×
27.12.2015
216.013.9e29

Результат интеллектуальной деятельности: СПОСОБ ПЕРЕРАБОТКИ АЛЮМИНИЙСОДЕРЖАЩЕГО СЫРЬЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу переработки алюминийсодержащего сырья и может быть использовано при получении глинозема. Способ включает обжиг алюминийсодержащего сырья, обработку обожженного материала соляной кислотой, разделение полученной пульпы на осветленный хлоридный раствор и сиштоф, промываемый водой перед отправкой в отвал, высаливание хлорида алюминия путем насыщения осветленного хлоридного раствора газообразным хлороводородом, кальцинацию хлорида алюминия для получения оксида алюминия и пирогидролиз маточного раствора с возвратом хлороводорода на стадии кислотной обработки и высаливания, осажденный в процессе высаливания гексагидрат хлорида алюминия обрабатывают водным аммиаком, полученный осадок направляют на кальцинацию, раствор хлорида аммония смешивают с алюминийсодержащим сырьем перед его обжигом или в процессе обжига, выделяемый при обжиге аммиак растворяют в воде, полученный при этом водный аммиак направляют на обработку гексагидрата хлорида алюминия, а обожженный материал перед кислотной обработкой подвергают водному выщелачиванию при отношении жидкой и твердой фаз, равном 0,6-1,4. Обеспечивается повышение качества глинозема и снижение энергозатрат. 3 з.п. ф-лы, 1 табл., 1 ил.

Изобретение относится к металлургии, в частности к кислотным способам переработки алюминийсодержащего сырья и может быть использовано при получении глинозема.

Известен солянокислотный способ получения глинозема путем кислотной обработки предварительно обожженного сырья, выпаривания осветленного хлоридного раствора с кристаллизацией гексагидрата хлорида алюминия (AlCl3·6H2O) с последующей кальцинацией его до оксида, который ввиду значительного содержания железа и других примесей (за исключением кремния), назван авторами «черновым глиноземом» (Справочник металлурга по цветным металлам. Производство глинозема. М:. Металлургия, 1970, С. 236-237). Далее этот промежуточный продукт перерабатывался по традиционной щелочной схеме Байера для удаления железа и получения глинозема металлургического качества.

К недостаткам данного способа получения глинозема относятся сложность технологической схемы, высокие энергозатраты при ее реализации, попадание хлоридов из кислотного цикла в щелочной и связанные с этим дополнительные потери щелочи, достигавшие 36-37 кг/т глинозема. По перечисленным причинам этот способ не нашел применения в промышленности.

Наиболее близким к заявленному способу является способ получения глинозема из высококремнистых бокситов через солянокислотное выщелачивание, включающий размол и обжиг алюминийсодержащего сырья при температуре до 700°С, обработку его соляной кислотой, разделение полученной пульпы на хлоридный раствор и сиштоф (отход, представляющий собой, главным образом, дисперсный кремнезем, промываемый водой перед отправкой в отвал), высаливание гексагидрата хлорида алюминия путем насыщения осветленного хлоридного раствора газообразным хлороводородом, кальцинацию гексагидрата хлорида алюминия для получения оксида алюминия и пирогидролиз маточного раствора с возвратом хлороводорода на стадии кислотной обработки и высаливания (Elsner D., Jenkins D.H. and Sinha H.N. Alumina via hydrochloric acid leaching of high silica bauxites - process development. Light metals, 1984, p. 411-426).

Согласно этому способу гексагидрат хлорида алюминия выделялся из раствора путем высаливания газообразным хлороводородом, что позволило упростить технологическую схему, отказаться от процесса Байера и снизить энергозатраты. Однако содержание примесей в конечном продукте, особенно, хлора и железа, в 2 раза превышало допустимые для металлургического глинозема пределы.

К недостаткам данного способа следует также отнести энергозатратный прием поддержания водного баланса в технологическом цикле путем однократного испарения оборотной воды при пирогидролизе хлорида железа и прочих примесных хлоридов.

При высаливании AlCl3·6Н2О из раствора, содержащего хлориды железа и других примесных металлов, очень сложно обеспечить высокую чистоту целевого продукта, а его кальцинация является самым энергозатратным переделом. Расход тепловой энергии при кальцинации гексагидрата хлорида алюминия при 1100-1200°С достигает 15 ГДж/т полученного глинозема. К тому же, при кальцинации очень трудно избавиться от остаточного хлора, который оказывает крайне негативное влияние при электролитическом получении алюминия из глинозема.

В основу изобретения положена задача, заключающаяся в разработке способа получения металлургического глинозема из низкосортного сырья, позволяющего перерабатывать бедное высококремнистое железосодержащее природное и техногенное алюминиевое сырье.

Техническим результатом является повышение качества глинозема и снижение энергозатрат.

Достижение вышеуказанного технического результата обеспечивается тем, что в способе переработки алюминийсодержащего сырья, включающем обжиг алюминийсодержащего сырья, обработку обожженного материала соляной кислотой, разделение полученной пульпы на осветленный хлоридный раствор и сиштоф, промываемый водой перед отправкой в отвал, высаливание хлорида алюминия путем насыщения осветленного хлоридного раствора газообразным хлористым водородом, кальцинацию хлорида алюминия для получения оксида алюминия и пирогидролиз маточного раствора с возвратом хлористого водорода на стадии кислотной обработки и высаливания, осажденный в процессе высаливания гексагидрат хлорида алюминия обрабатывают водным аммиаком, полученный осадок направляют на кальцинацию, раствор хлористого аммония смешивают с алюминийсодержащим сырьем перед его обжигом или в процессе обжига, выделяемый при обжиге аммиак растворяют в воде, полученный при этом водный аммиак направляют на обработку гексагидрата хлорида алюминия, а обожженный материал перед кислотной обработкой подвергают водному выщелачиванию при отношении жидкой и твердой фаз, равном 0,6-1,4.

Раствор хлористого аммония перед смешиванием с алюминийсодержащим сырьем может быть подвергнут стадийному упариванию при многократном использовании греющего пара.

Выделившийся при упаривании хлорид аммония в качестве оборотного промпродукта может быть смешан с алюминийсодержащим сырьем.

Обожженный материал перед кислотной обработкой может быть подвергнут выщелачиванию промводой после промывки сиштофа.

При обработке кристаллов AlCl3·6Н2О водным аммиаком происходит псевдоморфное превращение хлорида алюминия в частично дегидратированный гидроксид алюминия - бемит (AlOOH). Размеры частиц твердой фазы при этом практически не изменяются.

Кальцинация бемита требует всего 2,15 ГДж тепловой энергии на 1 т полученного глинозема.

При обработке гексагидрата хлорида алюминия водным аммиаком образуется раствор хлорида аммония, который в отличие от солянокислых растворов не проявляет сильного коррозионного воздействия на аппаратуру, и может быть постадийно упарен в батарее обычных выпарных аппаратов с паровым нагревом и многократным использованием греющего пара, которые широко используются в промышленности минеральных солей и удобрений и дают 2-3-кратную экономию потребляемого тепла по сравнению с однократным испарением воды, как это происходит в прототипе, когда вся вода, вводимая в технологический цикл для промывки сиштофа, поступала на пирогидролиз.

Оборот хлорида аммония может быть рационально осуществлен добавкой упаренного раствора непосредственно перед операцией обжига. Возможен также оборот хлорида аммония в виде кристаллов, выделенных в процессе упаривания раствора.

При температуре свыше 196°С происходит разложение хлорида аммония на газообразные хлористый водород и аммиак. Хлористый водород реагирует с компонентами сырья, в первую очередь с железом, с образованием соответствующих хлоридов.

При этом высвобождающийся аммиак может быть абсорбирован водой и в виде водного раствора направлен на обработку кристаллов AlCl3·6Н2О.

Извлечение алюминия в раствор, в силу его химических свойств, происходит в основном на стадии солянокислотной обработки. Поскольку частичная хлоринация сырья происходит еще на стадии обжига, нагрузка на передел солянокислотной обработки снижается.

Таким образом, в данном способе реализуется оборот хлористого водорода (соляной кислоты) и оборот аммиака с минимизацией расхода реагентов и тепловой энергии.

Причинами поступления железа из алюминийсодержащего сырья в продукционный глинозем являются:

изоморфное соосаждение при кристаллизации AlCl3·6Н2О;

остатки маточного раствора на поверхности кристаллов AlCl3·6Н2О;

захват маточного раствора, инкапсулированного в кавернах кристаллов AlCl3·6Н2О.

Очевидно, что для исключения вышеперечисленных причин необходимо минимизировать содержание железа в осветленном растворе.

Поскольку на стадии обжига происходит, главным образом, образование хлоридов железа наиболее рациональным приемом является их выделение из обожженного продукта путем предварительного водного выщелачивания, что предотвращает их дальнейшее попадание в осветленный раствор. При этом раствор хлоридов железа направляют сразу на их разложение пирогидролизом.

Для минимизации ввода внешней воды в технологический цикл целесообразно осуществлять водное выщелачивание обожженного продукта промывными водами других переделов, например - промводой после промывки сиштофа.

Сущность изобретения поясняется технологической схемой переработки алюминийсодержащего сырья.

Способ переработки алюминийсодержащего сырья осуществляется следующим образом.

Алюминийсодержащее сырье в смеси с хлоридом аммония направляют на обжиг, где происходит частичная термическая активация сырья и разложение хлорида аммония. При этом хлористый водород взаимодействует с оксидными компонентами сырья, а высвободившийся газообразный аммиак абсорбируется водой с образованием водного аммиака. Таким образом, сырье проходит стадию обжига-хлоринации.

Обожженный продукт подвергают водному выщелачиванию, что позволяет на этом этапе перевести в раствор компоненты, прореагировавшие с хлороводородом, в первую очередь хлорид железа, и не допустить его попадания на стадию кислотной обработки. Алюминий при этом практически полностью остается в твердой фазе. Выщелачивание можно проводить водой, привносимой извне, но более целесообразно использовать для этого промводу после промывки сиштофа. Это позволяет минимизировать энергозатраты на стадии выпаривания, поскольку водный баланс может быть поддержан только выпариванием.

Далее для наиболее полного перевода целевого компонента в раствор обожженное сырье, выщелоченное водой, подвергают обработке соляной кислотой с получением пульпы, которую разделяют (например, фильтрованием) на твердую фазу - отвальный сиштоф, содержащий в основном кремнезем, и хлоридный раствор, где главным компонентом является алюминий. Сиштоф промывают водой, а образующуюся промводу направляют на водное выщелачивание оборотного продукта. Выделение алюминия из хлоридного раствора осуществляют путем барботирования газообразным хлороводородом, который вытесняет (высаливает) гексагидрат хлорида алюминия в виде кристаллов, подвергаемых в дальнейшем обработке (нейтрализации) водным аммиаком, поступающим со стадии обжига-хлоринации с образованием частично дегидратированного гидроксида алюминия (бемита) и раствора хлорида аммония. Бемит направляется на кальцинацию с получением товарного глинозема. Маточный раствор после высаливания гексагидрата хлорида алюминия поступает на стадию пирогидролиза, где происходит образование гидроксидов и оксидов других металлов, главным образом, - гематита. Регенерация соляной кислоты, как в виде водного раствора, так и газообразного хлороводорода осуществляется на стадии прогидролиза, сопровождающегося ректификацией. Оба эти оборотных реагента возвращают на стадии кислотной обработки и высаливания гексагидрата хлорида алюминия соответственно.

Раствор хлорида аммония направляется на стадийное упаривание с многократным использованием греющего пара.

Способ переработки алюминийсодержащего сырья иллюстрируется конкретным примером.

Навески сырья массой 100 г с содержанием основных компонентов, %: Al2O3 31,5; SiO2 5,7; Fe2O3 35,2; TiO2 8,5; CaO 0,22; MgO 0,2; Na2O 0,25; K2O 0,15; V2O5 0,1; Cr2O3 0,12; SO3 0,25; ППП 17,2 смешивали с навесками хлорида аммония массой 200 г. Смесь помещали в трубчатую лабораторную печь, нагретую до 300°С, и выдержали в ней в течение 3 ч. Выделяющийся газообразный аммиак барботировали через слой воды, получая таким образом водный аммиак. Обожженный материал выщелачивали водой в агитационном режиме при варьировании отношения жидкой и твердой фаз (Ж:Т). Полученный твердый продукт растворяли в 20-процентной соляной кислоте при 98°С, взятой в количестве, обеспечивающем переход в раствор алюминия, со стехиометрическим превышением, равным 1.1, в течение 3 ч. Образовавшуюся пульпу фильтровали и из осветленного раствора путем высаливания газообразным хлористым водородом кристаллизовали гексагидрат хлорида алюминия. Отфильтрованные кристаллы обрабатывали водным раствором аммиака. По результатам рентгенофазового анализа полученная таким образом твердая фаза представляла собой беспримесный бемит (AlOOH). Промытый водой бемит прокаливали в муфельной печи при 1100°С с получением глинозема, который по химическому и гранулометрическому составу полностью отвечал металлургическому глинозему марки Г-0.

Раствор после высаливания гексагидрата хлорида алюминия подвергали пирогидролизу с выделением железа и титана и др. малых примесей в виде оксидов. Хлораммонийный раствор, образовавшийся после обработки кристаллов AlCl3·6Н2О раствором аммиака, упаривали с выделением кристаллов хлорида аммония, который также рассматривался в качестве оборотного продукта.

Полученные результаты примеров реализации заявляемого способа, а также опыт по прототипу представлены в таблице, из данных которой следует, что во всех примерах реализации заявляемого способа удалось получить требуемое содержание Fe2O3 в глиноземе (не более 0,015%), в то время как в примере по прототипу оно оказалось вдвое выше. В примере на запредельное значение при недостатке воды, подаваемой на водное выщелачивание (Ж:Т=0,5, т.е. ниже нижнего предела), не обеспечивается требуемая чистота глинозема. При превышении верхнего заявляемого значения (Ж:Т=1,4) увеличение количества промывной воды уже становится избыточным и не влияет на содержание железа в прокаленном глиноземе.

Заявляемый способ обеспечивает достижение требуемого технического результата без введения в технологию посторонних реагентов.

Таблица
Пример Реализуемый способ Отношение жидкой и твердой фаз при водной промывке обожженного продукта Содержание Fe2O3 в глиноземе, %
1 по прототипу 0 0,030
2 пример на запредельное значение 0,5 0,017
3 заявляемый 0,6 0,014
4 заявляемый 0,8 0,009
5 заявляемый 1,0 0,008
6 заявляемый 1,2 0,007
7 заявляемый 1,4 0,006
8 пример на запредельное значение 1,5 0,006


СПОСОБ ПЕРЕРАБОТКИ АЛЮМИНИЙСОДЕРЖАЩЕГО СЫРЬЯ
Источник поступления информации: Роспатент

Показаны записи 161-170 из 231.
01.11.2018
№218.016.991d

Способ получения связующего пека с пониженным содержанием бенз(а)пирена

Изобретение относится к способу получения связующего для производства электродных материалов, применяющихся при производстве алюминия. Описан способ получения связующего пека с пониженным содержанием бенз(а)пирена, включающий термическую обработку посредством совместной дистилляции...
Тип: Изобретение
Номер охранного документа: 0002671354
Дата охранного документа: 30.10.2018
30.11.2018
№218.016.a1af

Машина для транспортировки и загрузки сыпучего сырья в электролизер для получения алюминия

Изобретение относится к устройствам для обслуживания электролизеров для получения алюминия. Машина для транспортировки и загрузки сыпучего сырья содержит установленный на самоходном шасси с кабиной бункер для сыпучего сырья, оснащенный выгрузным шнеком с загрузочной горловиной на его конце для...
Тип: Изобретение
Номер охранного документа: 0002673596
Дата охранного документа: 28.11.2018
30.11.2018
№218.016.a1ce

Высокопрочный сплав на основе алюминия

Изобретение относится к области металлургии, в частности производству литейных материалов на основе алюминия, и может быть использовано для получения ответственных изделий, работающих под действием высоких нагрузок, используемых для автомобилестроения, спортивного инвентаря и других....
Тип: Изобретение
Номер охранного документа: 0002673593
Дата охранного документа: 28.11.2018
30.11.2018
№218.016.a1d1

Способ получения алюминиевых сплавов

Изобретение относится к способу получению сплавов на основе алюминия электролизом. Способ включает использование малорасходуемого анода алюминиевого электролизера в качестве источника легирующих элементов, при этом осуществляют введение в расплавленный катодный алюминий легирующих элементов...
Тип: Изобретение
Номер охранного документа: 0002673597
Дата охранного документа: 28.11.2018
30.11.2018
№218.016.a259

Способ рафинирования технического кремния

Изобретение относится к цветной металлургии и может быть использовано для очистки технического кремния, полученного восстановительной плавкой в руднотермических электрических печах. Способ рафинирования технического кремния включает продувку в процессе выливки расплава из печи в ковш до его...
Тип: Изобретение
Номер охранного документа: 0002673532
Дата охранного документа: 27.11.2018
02.12.2018
№218.016.a310

Система классификации вареной разбавленной пульпы

Изобретение относится к оборудованию гидрометаллургических производств и предназначено для осуществления процесса классификации по дисперсному составу твердой фазы различных суспензий и может быть использовано также в других областях промышленности, где требуется классификация твердой фазы,...
Тип: Изобретение
Номер охранного документа: 0002673831
Дата охранного документа: 30.11.2018
02.02.2019
№219.016.b5c9

Ошиновка модульная для серий алюминиевых электролизеров

Изобретение относится к производству алюминия. Ошиновка поперечно расположенных в сериях алюминиевых электролизеров состоит из анодной части, выполненной с возможностью соединения анодов в серии электролизеров посредством анодных штанг, катодной части, состоящей из катодных стержней с гибкими...
Тип: Изобретение
Номер охранного документа: 0002678624
Дата охранного документа: 30.01.2019
02.02.2019
№219.016.b5fd

Способ подготовки шихтовой заготовки для получения изделий методом литья

Изобретение относится к металлургическому производству, в частности к шихтовой заготовке, которую используют для получения бронзовых заготовок методом литья. В качестве исходной шихты используют отработанный в процессе электролитического получения алюминия инертный анод, имеющий состав,...
Тип: Изобретение
Номер охранного документа: 0002678628
Дата охранного документа: 30.01.2019
02.02.2019
№219.016.b617

Установка для нагрева подовых блоков алюминиевых электролизеров

Изобретение относится к установке для нагрева подовых блоков при монтаже подины алюминиевого электролизера. Установка содержит печь с футерованными стенками и сводом, закрепленную на своде систему нагрева блоков и устройство для загрузки- выгрузки блоков. Печь выполнена из нескольких секций,...
Тип: Изобретение
Номер охранного документа: 0002678626
Дата охранного документа: 30.01.2019
20.02.2019
№219.016.c244

Контактный зажим электролизера с обожженными анодами

Изобретение относится к области цветной металлургии, в частности к получению алюминия электролизом в криолит-глиноземных расплавах, а конкретно к конструктивным элементам электролизеров с обожженными анодами для получения алюминия. Контактный зажим электролизера с обожженными анодами,...
Тип: Изобретение
Номер охранного документа: 0002458187
Дата охранного документа: 10.08.2012
Показаны записи 131-135 из 135.
17.02.2018
№218.016.2a5c

Ошиновка для алюминиевых электролизеров большой мощности

Изобретение относится к ошиновке алюминиевого электролизера большой мощности при поперечном расположении электролизеров в корпусе электролиза. Ошиновка содержит сборные и обводные катодные шины и спуски, установленные вдоль входной и выходной сторон катодного кожуха предыдущего электролизера, в...
Тип: Изобретение
Номер охранного документа: 0002643005
Дата охранного документа: 29.01.2018
04.04.2018
№218.016.2f54

Способ и шихта для получения азотированного силикомарганца в дуговой руднотермической электропечи

Изобретение относится к области металлургии, а точнее к электротермическому получению металлов и сплавов в дуговых рудно-термических электропечах и может быть использовано в производстве марганцевых и хромистых ферросплавов. Способ включает подготовку и загрузку в печь марганцевой руды и/или...
Тип: Изобретение
Номер охранного документа: 0002644637
Дата охранного документа: 13.02.2018
10.05.2018
№218.016.391f

Способ получения металлургического глинозема (варианты)

Группа изобретений относится к металлургии и может быть использована при переработке низкосортного высококремнистого алюминийсодержащего сырья. Осуществляют измельчение алюминий-содержащего сырья с последующим вскрытием соляной кислотой, представляющей собой кислый оборотный маточный раствор....
Тип: Изобретение
Номер охранного документа: 0002647041
Дата охранного документа: 13.03.2018
10.05.2018
№218.016.3dc3

Способ десорбции хлороводорода из водных растворов и способ концентрирования соляной кислоты

Изобретение относится к способу десорбции хлороводорода из водных растворов соляной кислоты и/или ее гидролизующихся солей и может использоваться, в частности, в процессах дистилляции, ректификации и концентрирования соляной кислоты, в том числе в процессах переработки водных растворов...
Тип: Изобретение
Номер охранного документа: 0002648334
Дата охранного документа: 23.03.2018
27.01.2020
№220.017.fa85

Способ получения галлатного раствора

Изобретение относится к области металлургии редких металлов, а именно к способам извлечения галлия из щелочных галлийсодержащих растворов, в том числе оборотных растворов глиноземного производства. Галлатный раствор получают из щелочного галлийсодержащего раствора. Проводят сорбцию галлия из...
Тип: Изобретение
Номер охранного документа: 0002712162
Дата охранного документа: 24.01.2020
+ добавить свой РИД