×
30.11.2018
218.016.a1ce

ВЫСОКОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области металлургии, в частности производству литейных материалов на основе алюминия, и может быть использовано для получения ответственных изделий, работающих под действием высоких нагрузок, используемых для автомобилестроения, спортивного инвентаря и других. Высокопрочный сплав на основе алюминия содержит, мас.%: цинк 5-8, магний 1,5-2,1, кальций 0,10-1,9, железо 0,08-0,5, титан 0,01-0,15, кремний 0,08-0,9, никель 0,2-0,4, церий 0,2-0,4, цирконий 0,08-0,15, скандий 0,08-0,15, алюминий – остальное, при этом содержание цинка в алюминиевом растворе и вторичных выделениях составляет не менее 4 мас.%. Техническим результатом является увеличение прочностных свойств сплава и изделий из него за счет образования вторичных выделений упрочняющей фазы путем дисперсионного твердения. 15 з.п. ф-лы, 7 пр., 9 табл., 5 ил.
Реферат Свернуть Развернуть

Область техники

Изобретение относится к области металлургии литейных сплавов на основе алюминия и может быть использовано для получения изделий, работающих в нагруженных конструкциях, в том числе, ответственного назначения, в следующих областях: транспорт (для получения автокомпонентов, включая литые колесные диски), спортивная индустрия и спортинвентарь (велосипеды, самокаты, тренажеры и др.), другие отрасли машиностроения и промышленного хозяйства.

Предшествующий уровень техники

Среди литейных алюминиевых сплавов наибольшее распространение получили сплавы на основе системы Al-Si. Обычно, для упрочнения сплавов системы Al-Si в качестве основных легирующих элементов используют медь, магний и в некоторых сплавах совместно эти элементы (типичными представителями являются сплавы типа 356 и 354). По уровню значений временного сопротивления разрыву в состоянии Т6 сплавы типа 356 и 354 обычно не превышают значения 300 и 380 МПа соответственно, что является для них абсолютным максимум при использовании традиционных методов фасонного литья. При этом указанный уровень прочностных свойств существенно зависит от содержания железа в сплаве. Для достижения высокого уровня прочностных свойств, прежде всего усталости, уровень содержания железа ограничивают (обычно на уровне 0,08-0,12 масс. %) за счет использования «чистых» марок первичного алюминия. При содержании более высоких концентраций железа наблюдается существенное снижение значений относительного удлинения и уровня усталостных характеристик.

Среди известных наиболее высокопрочных марок литейных алюминиевых сплавов следует отметить сплавы типа основе системы Al-Cu, дополнительно легированные марганцем. Здесь следует выделить сплавы марок типа АМ5 или сплавы 2хх серии, по уровню прочностных свойств которые в состояния Т6 достигают σв=400-450 МПа (Промышленные алюминиевые сплавы / Справ. изд. / Алиева С.Г., Альтман М.Б. и др. М., Металлургия, 1984. 528 с.). К недостаткам сплавов этого типа следует отнести относительно низкую технологичность при литье, ввиду низкого уровня литейных характеристик, в частности высокую склонность к горячим трещинам и низкую жидкотекучесть, что создает множество проблем при получении фасонных отливок и прежде всего при литье в кокиль.

Известен материал, разработанный компанией РУСАЛ, отраженный в изобретении «Высокопрочный сплав на основе алюминия» (RU 2610578 от 29.09.2015). Предложенный сплав содержит цинк 5,2-6,0, магний 1,5-2,0, никель 0,5-2,0, железо 0,4-1,0, медь 0,01-0,25, цирконий 0,05-0,20 и, по меньшей мере, один элемент из группы, включающей скандий 0,05-0,10, титан 0,02-0,05, алюминий остальное. Из материала могут быть получены отливки для автокомпонентов и других применений с уровнем временного сопротивления разрыву около 500 МПа. Среди недостатков предложенного материала следует отметить низкий уровень прочностных свойств при литье в «горячую» изложницу, с температурами выше 250°С, что связно с огрублением эвтектической составляющей, содержащей железо и никель, что накладывает ряд ограничений при массовом производстве отливок.

Известен другой высокопрочный сплав системы Al-Zn-Mg-Cu-Sc для отливок аэрокосмического и автомобильного применения, раскрытый в патенте Alcoa Int. ЕР 1885898 В1 (публ. 02.13.2008, бюл. 2008/07). Из предложенного сплава, содержащего 4-9% Zn; 1-4% Mg; l-2,5%Cu; <0,1% Si; 0,12% Fe; <0,5% Mn; 0,01 to 0,05% В; 0.15% Ti; 0,05-0,2% Zr; 0,1-0,5% Sc, могут быть получены отливки с высоким уровнем прочностных характеристик (на 100% больше чем сплав типа A356) следующими методами литья: методом литья под низким давлением, методом гравитационного литья в кокиль, методом литья с кристаллизацией под давлением и другими. Среди недостатков этого изобретения следует выделить отсутствие в химическом составе эвтектикообразующих элементов (структура сплава представляет собой преимущественно алюминиевый раствор), что не позволит получать фасонные отливки относительно сложной формы. Кроме того, в химическом составе сплава ограничено железо, что требует использование относительно чистых марок первичного алюминия, а также присутствует комбинация малых добавок переходных металлов, в том числе и скандия, что в некоторых случаях не в полной мере оправдано (например, при литье в землю, из-за низкой скорости охлаждения).

Наиболее близким к предложенному изобретению является высокопрочный сплав на основе алюминия, раскрытый в патенте НИТУ «МИСиС» RU 2484168 С1, (публ. 10.06.2013, бюл. №16). Предложенный материал содержит легирующие элементы при следующем соотношении (масс. %): цинк 7-12%, кальций 2-5%, магний 2,2-3,8%, цирконий 0,02-0,25%, алюминий остальное, при этом твердость материала составляет не менее 150 HV, временное сопротивление (σв) - не менее 450 МПа, предел текучести (σ0,2) - не менее 400 МПа. Материал может быть использован при получении изделий, работающих под действием высоких нагрузок при температурах до 100-150°С, таких как детали летательных аппаратов, автомобилей и других транспортных средств, детали спортинвентаря и др. Среди недостатков предложенного материала следует выделить то, что заявлены высокие концентрации магния, приводящие к высокой перенапряженности матрицы алюминиевого раствора и, как следствие, к снижению значений относительного удлинения. К другому недостатку данного материала следует отнести отсутствие упоминания о допустимом уровне содержания железа.

Раскрытие изобретения

Задачей изобретения является создание нового литейного алюминиевого сплава, характеризующегося высоким уровнем прочностных характеристик при фасонном литье, в металлический кокиль, характеризующегося совокупностью высокого уровня механических свойств (временного сопротивления разрыву, относительного удлинения и усталостных характеристик) и высокой технологичности (высокой жидкотекучести) при литье фасонных отливок.

Техническим результатом является решение поставленной задачи, достижение высокого уровня технологичности (жидкотекучести) за счет присутствия в сплаве эвтектической составляющей и увеличение прочностных свойств сплава и изделий из него за счет наличия в структуре вторичных выделений, формирующихся при дисперсионном твердении.

Достижение указанного технического результата обеспечивается тем, что предложен литейный сплав на основе алюминия, содержащий цинк, магний, кальций. При этом сплав дополнительно содержит железо, титан, и, по меньшей мере, один элемент из группы, включающей кремний, церий и никель, цирконий и скандий, при следующих концентрациях компонентов, мас. %:

Цинк 5-8

Магний 1,5-2,1

Кальций 0,10-1,9

Железо 0,08-0,5

Титан 0,01-0,15

Кремний 0,08-0,9

Никель 0,08-1,0

Церий 0,10-0,4

Цирконий 0,08-0,15

Скандий 0,08-0,15

Алюминий Остальное

при этом содержание цинка в алюминиевом растворе и/или вторичных выделениях составляет не менее 4,0 масс. %.

В частных исполнениях кальций может присутствовать в структуре в виде соединений с цинком, железом, никелем и кремнием эвтектического происхождения, с размером частиц не более 3 мкм.

Кроме того, высокопрочный сплав может содержать алюминий, полученный по технологии электролиза с инертным анодом, а цирконий и скандий представлены преимущественно в виде вторичных выделений с размером до 20 нм и типом решетки L12.

В частных исполнениях сплав может быть выполнен в виде отливок методом литья под низким и высоким давлением, методом гравитационного литья и методом литья с кристаллизацией под давлением.

Сущность изобретения

Заявленный диапазон легирующих элементов обеспечивает достижение высокого уровня механических свойств при условии, что структура алюминиевого сплава должна представлять собой: алюминиевый раствор, упрочненный вторичными выделениями метастабильных фаз упрочнителей и эвтектической составляющей, содержащей кальций, никель и один элемент из группы, включающей кремний, церий и никель.

Первоначальный выбор легирующих элементов осуществлялся на основании анализа соответствующих фазовых диаграмм состояния, в том числе с использованием пакета программ Thermocalc. Критерием выбора концентрационного диапазона являлось отсутствие первично кристаллизующихся кристаллов, содержащих цинк, кальций, железо и никель. Сплавы с церием получены на основании эмпирических данных, ввиду отсутствия соответствующих диаграмм состояния.

Обоснование заявляемых количеств легирующих компонентов, обеспечивающее достижение заданной структуры, в данном сплаве приведено ниже.

Цинк, магний в заявляемых количествах необходимы для образования вторичных выделений упрочняющей фазы за счет дисперсионного твердения. При меньших концентрациях количество будет недостаточным для достижения требуемого уровня прочностных свойств, а при больших количествах возможно снижение относительного удлинения ниже требуемого уровня.

При кристаллизации цинк способен перераспределяться между структурными составляющими (алюминиевым раствором, неравновесной эвтектикой MgZn2 и эвтектической фазой (Al,Zn)4Ca) в разных соотношениях. Такое перераспределение в первую очередь зависит от концентрации самого цинка в сплаве и концентраций других легирующих элементов в сплаве. При этом для обеспечения значимого упрочнения за счет вторичных выделений метастабильных фаз типа MgZn2 необходимо чтобы в алюминиевом растворе после термической обработки на пересыщенный раствор находилось не менее примерно (масс. %) 4,0% цинка и примерно не менее 1% магния. Содержание цинка в алюминиевом растворе одновременно зависит от двух отношений: 1) отношения Zn/Ca в сплаве и 2) отношения Ca/(Fe+Si+Ni).

Кальций, железо, кремний, церий и никель являются эвтектикообразующими элементами и в заявляемых количествах необходимы для формирования в структуре эвтектической составляющей, обеспечивающей высокую технологичность при литье. При больших концентрациях кальция будет снижать уровень прочностных свойств за счет снижения концентрации цинка в алюминиевом растворе при одновременном увеличении эвтектической фазы. При больших концентрациях железа, кремния и никеля высока вероятность формирования в структуре первично кристаллизующихся фаз, существенно снижающие уровень механических свойств. При меньшем содержании, чем заявлено, эвтектикообразующих элементов (кальция, железа, кремния, церия и никеля) высока вероятность образования горячих трещин при литье.

В области рассматриваемых концентраций кальций образует следующие соединения эвтектического происхождения:

с цинком - (Al,Zn)4Ca;

с железом Al10Fe2Ca;

с кремнием - Al2Si2Ca;

с никелем - Al9NiCa.

Содержание титана в указанных количествах необходимо для модифицирования алюминиевого твердого раствора при меньшем содержании выше риск образования горячих трещин. При большем содержании высока вероятность формирования в структуре первичных кристаллов Ti-содержащей фазы.

В качестве элементов модификаторов могут быть дополнительно с титаном или вместо него могут быть использованы следующие элементы: цирконий, скандий и другие элементы. Эффект модифицирования в этом случае достигается за счет образования первично-кристаллизующихся соответствующих фаз, являющихся затравками для первично-кристаллизующегося алюминиевого раствора.

В качестве дополнительного упрочнения предложенный материал может быть упрочнен за счет добавок циркония и скандия. Цирконий и скандий в заявляемых количествах необходимы для образования вторичных фаз Al3Zr и/или Al3(Zr,Sc) с решеткой L12, имеющих средний размер не более 10-20 нм. При меньших концентрациях количество частиц уже будет недостаточным для увеличения прочностных свойств отливок, а при больших количествах имеется опасность появления первичных кристаллов (кристаллическая решетка D023), что негативно сказывается на механических свойствах отливок.

Заявленное ограничение по сумме циркония, титана и скандия не более 0,25 масс. %, обусловлено вероятностью формирования первичных кристаллов, содержащих указанные элементы, способных привести к снижению механических характеристик. Краткое описание чертежей

На фиг. 1 приведена типичная микроструктура высокопрочного алюминиевого сплава, где представлен алюминиевый раствор на фоне которого представлена эвтектическая составляющая, содержащая кальций.

На фиг. 2 представлены результаты тестов экспериментальных сплавов в сравнении с промышленным сплавом А356.2.

На фиг. 3 представлена схема получения отливок из предложенного сплава в сравнении со сплавом типа 356. На схеме, на примере сплава типа 356, приведена классическая схема получения отливок с последующей термической обработкой, которая необходима для повышения прочностных свойств, включающая использование операции закалки в воду (обработка на твердый раствор) и последующее старение. Отличительной особенностью предложенного материала является то, что для его упрочнения может быть исключена операция закалки в воду. Необходимая пересыщенность твердого раствора легирующими элементами (цинком и магнием) на предложенном материале может достигается после выдержки при нагреве не выше 450°С и последующим охлаждением на воздухе.

На фиг. 4 представлен пример отливки колесного диска, полученного методом литья под низким давлением.

На фиг. 5 представлена кривая усталостного разрушения предложенного материала в сравнении со сплавом А356.2.

Примеры конкретного выполнения

ПРИМЕР 1

Были приготовлены 6 сплавов в виде отливок, составы которых указаны в таблице 1 ниже. Сплавы готовили в индукционной печи в графитовых тиглях из следующих шихтовых материалов (масс. %): алюминий (99,85%), цинка (99,9%), магния (99,9%) и лигатур Аl-6Са, Al-10Fe, Al-20Ni, Al-10S, Al-20Ce, Al-2Sc, Al-5Ti и Al-10Zr. Литье сплавов осуществляли в кокиль типа «Пруток» диаметром 22 мм с массивной верхней прибылью (ГОСТ 1583) с начальной температурой формы около 300°С.

Оценку уровня упрочнения после термической обработки на максимальную прочность по режиму Т6 (закалка в холодную воду и старение) оценивали по результатам испытания на разрыв. Испытания на разрыв проводили на точеных образцах диаметром 5 мм и расчетной длиной 25 мм. Скорость испытания составляла 10 мм/мин. Определение концентраций легирующих элементов в сплаве определяли на эмиссионном спектрометре ARL4460. Содержание цинка в алюминиевом растворе и/или вторичных выделениях контролировали микрорентгеноспектральным анализом с использованием электронного сканирующего микроскопа FEI Quanta FEG 650 с детектором X-MaxN SDD.

Результаты химического состава и определения механических свойств (в состоянии Т6) приведены в таблицах 1 и 2 соответственно.

Zn в (Аl)* - содержание цинка в алюминиевом растворе и/или вторичных выделениях

Из анализа результатов, представленных в таблице 2, следует, что только заявляемый сплав (составы 3-5) обеспечивает требуемый уровень механических свойств на разрыв. Совокупность высокого уровня прочностных свойств и относительного удлинения обеспечивается благоприятной морфологией эвтектических фаз, содержащих кальций, расположенной на фоне алюминиевой матрице, упрочненной вторичными выделениями метастабильной фазы Mg2Zn. Структура сплава №3 в состоянии Т6 является типичной для рассмотренного концентрационного диапазона, приведена на фиг. 1.

Составы сплава №1 и 2 не обеспечивают требуемого уровня прочностных свойств, в частности значения временного сопротивления разрыву не превышают 202 МПа и 258 МПа соответственно, что связано с низкой объемной долей вторичных фаз упрочнителей MgZn2 из-за низкой концентрацией цинка в алюминиевом растворе после термической обработки на твердый раствор. Состав сплава №6 не обеспечивает заданного уровня относительного удлинения, значения которого ниже 1%, что вызвано большой объемной долей грубой железосодержащей фазы.

Из рассмотренных сплавов для получения отливок наиболее предпочтительным является состав №4 табл. 1.

ПРИМЕР 2

Для оценки влияния других элементов, входящих в состав сложных эвтектик были приготовлены следующие составы, приведенные в таблице 3. Образцы в виде прутка диаметром 10 мм получали литьем в медную изложницу при 300°С.Результаты химического состава и определения механических свойств (в состоянии Т6) приведены в таблицах 3 и 4 соответственно. Структура сплавов 7-1 и 7-2, как и сплавов 8-1 и 8-2 качественно не отличались друг от друга.

ПРИМЕР 3

Для оценки уровня жидкотекучести сплав №4 и №7-1 заливали в спиральную пробу в сравнении со сплавом типа 356. Температура спиральной формы составляла примерно 200°С.

Отливки спиральных проб, представленные на фигуре 2, из заявленного сплава состава 4 и 7-1 демонстрируют, что предложенные материалы имеет высокий уровень жидкотекучести, сопоставимый со сплавом А356.2.

1 состав 3 (см. таблицу 1), 2 состав 6 (см. таблицу 3)

ПРИМЕР 4

В качестве дополнительных элементов упрочнения сплавов предложенного сплава рассмотрены следующие добавки циркония и скандия. Рассмотренные химические составы приведены в таблице 6. Оценку влияния циркония и скандия оценивали на примере содержания легирующих компонентов сплава 3 табл. 1.

Анализ микроструктур сплавов №9-13 показал, что при сумме Ti+Zr+Sc не более 0,25 масс. % в структуре не наблюдается первичных кристаллов типа D023, содержащих эти элементы, в отличие от сплава №14, где сумма Ti+Zr+Sc составляла 0,25 масс. %. Наличие в структуре первичных кристаллов типа D023 недопустимо из-за их отрицательного влияния на механические свойства.

Из анализа результатов на разрыв, представленных в таблице 7, следует, что только при совместном введении циркония и скандия в сплавах 10 и 11 обеспечивается дополнительное упрочнение. Упрочнение в этом случае обеспечивается за счет формирования вторичных выделений фазы Al3(Zr,Sc) с типом решетки типа L12.

Наиболее предпочтительным для дополнительного упрочнения является следующее соотношение Ti, Zr и Sc соответственно 0,02, 0,15 и 0,08 масс. %.

ПРИМЕР 5

Для оценки упрочнения материала без использования закалки в воду в лабораторных условиях был рассмотрен сплав, состав которого приведен в таблице 8.

Оценку упрочнения проводили после отжига при 450°С в течение 3 часов с охлаждением на воздухе и последующего старения при 180°С в течение 3 часов. Результаты испытаний на разрыв приведены в таблице 9.

Из полученных результатов следует, что для рассмотренных сплавов может быть использована термическая обработка на твердый раствор без использования закалки в воду, что существенно упрощает цикл получения отливок по сравнению со сплавом типа 356, где закалка в воду является обязательной операцией. Наиболее наглядно преимущество нового материала продемонстрировано на фигуре 3.

ПРИМЕР 6

Для оценки технологичности при литье отливок в промышленных условиях на предприятии СКАД из заявленного состава сплава 3 (табл. 1) отлит колесный диск с радиусом 17 дюймов (фиг. 4) методом литья под низким давлением. Предложенный материал показал высокую технологичность при литье, что позволило сформировать обод диска, ступичную часть и спицы.

Из предложенного алюминиевого сплава могут быть также получены и другие изделия с использованием деформационной обработки, в частности листовой прокат, прессованные полуфабрикаты, поковки и другие.

Правовая охрана испрошена на высокопрочный сплав на основе алюминия, содержащий цинк, магний, кальций, железо, титан, а также, по меньшей мере, один элемент из группы, включающей: кремний, церий и никель, цирконий и скандий, при следующем содержании компонентов в сплаве, масс. %:

Цинк (Zn) 5-8

Магний (Mg) 1,5-2,1

Кальций (Са) 0,10-1,9

Железо (Fe) 0,08-0,5

Титан (Ti) 0,01-0,15

Кремний (Si) 0,08-0,9

Никель (Ni) 0,2-0,4

Церий (Се) 0,2-0,4

Цирконий (Zr) 0,08-0,15

Скандий (Sc) 0,08-0,15

Алюминий (А1) Остальное, при этом содержание цинка в алюминиевом растворе и вторичных выделениях составляет не менее 4 масс. %.

Кальций может присутствовать в структуре сплава в виде соединений с цинком и железом эвтектического происхождения, с размером частиц не более 3 мкм. Также кальций может присутствовать в структуре сплава в виде соединений с цинком, железом и кремнием эвтектического происхождения, с размером частиц не более 3 мкм. Также кальций может присутствовать в структуре сплава в виде соединений с цинком, железом и никелем эвтектического происхождения с размером частиц не более 3 мкм. Также кальций может присутствовать в структуре сплава в виде соединений с цинком, железом и церием эвтектического происхождения, с размером частиц не более 3 мкм.

Целесообразно, чтобы цинк присутствовал в составе алюминиевого раствора с содержанием не менее 5 масс. %.

Предпочтительно соотношение Ca/Fe>1,1 и соотношение Ce/Fe>1,1.

Сплав может быть выполнен в виде отливок методом литья под низким давлением или методом гравитационного литья, или методом литья с кристаллизацией под давлением, или методом литья под высоким давлением.

Важным является, что структура алюминиевого сплава представляет собой алюминиевый раствор, упрочненный вторичными выделениями метастабильных фаз упрочнителей и эвтектической составляющей, содержащей кальций, никель и один элемент из группы, включающей кремний, церий и никель, при этом цинк и магний необходимы для образования вторичных выделений упрочняющей фазы за счет дисперсионного твердения, кальций, железо, кремний, церий и никель являются эвтектикообразующими элементами и необходимы для формирования в структуре эвтектической составляющей, обеспечивающей высокую технологичность при литье, титан необходим для модифицирования алюминиевого твердого раствора.

ПРИМЕР 7

Для сплава №4 и сплава A356.2 были построена кривая усталостного разрушения, представленная на фиг. 5. Усталостные испытания проводили на базе 107 циклов по схеме чистого изгиба при симметричном нагружении. Для испытания была использована машина Instron модели R.R. Moor. Диаметр рабочей части составлял 7,5 мм. Испытания были проведены в состоянии Т6 для обоих материалов.

Из полученных результатов следует, что у предложенного материала на базе 107 циклов предел выносливости выше более чем на 50% по сравнению со сплавом A356.2


ВЫСОКОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ
ВЫСОКОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ
ВЫСОКОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 230.
20.05.2013
№216.012.410e

Катодное устройство алюминиевого электролизера с рельефной подиной

Изобретение относится к конструкции катодного устройства электролизера в электролизерах Содерберга или электролизерах с обожженными анодами. Катодное устройство алюминиевого электролизера с рельефной подиной содержит футерованный катодный кожух и подину, выполненную из подовых блоков большей...
Тип: Изобретение
Номер охранного документа: 0002482224
Дата охранного документа: 20.05.2013
27.05.2013
№216.012.449d

Катодное устройство электролизера для получения алюминия и способ его ремонта

Изобретение относится к катодному устройству алюминиевого электролизера и способу его ремонта. Катодное устройство содержит катодный кожух и футеровку, имеющую цоколь из теплоизоляционного и огнеупорного материалов, бортовую футеровку, подину из подовых секций с катодными стержнями и катодными...
Тип: Изобретение
Номер охранного документа: 0002483142
Дата охранного документа: 27.05.2013
27.06.2013
№216.012.4fd2

Устройство для непрерывного литья, прокатки и прессования катанки

Изобретение относится к металлургии, в частности к непрерывному литью металлов с одновременным их прессованием. Устройство содержит печь-миксер, валки с ручьем и с выступом, образующие рабочий калибр. На выходе из калибра установлена матрица с охлаждающими каналами на наружной поверхности....
Тип: Изобретение
Номер охранного документа: 0002486027
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.509f

Способ получения топливных брикетов

Изобретение относится к способу получения топливных брикетов, включающий смешение углеродного наполнителя с измельченным углем, добавление связующего вещества и брикетирование смеси под давлением, при этом осуществляют сухое смешение углеродного наполнителя, представляющего собой отходы...
Тип: Изобретение
Номер охранного документа: 0002486232
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.50db

Способ создания смачиваемого покрытия углеродной подины алюминиевого электролизера

Изобретение относится к способу создания смачиваемого покрытия углеродной подины алюминиевого электролизера. Способ включает высокотемпературное электрохимическое осаждение компонентов покрытия из расплавленного электролита и синтез карбидов и боридов тугоплавких металлов на поверхности...
Тип: Изобретение
Номер охранного документа: 0002486292
Дата охранного документа: 27.06.2013
10.07.2013
№216.012.53e7

Способ получения фторида кальция

Изобретение может быть использовано в химической промышленности. Способ получения фторида кальция включает обработку осветленного раствора газоочистки электролитического производства алюминия гидроокисью кальция с последующим разделением раствора и пульпы и выделением фторида кальция....
Тип: Изобретение
Номер охранного документа: 0002487082
Дата охранного документа: 10.07.2013
20.09.2013
№216.012.6a85

Мешалка

Изобретение относится к мешалкам для гомогенизации больших объемов суспензии и может применяться на предприятиях химической и металлургической промышленности. Мешалка содержит расположенный в баке вертикальный вал, вращаемый приводом. В верху вала установлены наклоненные к вертикали лопасти,...
Тип: Изобретение
Номер охранного документа: 0002492920
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6b4e

Смесь для приклеивания плит

Смесь для приклеивания плит предназначена для приклеивания керамических плиток и плит из натурального камня и содержит, масс.% портландцемент - 30-34,5, кварцевый песок - 55-59,5, известняк - 5-7, эфир целлюлозы - 0,20-0,25, сополимер винилацетата с винилверсататом - 1,0-1,5, сополимер...
Тип: Изобретение
Номер охранного документа: 0002493121
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6b51

Кладочная смесь

Кладочная смесь предназначена для приготовления растворов, для соединения элементов различных кладок (кирпича, природного камня, бетонных блоков). Технический результат заключается в вовлечении отхода производства глинозема - красного шлама - в изготовление сухих строительных смесей, что...
Тип: Изобретение
Номер охранного документа: 0002493124
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6b52

Финишная шпатлевочная смесь

Изобретение относится к производству строительных материалов и может быть использовано при выравнивании поверхностей при отделочных работах. Финишная шпатлевочная смесь содержит, мас.%: портландцемент 30,85-32; гашеную известь 1-2; сополимер винилацетата с винилверсататом 0,7-1,2; эфир...
Тип: Изобретение
Номер охранного документа: 0002493125
Дата охранного документа: 20.09.2013
Показаны записи 1-10 из 77.
27.03.2013
№216.012.3131

Термостойкий литейный алюминиевый сплав

Изобретение относится к области металлургии и может быть использовано для изготовления отливок, предназначенных для получения деталей ответственного назначения, работающих под действием высоких нагрузок при температурах до 300-350°С, автомобильных двигателей, деталей водозаборной арматуры,...
Тип: Изобретение
Номер охранного документа: 0002478131
Дата охранного документа: 27.03.2013
27.04.2013
№216.012.3bbb

Катанка из алюминиевого сплава

Изобретение относится к электротехнической промышленности, а именно к катанке из алюминиевого сплава, изготавливаемой методом непрерывного литья и прокатки или методом прессования и предназначенной для изготовления проволоки для производства неизолированных проводов. Технический результат,...
Тип: Изобретение
Номер охранного документа: 0002480852
Дата охранного документа: 27.04.2013
20.05.2013
№216.012.410e

Катодное устройство алюминиевого электролизера с рельефной подиной

Изобретение относится к конструкции катодного устройства электролизера в электролизерах Содерберга или электролизерах с обожженными анодами. Катодное устройство алюминиевого электролизера с рельефной подиной содержит футерованный катодный кожух и подину, выполненную из подовых блоков большей...
Тип: Изобретение
Номер охранного документа: 0002482224
Дата охранного документа: 20.05.2013
27.05.2013
№216.012.449d

Катодное устройство электролизера для получения алюминия и способ его ремонта

Изобретение относится к катодному устройству алюминиевого электролизера и способу его ремонта. Катодное устройство содержит катодный кожух и футеровку, имеющую цоколь из теплоизоляционного и огнеупорного материалов, бортовую футеровку, подину из подовых секций с катодными стержнями и катодными...
Тип: Изобретение
Номер охранного документа: 0002483142
Дата охранного документа: 27.05.2013
10.06.2013
№216.012.489c

Высокопрочный экономнолегированный сплав на основе алюминия

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано при получении изделий, работающих под действием высоких нагрузок при температурах до 150°С, деталей летательных аппаратов, автомобилей и других транспортных средств, деталей спортинвентаря и др....
Тип: Изобретение
Номер охранного документа: 0002484168
Дата охранного документа: 10.06.2013
27.06.2013
№216.012.50db

Способ создания смачиваемого покрытия углеродной подины алюминиевого электролизера

Изобретение относится к способу создания смачиваемого покрытия углеродной подины алюминиевого электролизера. Способ включает высокотемпературное электрохимическое осаждение компонентов покрытия из расплавленного электролита и синтез карбидов и боридов тугоплавких металлов на поверхности...
Тип: Изобретение
Номер охранного документа: 0002486292
Дата охранного документа: 27.06.2013
27.10.2013
№216.012.7a05

Способ получения борсодержащего композиционного материала на основе алюминия

Изобретение относится к области металлургии, в частности к борсодержащим алюмоматричным композиционным материалам, и может быть использовано при получении изделий, к которым предъявляются требования низкого удельного веса в сочетании с высоким уровнем поглощения при нейтронном излучении. Способ...
Тип: Изобретение
Номер охранного документа: 0002496899
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.7a08

Алюмоматричный композиционный материал с борсодержащим наполнителем

Изобретение относится к области металлургии, в частности к содержащим бор алюмоматричным композиционным материалам, и может быть использовано при получении изделий, к которым предъявляются требования низкого удельного веса в сочетании со специальными свойствами, в частности высокий уровень...
Тип: Изобретение
Номер охранного документа: 0002496902
Дата охранного документа: 27.10.2013
27.12.2013
№216.012.910b

Способ термообработки отливок из сплавов на основе гамма алюминида титана

Изобретение относится к области металлургии, в частности к способам термообработки отливок сплавов на основе гамма алюминида титана, и может быть использовано при получении изделий ответственного назначения, работающих при температурах до 800°С, в частности лопаток газотурбинных двигателей....
Тип: Изобретение
Номер охранного документа: 0002502824
Дата охранного документа: 27.12.2013
10.02.2014
№216.012.9eb5

Литейный магниевый сплав

Изобретение относится к области металлургии, а именно к литейным сплавам на основе магния, и может быть использовано при получении деталей для авиакосмической промышленности, работающих под действием высоких нагрузок при температурах до 150°С и 250°С кратковременно. Литейный сплав на основе...
Тип: Изобретение
Номер охранного документа: 0002506337
Дата охранного документа: 10.02.2014
+ добавить свой РИД