×
20.12.2015
216.013.9d1c

Результат интеллектуальной деятельности: СПОСОБ ТРАЕКТОРНОГО УПРАВЛЕНИЯ БЕСПИЛОТНЫМ ЛЕТАТЕЛЬНЫМ АППАРАТОМ ДЛЯ ОБЛЕТА РЕЛЬЕФА МЕСТНОСТИ В ВЕРТИКАЛЬНОЙ ПЛОСКОСТИ

Вид РИД

Изобретение

№ охранного документа
0002571845
Дата охранного документа
20.12.2015
Аннотация: Изобретение относится к способам управления летательными аппаратами. Для управления пилотируемыми или беспилотными летательными аппаратами (БЛА) при совершении маловысотного полета с облетом групп препятствий в вертикальной плоскости задают движение по траектории полета с заданными углами тангажа, корректируют траекторию при сближении с группой препятствий, каждое из которых аппроксимируется полуэллипсом, вычисляют приращение угла тангажа по определенному правилу, корректируют угол тангажа определенным образом, начиная с момента, когда расстояние от управляемого БЛА до цента аппроксимирующего полуэллипса станет меньше определенной заранее заданной величины. Обеспечивается повышение живучести летательных аппаратов при маловысотном полете. 3 ил.
Основные результаты: Способ управления пилотируемыми и беспилотными летательными аппаратами (БЛА) при совершении маловысотного полета с облетом групп препятствий в вертикальной плоскости с диспетчерского (командного) пункта (ДП), заключающийся в том, что вывод БЛА на запланированную прямолинейную и параллельную земной поверхности траекторию полета производится по траектории облета группы препятствий с заданными углами тангажа, отличающийся тем, что траектория управляемого БЛА корректируется при сближении его с группой препятствий, каждое из которых аппроксимируется полуэллипсом, для чего вычисление требуемого приращения угла тангажа (параметра рассогласования между требуемым и текущим углом тангажа) управляемого БЛА производится по правилу: где здесь w и w - составляющие вектора скорости управляемого летательного аппарата, ψ(x,y) - функция координат x и y управляемого БЛА в неподвижной системе координат OXY, определяемая как мнимая часть выражения для комплексного потенциала: где , , z=x+iy - комплексная переменная на комплексной плоскости OXY, N - количество аппроксимирующих препятствия полуэллипсов, V - скорость БЛА на бесконечно большом расстоянии от полуэллипсов, a и b - значения полуосей i-го полуэллипса; z - координаты центра i-го полуэллипса в выбранной системе координат OXY, при этом корректировка угла тангажа БЛА начинается тогда, когда расстояние от управляемого БЛА до центра аппроксимирующего препятствие полуэллипса становится меньше определенной величины L: где x и y - координаты центра полуэллипса аппроксимации, x и y - координаты БЛА, и осуществляется до момента, когда высота полета БЛА становится равной начальной высоте Н.

Изобретение относится к способам траекторного управления беспилотными летательными аппаратами (БЛА) как гражданского, так и военного назначения и может быть использовано для повышения их живучести при выполнении маловысотных полетов.

Повышение живучести летательных аппаратов в процессе управления ЛА [1] является одной из основных тенденций развития систем с БЛА. Одним из направлений повышения живучести БЛА при совершении маловысотных полетов (МВП) в условиях сильно пересеченной местности является облет групп препятствий в вертикальной плоскости. В пилотируемых летательных аппаратах (ЛА) для осуществления МВП над пересеченной местностью используется специальный радиолокационный комплекс - радиоэлектронная система управления маловысотным полетом (РЭСУ МВП), основной задачей которой является формирование профильного полета ЛА, при котором траектория полета летательного аппарата повторяет профиль рельефа местности. Важно отметить, что РЭСУ МВП должна обеспечивать решение задач в любое время года, суток и при любых метеоусловиях. Указанные требования предопределяют многоканальный принцип построения вычислительной системы радиолокационного комплекса с использованием РЛС для определения расстояния до препятствий и радиовысотомеров для контроля текущей высоты [2]. Таким образом, в состав указанной системы входит оборудование, которое характеризуется достаточно большими массогабаритными и стоимостными характеристиками. Очевидно, что применение аналогичного комплекса в составе бортового оборудования БЛА представляется нецелесообразным по критерию «стоимость-эффективность». Кроме этого, при решении некоторых специальных задач использование активного радиолокатора не рекомендуется, так как это может служить сильным демаскирующим фактором.

В существующих системах с БЛА [2] (см. фиг. 1), включающих пункт управления 1 и беспилотный летательный аппарат 2, для облета неровностей рельефа местности 3 при маловысотном полете, как правило, используется маршрутный метод, который осуществляется в два этапа. На первом (подготовительном) этапе диспетчером (оператором, офицером боевого управления) намечается ряд контрольных точек 4, которые должен пройти БЛА с заданным углом тангажа. Далее для обеспечения последовательного прохождения БЛА намеченных точек в штурманском расчете реализуются алгоритмы наведения на неподвижные цели (поочередно на каждую соответствующую контрольную точку). На втором этапе осуществляется непосредственно управление летательным аппаратом 2 для обхода группы препятствий в вертикальной плоскости 3 по рассчитанным траекториям 5 при помощи команд управления с диспетчерского (командного) пункта управления 1. Процедуру существующего способа облета группы препятствий летательным аппаратом иллюстрирует фиг. 1.

Следует отметить, что такой способ облета групп препятствий, связанный с нанесением контрольных точек, предполагает непосредственное участие человека и представляет собой довольно трудоемкую задачу, поскольку такие действия необходимо производить для каждого БЛА. При этом нанесение таких точек требует наличия большого опыта у оператора и, в общем случае, это является нетривиальной задачей.

Техническим результатом предлагаемого изобретения является повышение живучести БЛА за счет использования командного управления и автоматизации процесса облета групп препятствий в вертикальной плоскости при маловысотном полете БЛА по запланированному маршруту.

Заявленный технический результат достигается за счет того, что при планировании маршрута полета БЛА каждое препятствие группы в вертикальной плоскости аппроксимируется полуэллипсом, то есть расположенной в верхней части координатной плоскости OXY половиной эллипса, одна из осей которого лежит на оси ОХ (совпадающей с нулевой выстой). Центром и осями такого полуэллипса считаются центр и оси порождающего его эллипса соответственно. Оператор для описания выбранного препятствия указывает только центр такого полуэллипса и значения его полуосей. Далее осуществляется непосредственно управление летательным аппаратом с обходом групп препятствий путем коррекции рассчитанной траектории наведения.

Возможность достижения технического результата обусловлена следующими причинами:

- существенным уменьшением времени описания оператором препятствий, что снижает нагрузку на оператора (офицера боевого управления) [3];

- универсальным (однотипным) способом описания препятствий, что дает возможность применять традиционные методы управления летательными аппаратами [2].

Вариант взаимного расположения управляемого летательного аппарата и группы препятствий иллюстрирует фиг. 2, на которой летательный аппарат движется равномерно со скоростью VЛА прямолинейно и параллельно земной поверхности на заданной высоте Н. Препятствия различной конфигурации расположены группами.

Для таких условий одним из возможных способов управления, повышающим живучесть беспилотного летательного аппарата, является новый способ, полученный на основе математического аппарата метода обратных задач динамики [4], в котором траектория управляемого БЛА корректируется при сближении его с группой препятствий путем совмещения его вектора скорости с касательной, построенной к желаемой траектории. Вычисление требуемого приращения угла тангажа (параметра рассогласования между требуемым и текущим углом тангажа) управляемого БЛА производится по правилу:

где переменные w1 и w2 вычисляются путем дифференцирования функции ψ(x,y) от координат БЛА. Система координат OXY выбирается таким образом, чтобы координата у соответствовала высоте полета, а направление оси координат х - направлению полета БЛА. Выражение для переменных w1 и w2 имеет вид:

Функция ψ(x,y) - функция тока потока идеальной жидкости при обтекании нескольких эллиптических цилиндров, которая может быть получена на основе положений теории функций комплексного переменного и выражения для комплексного потенциала бесциркуляционного обтекания эллиптических цилиндров, будучи выделена как его мнимая часть.

Выражение для комплексного потенциала и зависимости для функции тока и потенциала скорости результирующего потока идеальной жидкости, в свою очередь, с использованием конформного отображения внешности контура эллиптического цилиндра на внешность кругового цилиндра [5, 6] в рассматриваемом случае записываются следующим образом:

где , ,

z=x+iy - комплексная переменная на комплексной плоскости OXY, N - количество аппроксимирующих препятствия полуэллипсов, VЛА - скорость БЛА на бесконечно большом расстоянии от полуэллипсов, a i и bi - значения полуосей i-го полуэллипса; z0i - координаты центра i-го полуэллипса в выбранной системе координат OXY.

Указанные параметры определяются либо на диспетчерском (командном) пункте, либо непосредственно на борту БЛА.

Корректировка угла тангажа БЛА начинается тогда, когда расстояние от управляемого БЛА до центра аппроксимирующего препятствие полуэллипса становится меньше определенной величины:

где xП и yП - координаты центра полуэллипса аппроксимации; x и y - координаты БЛА; L - заданное расстояние.

Примерный вид траектории облета 7 группы препятствий, которые аппроксимированы полуэллипсами 6, представлен на фиг. 3. Здесь же показано требуемое приращение Δϑ угла тангажа (параметра рассогласования) управляемого БЛА, сформированного по правилу (1).

Таким образом, для коррекции угла тангажа при облете групп препятствий в вертикальной плоскости описанным способом (1)-(4) необходимо учитывать:

1) параметры движения БЛА - координаты x и y, значение скорости VЛА и текущий угол тангажа ϑ;

2) параметры групп препятствий - координаты центров полуэллипсов аппроксимации z0i и значения их полуосей a i и bi.

Величины, необходимые для реализации (1)-(4) и составляющие первую группу параметров, измеряются как штатными средствами на диспетчерских (командных) пунктах, так и на борту БЛА, а величины, составляющие вторую группу, расположены в памяти ЭВМ КП ВП, куда они заносятся непосредственно диспетчером (оператором, офицером боевого управления).

Коррекция угла тангажа управляемого БЛА прекращается, когда его высота становится равной начальной (заданной) высоте Н полета беспилотного летательного аппарата, определяемой запланированным маршрутом полета.

Спецификой описанного способа является то, что зависимости (1)-(4) построены на основе аппроксимации групп препятствий в вертикальной плоскости. Такой подход позволяет унифицировать и автоматизировать процесс описания складок рельефа местности и иных препятствий, тем самым существенно снизив нагрузку на диспетчера (оператора, офицера боевого управления).

Заявленный технический результат обеспечивается предлагаемым способом (1)-(4) управления беспилотным летательным аппаратом, а также использованием универсального (однотипного) способа описания групп препятствий в вертикальной плоскости, что дает возможность существенно уменьшить время описания рельефа диспетчером (оператором, офицером боевого управления), тем самым снизив нагрузку на него.

Таким образом, указанный технический результат достигается тем, что на основе измеренных значений скорости полета VЛА и высоты полета Н беспилотного ЛА, а также заданных диспетчером (оператором, офицером боевого управления) значений координат центров полуэллипсов аппроксимации и их полуосей с использованием (3) вычисляется функция тока ψ(x,y). Затем с помощью (2) определяются значения переменных w1 и w2, на основании которых и измеренного значения текущего угла тангажа ϑ с помощью (1) формируется сигнал требуемого приращения угла тангажа Δϑ для БЛА, позволяющий произвести облет группы препятствий.

Важно отметить, что указанный способ траекторного управления беспилотным летательным аппаратом может быть реализован в двух режимах:

1) в режиме командного наведения, в котором параметры движения управляемого летательного аппарата - значение скорости и значение координат БЛА - определяются на диспетчерском (командном) пункте управления;

2) в автономном режиме, в котором параметры движения управляемого летательного аппарата - значение скорости и значение координат БЛА - определяются непосредственно на борту БЛА.

При этом значение текущего угла тангажа ϑ в обоих случаях измеряется только на борту БЛА.

Это обстоятельство позволяет использовать описанный способ управления для коррекции траекторий полета летательных аппаратов как гражданской, так и военной авиации при облете ими групп препятствий в вертикальной плоскости при маловысотном полете.

Литература

[1] Верба В. С.Авиационные комплексы радиолокационного дозора и наведения. Состояние и тенденции развития. М.: Радиотехника. 2008. 432 с.

[2] Авиационные системы радиоуправления. Т. 3. Системы командного радиоуправления. Автономные и комбинированные системы наведения / В.И. Меркулов, А.И. Канащенков [и др.]. М.: Радиотехника, 2004. 317 с.

[3] Авиация ПВО России и научно-технический прогресс. Боевые комплексы и системы вчера, сегодня, завтра / Е.А. Федосов [и др.]. М.: Дрофа, 2001.

[4] Крутько П.Д. Обратные задачи динамики в теории автоматического управления. М.: Машиностроение, 2004.

[5] Лойцянский Л.Г. Механика жидкости и газа. Физматгиз, 1959.

[6] Лаврентьев М.А., Шабат Б.В. Методы теории функций комплексного переменного. М.: Наука, 1965, 716 с.

Способ управления пилотируемыми и беспилотными летательными аппаратами (БЛА) при совершении маловысотного полета с облетом групп препятствий в вертикальной плоскости с диспетчерского (командного) пункта (ДП), заключающийся в том, что вывод БЛА на запланированную прямолинейную и параллельную земной поверхности траекторию полета производится по траектории облета группы препятствий с заданными углами тангажа, отличающийся тем, что траектория управляемого БЛА корректируется при сближении его с группой препятствий, каждое из которых аппроксимируется полуэллипсом, для чего вычисление требуемого приращения угла тангажа (параметра рассогласования между требуемым и текущим углом тангажа) управляемого БЛА производится по правилу: где здесь w и w - составляющие вектора скорости управляемого летательного аппарата, ψ(x,y) - функция координат x и y управляемого БЛА в неподвижной системе координат OXY, определяемая как мнимая часть выражения для комплексного потенциала: где , , z=x+iy - комплексная переменная на комплексной плоскости OXY, N - количество аппроксимирующих препятствия полуэллипсов, V - скорость БЛА на бесконечно большом расстоянии от полуэллипсов, a и b - значения полуосей i-го полуэллипса; z - координаты центра i-го полуэллипса в выбранной системе координат OXY, при этом корректировка угла тангажа БЛА начинается тогда, когда расстояние от управляемого БЛА до центра аппроксимирующего препятствие полуэллипса становится меньше определенной величины L: где x и y - координаты центра полуэллипса аппроксимации, x и y - координаты БЛА, и осуществляется до момента, когда высота полета БЛА становится равной начальной высоте Н.
СПОСОБ ТРАЕКТОРНОГО УПРАВЛЕНИЯ БЕСПИЛОТНЫМ ЛЕТАТЕЛЬНЫМ АППАРАТОМ ДЛЯ ОБЛЕТА РЕЛЬЕФА МЕСТНОСТИ В ВЕРТИКАЛЬНОЙ ПЛОСКОСТИ
СПОСОБ ТРАЕКТОРНОГО УПРАВЛЕНИЯ БЕСПИЛОТНЫМ ЛЕТАТЕЛЬНЫМ АППАРАТОМ ДЛЯ ОБЛЕТА РЕЛЬЕФА МЕСТНОСТИ В ВЕРТИКАЛЬНОЙ ПЛОСКОСТИ
СПОСОБ ТРАЕКТОРНОГО УПРАВЛЕНИЯ БЕСПИЛОТНЫМ ЛЕТАТЕЛЬНЫМ АППАРАТОМ ДЛЯ ОБЛЕТА РЕЛЬЕФА МЕСТНОСТИ В ВЕРТИКАЛЬНОЙ ПЛОСКОСТИ
СПОСОБ ТРАЕКТОРНОГО УПРАВЛЕНИЯ БЕСПИЛОТНЫМ ЛЕТАТЕЛЬНЫМ АППАРАТОМ ДЛЯ ОБЛЕТА РЕЛЬЕФА МЕСТНОСТИ В ВЕРТИКАЛЬНОЙ ПЛОСКОСТИ
СПОСОБ ТРАЕКТОРНОГО УПРАВЛЕНИЯ БЕСПИЛОТНЫМ ЛЕТАТЕЛЬНЫМ АППАРАТОМ ДЛЯ ОБЛЕТА РЕЛЬЕФА МЕСТНОСТИ В ВЕРТИКАЛЬНОЙ ПЛОСКОСТИ
СПОСОБ ТРАЕКТОРНОГО УПРАВЛЕНИЯ БЕСПИЛОТНЫМ ЛЕТАТЕЛЬНЫМ АППАРАТОМ ДЛЯ ОБЛЕТА РЕЛЬЕФА МЕСТНОСТИ В ВЕРТИКАЛЬНОЙ ПЛОСКОСТИ
СПОСОБ ТРАЕКТОРНОГО УПРАВЛЕНИЯ БЕСПИЛОТНЫМ ЛЕТАТЕЛЬНЫМ АППАРАТОМ ДЛЯ ОБЛЕТА РЕЛЬЕФА МЕСТНОСТИ В ВЕРТИКАЛЬНОЙ ПЛОСКОСТИ
СПОСОБ ТРАЕКТОРНОГО УПРАВЛЕНИЯ БЕСПИЛОТНЫМ ЛЕТАТЕЛЬНЫМ АППАРАТОМ ДЛЯ ОБЛЕТА РЕЛЬЕФА МЕСТНОСТИ В ВЕРТИКАЛЬНОЙ ПЛОСКОСТИ
СПОСОБ ТРАЕКТОРНОГО УПРАВЛЕНИЯ БЕСПИЛОТНЫМ ЛЕТАТЕЛЬНЫМ АППАРАТОМ ДЛЯ ОБЛЕТА РЕЛЬЕФА МЕСТНОСТИ В ВЕРТИКАЛЬНОЙ ПЛОСКОСТИ
Источник поступления информации: Роспатент

Показаны записи 71-80 из 87.
02.05.2019
№219.017.489e

Система информационного обеспечения скрытного наведения летательных аппаратов в зоне обнаружения импульсно-доплеровской рлс

Система информационного обеспечения метода скрытного наведения летательных аппаратов (ЛА) в зоне обнаружения импульсно-доплеровской РЛС (ИД РЛС) содержит формирователь косвенных измерений, формирователь оценок, регулятор. Формирователь оценок содержит фильтр дальномерного канала, фильтр канала...
Тип: Изобретение
Номер охранного документа: 0002686802
Дата охранного документа: 30.04.2019
04.06.2019
№219.017.7342

Способ автоматического группового целераспределения истребителей с учетом приоритета целей

Изобретение относится к системам управления летательными аппаратами (ЛА) и может быть использовано в комплексе функциональных программ управления и наведения ЛА авиационных комплексов для назначения целей перехватчикам при противостоянии групп ЛА. Предлагаемый способ позволяет определить...
Тип: Изобретение
Номер охранного документа: 0002690234
Дата охранного документа: 31.05.2019
19.06.2019
№219.017.83d1

Приемная мультипликативная фар

Изобретение относится к антенной технике и может быть использовано в системах связи и радиолокации. Техническим результатом изобретения является получение высокого коэффициента усиления антенной решетки при низком уровне боковых лепестков (УБЛ) диаграммы направленности (ДН). Приемная...
Тип: Изобретение
Номер охранного документа: 0002691672
Дата охранного документа: 17.06.2019
17.07.2019
№219.017.b52c

Способ сканирования луча гибридной зеркальной антенны

Способ сканирования луча гибридной зеркальной антенны, отличающийся тем, что сканирование луча производят включением группы излучателей, при этом количество излучателей в группе одинаково для всех лучей, а смежные лучи формируются отключением крайнего излучателя группы с одной стороны и...
Тип: Изобретение
Номер охранного документа: 0002694460
Дата охранного документа: 15.07.2019
17.07.2019
№219.017.b536

Устройство для измерения амплитудно-фазовых шумов источников свч радиоимпульсного сигнала с высокой скважностью передатчиков высококогерентных систем локации и связи

Устройство для измерения амплитудно-фазовых (АФ) шумов источников СВЧ радиоимпульсного сигнала с высокой скважностью высококогерентных систем локации и связи относится к измерительной технике и может быть использовано для контроля уровня амплитудно-фазовых (АФ) шумов на различных стадиях...
Тип: Изобретение
Номер охранного документа: 0002694451
Дата охранного документа: 15.07.2019
27.07.2019
№219.017.b9c0

Радиометр влагомер

Изобретение относится к области приборостроения, а именно к СВЧ-радиометрическим приемникам для техники дистанционного зондирования земной поверхности и экологии. В частности, к СВЧ радиометрии. Радиометр влагомер содержит последовательно соединенные трехвходовый СВЧ-переключатель,...
Тип: Изобретение
Номер охранного документа: 0002695764
Дата охранного документа: 25.07.2019
02.10.2019
№219.017.d130

Способ управления летательным аппаратом

Изобретение относится к способу построения траектории летательного аппарата (ЛА) обхода опасных зон. Для построения траектории по известным координатам начальной и конечной точек пути, направлению скорости ЛА в начальной точке, допустимому радиусу разворота, а также множеству опасных зон...
Тип: Изобретение
Номер охранного документа: 0002700157
Дата охранного документа: 12.09.2019
19.10.2019
№219.017.d82e

Облучатель гибридной зеркальной антенны поляриметрического космического радиолокатора

Использование: для радиолокационного наблюдения объектов на различных поляризациях. Сущность изобретения заключается в том, что облучатель состоит из рупора, решеток волноводных и дипольных излучателей, при этом в его состав введена плоская решетка из тонких проводников, направленных...
Тип: Изобретение
Номер охранного документа: 0002703490
Дата охранного документа: 17.10.2019
22.12.2019
№219.017.f0cd

Способ определения экстраполированных значений дальности и скорости сближения летательного аппарата с радиолокационным объектом

Изобретение относится к радиолокационным системам и заключается в том, что по принятым от радиолокационного объекта (РЛО) радиосигналам оценивают значения расстояния от летательного аппарата (ЛА) - носителя РЛС до РЛО. Достигаемый технический результат – возможность определения...
Тип: Изобретение
Номер охранного документа: 0002709785
Дата охранного документа: 20.12.2019
14.03.2020
№220.018.0c0f

Способ оперативного войскового ремонта сложных систем вооружения и военной техники на месте дислокации с применением квадрокоптера

Изобретение относится к способу оперативного войскового ремонта сложных технических систем (СТС), включая системы вооружения и военной техники, на месте дислокации с применением квадрокоптера. Для реализации способа используют мобильный ремонтно-диагностический комплекс (МРДК) с размещенными в...
Тип: Изобретение
Номер охранного документа: 0002716516
Дата охранного документа: 12.03.2020
Показаны записи 71-80 из 94.
10.04.2019
№219.017.02ed

Радиолокационная система для обнаружения проводов линий электропередач

Изобретение относится к радиолокации и может быть использовано на летательных аппаратах при совершении ими маловысотных полетов. Предлагаемая радиолокационная система для обнаружения проводов линий электропередач за счет использования специального вычислителя, оптимизированного на решение...
Тип: Изобретение
Номер охранного документа: 0002310885
Дата охранного документа: 20.11.2007
19.04.2019
№219.017.1d96

Способ автоматического группового целераспределения истребителей с учетом возможного выбывания участников

Изобретение относится к способу автоматического группового целераспределения истребителей с учетом возможного выбывания участников, который заключается в том, что для каждого перехватчика формируют функционал эффективности перехвата, путем решения множества численных уравнений получают...
Тип: Изобретение
Номер охранного документа: 0002684963
Дата охранного документа: 16.04.2019
29.04.2019
№219.017.3f37

Следящий измеритель с обнаружителем маневра и адаптивной коррекцией прогноза

Изобретение относится к радиотехнике и может использоваться в радиотехнических системах измерения параметров траекторий летательных аппаратов, а именно: дальность - скорость, скорость - ускорение, угловая координата - скорость изменения угловой координаты. Техническим результатом является...
Тип: Изобретение
Номер охранного документа: 0002296348
Дата охранного документа: 27.03.2007
29.04.2019
№219.017.410a

Многоканальный радиотермограф

Изобретение относится к области радиотехники и может быть использовано для измерения радиотеплового излучения тел, в частности в медицине, для измерения температурного поля внутренних тканей человека. Многоканальный радиотермограф содержит N антенн, соединенных с N СВЧ-выключателями,...
Тип: Изобретение
Номер охранного документа: 0002310876
Дата охранного документа: 20.11.2007
29.04.2019
№219.017.44d1

Способ скрытного самонаведения самолетов на воздушные объекты

Изобретение относится к области приборостроения и может быть использовано в системах самонаведения летательных аппаратов. Технический результат - расширение функциональных возможностей. Для достижения данного результата траектория наводимого летательного аппарата все время находится в секторе...
Тип: Изобретение
Номер охранного документа: 0002408845
Дата охранного документа: 10.01.2011
01.05.2019
№219.017.47fe

Способ двухэтапного ранжирования воздушных целей по степени опасности в радиолокационных информационно-управляющих системах

Изобретение относится к радиолокации и радиоуправлению и может быть использовано при модернизации существующих и разработке перспективных радиолокационных систем. Достигаемый технический результат: повышение достоверности ранжирования воздушных целей при решении задач многоцелевого...
Тип: Изобретение
Номер охранного документа: 0002686482
Дата охранного документа: 29.04.2019
02.05.2019
№219.017.489e

Система информационного обеспечения скрытного наведения летательных аппаратов в зоне обнаружения импульсно-доплеровской рлс

Система информационного обеспечения метода скрытного наведения летательных аппаратов (ЛА) в зоне обнаружения импульсно-доплеровской РЛС (ИД РЛС) содержит формирователь косвенных измерений, формирователь оценок, регулятор. Формирователь оценок содержит фильтр дальномерного канала, фильтр канала...
Тип: Изобретение
Номер охранного документа: 0002686802
Дата охранного документа: 30.04.2019
09.05.2019
№219.017.4eb3

Способ распознавания надводных кораблей на взволнованной морской поверхности

Способ распознавания надводных кораблей основан на сопоставлении информативных признаков наблюдаемых кораблей, полученных по их радиолокационным изображениям с эталонными признаками, соответствующими определенным классам надводных кораблей. Сущность способа заключается в том, что формирование...
Тип: Изобретение
Номер охранного документа: 0002423722
Дата охранного документа: 10.07.2011
29.05.2019
№219.017.6596

Способ обнаружения и определения координат искомого объекта

Изобретение относится к способам радиолокационного обнаружения на местности малоразмерных объектов. Достигаемый технический результат - повышение оперативности и точности определения геодезических координат малоразмерных объектов. Сущность изобретения состоит в том, что в способе лоцирования,...
Тип: Изобретение
Номер охранного документа: 0002392635
Дата охранного документа: 20.06.2010
04.06.2019
№219.017.7342

Способ автоматического группового целераспределения истребителей с учетом приоритета целей

Изобретение относится к системам управления летательными аппаратами (ЛА) и может быть использовано в комплексе функциональных программ управления и наведения ЛА авиационных комплексов для назначения целей перехватчикам при противостоянии групп ЛА. Предлагаемый способ позволяет определить...
Тип: Изобретение
Номер охранного документа: 0002690234
Дата охранного документа: 31.05.2019
+ добавить свой РИД