится к электротехнической промышленности и может быть использовано при изготовлении космических аппаратов (КА). Способ электрических проверок космических аппаратов заключается в проведении включения и выключения КА, включая подключение или отключение бортовых источников...
Тип: Изобретение
Номер охранного документа: 0002569655
Дата охранного документа: 27.11.2015
27.11.2015
№216.013.9497

Космическая платформа

Изобретение относится к космической технике. Космическая платформа содержит модуль служебных систем в форме прямоугольного параллелепипеда, узлы стыковки с системой отделения, двигательную установку, солнечные батареи, систему терморегулирования. Космическая платформа включает в себя...
Тип: Изобретение
Номер охранного документа: 0002569658
Дата охранного документа: 27.11.2015
10.12.2015
№216.013.95e9

Приборный отсек космического аппарата

Изобретение относится к оборудованию космических аппаратов (КА), например, телекоммуникационных спутников. Приборный отсек (ПО) КА содержит электрогерметичный корпус, выполненный из сотопанелей с вентиляционными отверстиями (ВО), внутри которого преимущественно установлены приборы полезной...
Тип: Изобретение
Номер охранного документа: 0002569997
Дата охранного документа: 10.12.2015
Показаны записи 31-40 из 136.
27.09.2015
№216.013.7ec8

Способ измерения тепловых полей электрорадиоизделий

Изобретение относится к космической технике и может быть использовано при наземных тепловакуумных испытаниях бортовой радиоэлектронной аппаратуры (РЭА) негерметичных космических аппаратов (КА). Предложен способ измерения тепловых полей электрорадиоизделий, включающий использование...
Тип: Изобретение
Номер охранного документа: 0002564053
Дата охранного документа: 27.09.2015
10.10.2015
№216.013.8137

Устройство металлизации подвижных элементов конструкции

Изобретение относится к устройству металлизации подвижных элементов конструкции трансформируемых механических систем космических летательных аппаратов и предназначено для защиты приборов и кабельных систем трансформируемых механических систем космических летательных аппаратов от влияния зарядов...
Тип: Изобретение
Номер охранного документа: 0002564676
Дата охранного документа: 10.10.2015
20.10.2015
№216.013.830a

Способ тепловакуумных испытаний космических аппаратов и устройство для его реализации

Изобретение относится к области космической техники. Устройство для тепловакуумных испытаний содержит стационарный цилиндрический криогенный экран, расположенный в вакуумной камере, пространственно позиционируемый экран (ППКЭ) с размероизменяемым кронштейном и приводом трехмерной дислокации....
Тип: Изобретение
Номер охранного документа: 0002565149
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.8420

Кронштейн

Металлический кронштейн (1) состоит из двух концевых участков с пазами и имеет Г-образный профиль с продольными и поперечными пазами (2) различной толщины по всей его длине. Кронштейн закреплен с помощью болтового соединения (6) на двух противоположных элементах сложной конструкции, например...
Тип: Изобретение
Номер охранного документа: 0002565427
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.84ea

Способ изготовления космического аппарата

Способ изготовления космического аппарата относится к космической технике. Способ заключается в том, что производят сборку космического аппарата, проводят электрические испытания на функционирование, испытания на воздействие механических нагрузок, термовакуумные испытания определенным образом....
Тип: Изобретение
Номер охранного документа: 0002565629
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.859c

Система имитации невесомости

Изобретение относится к испытательной технике, в частности к наземным испытаниям механизмов, предназначенных для работы в невесомости, и может быть использовано для обезвешивания крупногабаритных трансформируемых конструкций. Устройство состоит из блока управления на основе компьютера и...
Тип: Изобретение
Номер охранного документа: 0002565807
Дата охранного документа: 20.10.2015
27.10.2015
№216.013.8984

Сигнальное токосъемное устройство

Изобретение относится к области электротехники, к токосъемным устройствам миниатюрного исполнения и может быть использовано в космической технике. Техническим результатом является повышение надежности устройства, снижение массы конструкции и повышение функциональных возможностей. Сигнальное...
Тип: Изобретение
Номер охранного документа: 0002566807
Дата охранного документа: 27.10.2015
27.11.2015
№216.013.9494

Способ электрических проверок космических аппаратов

Изобретение относится к электротехнической промышленности и может быть использовано при изготовлении космических аппаратов (КА). Способ электрических проверок космических аппаратов заключается в проведении включения и выключения КА, включая подключение или отключение бортовых источников...
Тип: Изобретение
Номер охранного документа: 0002569655
Дата охранного документа: 27.11.2015
27.11.2015
№216.013.9497

Космическая платформа

Изобретение относится к космической технике. Космическая платформа содержит модуль служебных систем в форме прямоугольного параллелепипеда, узлы стыковки с системой отделения, двигательную установку, солнечные батареи, систему терморегулирования. Космическая платформа включает в себя...
Тип: Изобретение
Номер охранного документа: 0002569658
Дата охранного документа: 27.11.2015
10.12.2015
№216.013.95e9

Приборный отсек космического аппарата

Изобретение относится к оборудованию космических аппаратов (КА), например, телекоммуникационных спутников. Приборный отсек (ПО) КА содержит электрогерметичный корпус, выполненный из сотопанелей с вентиляционными отверстиями (ВО), внутри которого преимущественно установлены приборы полезной...
Тип: Изобретение
Номер охранного документа: 0002569997
Дата охранного документа: 10.12.2015
+ добавить свой РИД