×
10.12.2015
216.013.992a

Результат интеллектуальной деятельности: СПОСОБ ВЫДЕЛЕНИЯ И ОЧИСТКИ КВАНТОВЫХ ТОЧЕК, ЗАКЛЮЧЕННЫХ В ОБОЛОЧКИ ОКСИДА КРЕМНИЯ

Вид РИД

Изобретение

Аннотация: Использование: для получения стабильных водных растворов полупроводниковых квантовых точек (КТ), покрытых оболочками оксида кремния, полученных на основе кремнийорганических соединений различного строения. Сущность изобретения заключается в том, что способ выделения и очистки квантовых точек, заключенных в оболочки оксида кремния, включает последовательное выделение квантовых точек, их троекратную очистку и разбавление бидистиллированной водой, причем выделение включает центрифугирование микроэмульсии с синтезированными квантовыми точками и удаление надосадочной жидкости для получения осадка, а очистка включает последовательное разбавление осадка, перемешивание, центрифугирование, удаление надосадочной жидкости, при этом в первой и второй очистке для разбавления используют спирт, согласно решению в качестве спирта используют этанол, или пропанол, или бутанол, в третьей очистке для разбавления используют этанол, а после разбавления очищенных квантовых точек бидистиллированной водой проводят ультразвуковую обработку в течение 30 мин, при этом центрифугирование во время выделения квантовых точек осуществляют при 7000-11500 об/мин и 5-15°C в течение 10-30 мин, а центрифугирование во время очистки осуществляют при 7000 об/мин и 20°C в течение 15 мин. Технический результат: обеспечение возможности увеличения количества и улучшения качества наночастиц, стабилизированных в водных средах. 1 з.п. ф-лы.

Настоящее изобретение относится к нанотехнологиям и может быть использовано для получения стабильных водных растворов полупроводниковых квантовых точек (КТ), покрытых оболочками оксида кремния, полученных на основе кремнийорганических соединений различного строения. Данный нанокомпозит представляет собой наночастицу оксида кремния с включенными внутрь нее КТ.

Существует метод синтеза КТ, заключенных в оболочки оксида кремния (Shiquan Wang, Chunliang Li, Ping Yang, Masanori Ando, Norio Murase. Silica encapsulation of highly luminescent hydrophobic quantum dots by two-step microemulsion method. Colloids and Surfaces A: Physicochem. Eng. Aspects 395 (2012) P. 24-31). Данный метод позволяет варьировать размер и яркость получаемых частиц и использовать мягкий метод очистки с помощью центрифугирования и промывки этанолом. Для этого микроэмульсию подвергают центрифугированию при 16500 об/мин в течение 10 мин, осадок дважды промывают этанолом и водой, затем растворяют в воде. Однако данная методика не приводит к большому выходу продукта, и нанокомпозит, получаемый по данной методике очистки, плохо растворяется в водных растворах без дополнительных манипуляций, например ультразвуковой обработки.

Известен также метод синтеза в микроэмульсии и последующей очистки КТ, покрытых кремнийорганическими оболочками (Masih Darbandi, Gerald Urban, Michael Krüge. A facile synthesis method to silica coated CdSe/ZnS nanocomposites with tuneable size and optical properties. Journal of Colloid and Interface Science, 351 (2010) P. 30-34). Данный метод позволяет количественно высаживать полученные частицы из микроэмульсии, образованной в процессе синтеза нанокомпозитов. Для этого к микроэмульсии добавляют ацетон, центрифугируют, полученный осадок последовательно промывают бутанолом, пропанолом, этанолом и водой и растворяют в воде. Основным недостатком данного метода является тот факт, что при добавлении ацетона в микроэмульсию осаждению подвергаются не только КТ, заключенные в оболочки оксида кремния, но и КТ без оболочек, которые в силу разных причин могли остаться в микроэмульсии. Этот процесс в дальнейшем мешает растворению получившейся субстанции в водных растворах, а также не позволяет оценивать характеристики полученных нанокомпозитов.

Наиболее близким к заявленному техническому решению является метод синтеза, выделения и очистки нанокомпозитов оксида кремния с КТ (Takuji Aimiya, Masaru Takahashi. Silica nanoparticle embedding quantum dots, preparation method thereof and biosubstance labeling agent by use thereof. United States Patent Application Publication № US 2012/0045850 A1). Данный метод позволяет получать яркие стабильные растворы нанокомпозита оксида кремния с КТ. В данной методике выделение полученных нанокомпозитов производится с помощью центрифугирования при 9500 об/мин в течение 60 мин. Для очистки от компонентов микроэмульсии осадок, образовавшийся после центрифугирования, растворяют в этаноле, подвергают повторному центрифугированию. Процедуру очистки, включающую в себя разбавление полученного осадка, его растворение, центрифугирование и слив надосадочной жидкости, повторяют с этанолом и водой. Очищенные квантовые точки разбавляют водой. Однако недостатком метода является длительность центрифугирования на стадии очистки полученных частиц, что приводит к затруднению их дальнейшего растворения вследствие вероятной деформации структуры внешних оболочек. Данный метод принят за прототип.

Задачей изобретения является разработка способа выделения и очистки нанокомпозитов оксида кремния с КТ от компонентов реакционной смеси, заключающегося в определенном режиме центрифугирования (количество оборотов в минуту и температура) и использовании различных промывочных реактивов (этанол, пропанол, бутанол).

Технический результат заявляемого изобретения заключается в увеличении количества и улучшении качества наночастиц, стабилизированных в водных средах. Заявленный технический результат достигается использованием определенного режима центрифугирования КТ, заключенных в кремнийорганические оболочки, а также алгоритма очистки и растворения полученных частиц. Этот алгоритм отличается высоким выходом продукта, простотой процесса и обеспечивает максимальную устойчивость полученных наночастиц в водных растворах.

Указанный технический результат достигается тем, что способ выделения и очистки квантовых точек, заключенных в оболочки оксида кремния, включает последовательное выделение квантовых точек, их троекратную очистку и разбавление бидистиллированной водой, причем выделение включает центрифугирование микроэмульсии с синтезированными квантовыми точками и удаление надосадочной жидкости для получения осадка, а очистка включает последовательное разбавление осадка, перемешивание, центрифугирование, удаление надосадочной жидкости, при этом в первой и второй очистке для разбавления используют спирт, согласно решению в качестве спирта используют этанол, или пропанол, или бутанол, в третьей очистке для разбавления используют этанол, а после разбавления очищенных квантовых точек бидистиллированной водой проводят ультразвуковую обработку в течение 30 мин, при этом центрифугирование во время выделения квантовых точек осуществляют при 7000-11500 об/мин и 5-15°C в течение 10-30 мин, а центрифугирование во время очистки осуществляют при 7000 об/мин и 20°C в течение 15 мин. Ультразвуковую обработку проводят при температуре от 20 до 40°C.

Раскрытие изобретения

КТ структуры CdSe/CdS/ZnS были получены по известной методике (Speranskaya et all. Polymer-coated fluorescent CdSe-based quantum dots for application in immunoassay. Biosensors and Bioelectronics, 53 (2014) P. 225-231). Полученные КТ заключали в оболочки оксида кремния согласно методике (Shiquan Wang, Chunliang Li, Ping Yang, Masanori Ando, Norio Murase. Silica encapsulation of highly luminescent hydrophobic quantum dots by two-step microemulsion method. Colloids and Surfaces A: Physicochem. Eng. Aspects, 395 (2012) P. 24-31): для создания микроэмульсии использовали циклогексан, поверхностно-активное вещество Igepal-520 и бидистиллированную воду, в качестве кремнийорганического соединения использовали ТЕОС (тетраэтилортосилан), МПС (3-меркаптопропилтриметоксисилан). После проведения реакции микроэмульсию центрифугировали в интервале 7000-11500 об/мин, при таких оборотах и в выбранных временных рамках центрифугирования (10-30 мин) структура полученного нанокомпозита не разрушается. Далее производили троекратную процедуру очистки, включающую в себя добавление к полученному осадку растворителя (спирта), тщательное перемешивание и центрифугирование при 7000 об/мин и слив надосадочной жидкости. Полученный осадок растворяли в воде с использованием ультразвуковой обработки при различных температурах.

Примеры реализации способа

Пример 1.

По окончании синтеза микроэмульсию центрифугируют при 7000 об/мин в течение 30 минут при 10°C. После осаждения частиц надосадочную жидкость сливают. К полученному осадку приливают пропанол, тщательно перемешивают с помощью прибора Вортекс (Vortex). Проводят центрифугирование при 7000 об/мин и 20°C в течение 15 минут. После осаждения частиц надосадочную жидкость сливают. К полученному осадку приливают этанол, тщательно перемешивают с помощью прибора Вортекс (Vortex). Проводят центрифугирование при 7000 об/мин и 20°C в течение 15 минут. Процедуру очистки с помощью этанола проводят еще 1 раз. После этого частицы высушивают на воздухе. Далее приливают деионизованную воду, перемешивают с помощью Вортекса и помещают в ультразвуковую ванну на 30 минут. После чего получают прозрачный водный раствор нанокомпозита оксида кремния с КТ.

Пример 2.

По окончании синтеза микроэмульсию центрифугируют при 9500 об/мин в течение 15 минут при 5°C. После осаждения частиц надосадочную жидкость сливают. К полученному осадку приливают этанол, тщательно перемешивают. Проводят центрифугирование при 7000 об/мин и 20°C в течение 15 минут. После осаждения частиц надосадочную жидкость сливают. Процедуру очистки с помощью этанола проводят еще 2 раза. После этого частицы высушивают на воздухе. Далее приливают бидистиллированную воду, перемешивают и помещают в ультразвуковую ванну на 30 минут при нагревании до 40°C. После чего получают прозрачный водный раствор нанокомпозита оксида кремния с КТ.

Пример 3.

По окончании синтеза микроэмульсию центрифугируют при 11500 об/мин в течение 10 минут при 15°C. После осаждения частиц надосадочную жидкость сливают. К полученному осадку приливают бутанол, тщательно перемешивают с помощью прибора Вортекс (Vortex). Проводят центрифугирование при 7000 об/мин и 20°C в течение 15 минут. После осаждения частиц надосадочную жидкость сливают. Процедуру очистки последовательно повторяют с пропанолом и этанолом. После этого частицы высушивают на воздухе. Далее приливают бидистиллированную воду, перемешивают с помощью Вортекса и помещают в ультразвуковую ванну на 30 минут. После чего получают прозрачный водный раствор нанокомпозита оксида кремния с КТ.

В результате всех описанных выше примеров получают прозрачные, стабильные более шести месяцев водные растворы нанокомпозита оксида кремния с КТ, отличающиеся высоким квантовым выходом флуоресценции.

Источник поступления информации: Роспатент

Показаны записи 61-66 из 66.
25.08.2017
№217.015.aa4d

Способ оценки количества гидроксильных групп на внутренней поверхности фотонно-кристаллического волновода

Изобретение относится к нанотехнологиям и может быть использовано для оценки количества гидроксильных групп на внутренней поверхности стеклянных фотонно-кристаллических волноводов с полой сердцевиной (ФКВ с ПС), в том числе с селективно запаянными внешними оболочками, используемых для...
Тип: Изобретение
Номер охранного документа: 0002611573
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.aa50

Способ получения квантовых точек, функционализированных дендримерами

Изобретение относится к нанотехнологиям. Сначала получают раствор квантовых точек на основе селенида кадмия в хлороформе с их концентрацией 4⋅10 М и смешивают его с раствором дендримера в метаноле так, чтобы мольное соотношение квантовых точек к дендримеру составляло от 1:700 до 1:1100. В...
Тип: Изобретение
Номер охранного документа: 0002611535
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.c0ce

Способ селективной запайки внешних оболочек фотонно-кристаллического волновода с полой сердцевиной

Настоящее изобретение относится к нанотехнологиям и может быть использовано для получения фотонно-кристаллических волноводов с полой сердцевиной (ФКВ с ПС) с селективно запаянными внешними оболочками для использования в различных целях, в т.ч. для изготовления конструктивных элементов сенсоров,...
Тип: Изобретение
Номер охранного документа: 0002617650
Дата охранного документа: 25.04.2017
20.11.2017
№217.015.ef85

Способ селективной запайки внешних оболочек фотонно-кристаллических волноводов с полой сердцевиной

Изобретение относится к области микро- и нанотехнологий и может быть использовано для получения образцов фотонно-кристаллических волноводов с полой сердцевиной (ФКВ с ПС). Способ запайки торцевой поверхности образца включает нагрев образца узконаправленным источником теплового воздействия. При...
Тип: Изобретение
Номер охранного документа: 0002629133
Дата охранного документа: 24.08.2017
19.01.2018
№218.015.ff9a

Противоопухолевый химиопрепарат

Изобретение относится к фармацевтической промышленности, а именно к противоопухолевому химиопрепарату, представляющему собой стабильные наночастицы в виде сферических глобул размером 250-400 нм. Химиопрепарат содержит в качестве цитостатика доксорубицин в количестве 20,5-25,3 мас.% и в качестве...
Тип: Изобретение
Номер охранного документа: 0002629608
Дата охранного документа: 30.08.2017
20.01.2018
№218.016.10f7

Способ трансдермальной доставки биологически активных веществ

Изобретение относится к медицине и может быть использовано для трансдермальной доставки биологически активных веществ (БАВ). Для этого осуществляют аппликацию контейнеров с иммобилизованным БАВ на поверхность кожи с последующей транспортировкой через придатки кожи. В качестве контейнеров...
Тип: Изобретение
Номер охранного документа: 0002633928
Дата охранного документа: 19.10.2017
Показаны записи 71-75 из 75.
24.05.2019
№219.017.5e33

Устройство для коаксиального электрогидродинамического формования полимерных микро- или субмикронных структур

Изобретение относится к устройствам коаксиального электроформования полимерных капсул или тонких волокон микро- и субмикронного размера. Техническим результатом является обеспечение возможности формирования микро- и субмикронных структур определенной геометрической формы из полимерных растворов...
Тип: Изобретение
Номер охранного документа: 0002688586
Дата охранного документа: 21.05.2019
29.05.2019
№219.017.62d5

Способ синтеза белка в культуре бактериальных клеток

Изобретение относится к области биотехнологии, в частности к способу синтеза белка в культурах бактериальных клеток. Способ включает модификацию поверхности клеток методом послойной адсорбции противоположно заряжённых полимеров и последующее термостатирование культуры клеток. Культуру клеток...
Тип: Изобретение
Номер охранного документа: 0002688383
Дата охранного документа: 21.05.2019
01.09.2019
№219.017.c529

Устройство для определения абсолютного квантового выхода люминесценции

Использование: для определения абсолютного квантового выхода люминесценции. Сущность изобретения заключается в том, что устройство для определения абсолютного квантового выхода люминесценции исследуемого вещества содержит расположенные на одной оптической оси источник света, фотометрический...
Тип: Изобретение
Номер охранного документа: 0002698548
Дата охранного документа: 28.08.2019
02.09.2019
№219.017.c5f5

Способ фотохимиотерапии витилиго

Изобретение относится к медицине, а именно к дерматологии, и может быть использовано для фотохимиотерапии витилиго. Для этого осуществляют аппликацию на поверхность кожи фотосенсибилизирующего средства выбирают средство на основе субмикронных пористых частиц карбоната кальция размером менее 1.5...
Тип: Изобретение
Номер охранного документа: 0002698871
Дата охранного документа: 30.08.2019
02.06.2023
№223.018.7593

Способ получения молекулярно-импринтированного полимера

Изобретение относится к области аналитической химии и молекулярной биологии и может быть использовано для получения полимера, содержащего отпечатки (импринтинг) молекул, с последующим его применением для анализа и разделения молекулярного материала. Способ получения...
Тип: Изобретение
Номер охранного документа: 0002753850
Дата охранного документа: 24.08.2021
+ добавить свой РИД