×
10.12.2015
216.013.98cc

Результат интеллектуальной деятельности: СПОСОБ ПЕРЕРАБОТКИ ПРИРОДНОГО ИЛИ ПОПУТНОГО НЕФТЯНОГО ГАЗА

Вид РИД

Изобретение

№ охранного документа
0002570736
Дата охранного документа
10.12.2015
Аннотация: Изобретение относится к производству этановой фракции, сжиженных углеводородных газов и к подготовке природного и попутного нефтяного газа для производства сжиженного природного газа и может быть реализовано на объектах нефтяной, нефтехимической и газовой промышленности. Способ заключается в том, что в донной части и/или контактных устройствах ректификационной колонны создают ультразвуковое волновое поле с заданными частотой и мощностью с использованием ультразвукового генератора, излучателей волнового ультразвукового поля с магнитострикционными или пьезокерамическими преобразователями и волноводами, разделяют природный или попутный нефтяные газы на метановую фракцию и ШФЛУ при заданных давлении и температуре и разделяют ШФЛУ. Технический результат заявленного изобретения заключается в повышении скорости массообмена в ректификационной колонне, а также интенсивности образования паровой фазы и четкости разделения природного или попутного нефтяного газа, что позволит снизить число ректификационных тарелок и мощность нагревательного оборудования. 5 з.п. ф-лы, 2 ил.

Изобретение относится к производству этановой фракции, сжиженных углеводородных газов (далее - СУГ) и к подготовке природного или попутного нефтяного газа для производства сжиженного природного газа (далее - СПГ) и может быть реализовано на объектах нефтяной, нефтехимической и газовой промышленности, преимущественно на заводах и установках по подготовке и переработке нефти, природных и попутных нефтяных газов, широкой фракции легких углеводородов (далее - ШФЛУ), в том числе для производства СПГ, СУГ и этановой фракции (в качестве нефтегазохимического сырья).

Известен способ разделения углеводородных фракций в ректификационной колонне с подогревателями (печами) (см. Мурин В.И., Кисленко Н.Н., Сурков Ю.В., Афанасьев А.И., Афанасьев Ю.М., Бекиров Т.М., Барсук С.Д., Блинов В.В., Грунвальд В.Р., Исмайлова Х.И., Набоков С.В. Набутовский З.А., Подлегаев Н.И., Стрючков В.М., Фишман Л.Л. Переработка природного газа и конденсата: Справочник: В 2 ч. - М.: ООО «Недра-Бизнесцентр», 2002. - Ч. 1. - 517 с.: ил.).

Более близким является способ разделения природного газа или попутного нефтяного газа методом ректификации на метановую фракцию и ШФЛУ в ректификационной колонне с подогревателями (печами) (см. указанный выше источник.).

Недостатком приведенных способов является использование при разделении углеводородов в ректификационных колоннах подогревателей (печей), что приводит к необходимости использования природного газа в качестве топлива, значительным теплоэнергетическим затратам и загрязнению окружающей среды продуктами горения, к усложнению технологической схемы процесса ректификации.

Задача заявленного изобретения заключается в создании способа переработки природного или попутного нефтяного газа, осуществление которого позволит снизить энергетические затраты на переработку указанного сырья, повысить скорость массообмена в ректификационной колонне, а также снизить металлоемкость ректификационной колонны.

Технический результат заявленного изобретения заключается в повышении скорости массообмена в ректификационной колонне, а также интенсивности образования паровой фазы и четкости разделения природного или попутного нефтяного газа, что позволит снизить число ректификационных тарелок и мощность нагревательного оборудования.

Технический результат обеспечивается тем, что в способе переработки природного или попутного нефтяного газа, включающем разделение природного или попутного нефтяного газа в ректификационной колонне на метановую фракцию и ШФЛУ, в донной части и/или контактных устройствах ректификационной колонны с использованием ультразвукового генератора и излучателей волнового ультразвукового поля с магнитострикционными или пьезокерамическими преобразователями и волноводами создают ультразвуковое волновое поле с заданными частотой и мощностью, разделяют природный или попутный нефтяные газы на метановую фракцию и ШФЛУ при заданных давлении и температуре и разделяют ШФЛУ.

Заявленный способ характеризуется также тем, что ШФЛУ разделяют на этановую фракцию, преимущественно содержащую этан, и фракцию С3+ в ректификационной колонне при давлениях от 0,5 до 9,0 МПа, температурах от -60 до +20°C и при воздействии ультразвукового волнового поля с частотой излучения от 16 до 100 кГц и мощностью от 0,25 до 10 кВт.

Заявленный способ характеризуется также тем, что ШФЛУ разделяют на пропан-бутановую фракцию (далее - ПБФ) и фракции С5+ в ректификационной колонне при давлениях от 0,2 до 4,0 МПа, температурах от -10 до +40°C и при воздействии ультразвукового волнового поля с частотой излучения от 16 до 100 кГц и мощностью от 0,25 до 10 кВт.

Заявленный способ характеризуется также тем, что ШФЛУ разделяют на ПБФ, преимущественно содержащую пропан, и бутан-бутиленовую фракцию (далее - ББФ), преимущественно содержащую бутаны, в ректификационной колонне при давлениях от 0,2 до 4,0 МПа, температурах от -10 до +40°C и при воздействии ультразвукового волнового поля с частотой излучения от 16 до 100 кГц и мощностью от 0,25 до 10 кВт.

Заявленный способ характеризуется также тем, что ПБФ разделяют на пропан и ББФ в ректификационной колонне при давлениях от 0,2 до 4,0 МПа, температурах от -10 до +40°C и при воздействии ультразвукового волнового поля с частотой излучения от 16 до 100 кГц и мощностью от 0,25 до 10 кВт.

Заявленный способ характеризуется также тем, что ББФ разделяют на н-бутан и изобутан в ректификационной колонне при давлениях от 0,2 до 4,0 МПа, температурах от -10 до +40°C и при воздействии ультразвукового волнового поля с частотой излучения от 16 до 100 кГц и мощностью от 0,25 до 10 кВт.

Энергия ультразвукового волнового поля, создаваемая с использованием ультразвукового генератора и излучателей волнового ультразвукового поля с магнитострикционными или пьезокерамическими преобразователями и волноводами, привносимая в разделяемую углеводородную систему, повышает энергетическое состояние и понижает стабильность системы, что, в свою очередь, по сравнению с тепловым нагревом существенно повышает скорость массообмена, интенсивность образования паровой фазы, четкость разделения и, как следствие, позволяет снизить число ректификационных тарелок в колонне, т.е. снизить металлоемкость ректификационной колонны, и мощность нагревательного оборудования, т.е. снизить энергетические затраты на переработку природного или попутного нефтяного газа.

Таким образом, при осуществлении заявленного способа энергетические затраты снижаются на 40-50%, скорость массообмена в ректификационной колонне повышается в 3-10 раз, а металлоемкость ректификационной колонны снижается на 15-25%, что подтверждено расчетными и экспериментальными данными.

Принципиальная схема, иллюстрирующая работу заявленного способа, представлена на фиг. 1, а на фиг. 2 представлен разрез А-А на фиг.1, где:

1 - ректификационная колонна;

2 - ультразвуковой генератор;

3 - излучатели волнового ультразвукового поля с магнитострикционными или пьезокерамическими преобразователями и волноводами;

и для лучшего понимания римскими цифрами указаны следующие потоки:

I - сырье;

II - дистиллят;

III - остаток.

Сущность и работа заявленного способа поясняется следующими примерами.

ПРИМЕР 1

Сырье (природный газ или попутный нефтяной газ) по линии I поступает в ректификационную колонну 1. В зависимости от состава сырья технологический режим работы ректификационной колонны 1 поддерживают при давлениях от 0,5 до 9,0 МПа и температурах от -60 до +20°C. Значения температур и давлений в ректификационной колонне 1 определяют на основе расчета. В зависимости от состава сырья разделяемая углеводородная смесь в кубовой части ректификационной колонны 1 подвергается воздействию ультразвукового волнового поля с частотой излучения от 16 до 100 кГц и мощностью от 0,25 до 10 кВт при помощи излучателей 3, соединенных с ультразвуковым генератором 2. Указанные значения частоты и мощности излучения определены эмпирическим путем в рамках проведенного натурного эксперимента. С верха ректификационной колонны 1 по линии II отбирают метановую фракцию, преимущественно содержащую метан, с низа ректификационной колонны 2 по линии III отбирают ШФЛУ. В ректификационной колонне 1 применяются способы создания орошения, основанные на использовании дросселирования метановой фракции, выходящей с верха ректификационной колонны, или хладагентов. Установка оснащена необходимой запорной и/или запорно-регулирующей арматурой.

ПРИМЕР 2

Сырье (ШФЛУ) по линии I поступает в ректификационную колонну 1. В зависимости от состава сырья технологический режим работы ректификационной колонны 1 поддерживается при давлениях от 0,5 до 9,0 МПа и температурах от -60 до +20°C. Значения температур и давлений в ректификационной колонне 1 определяют на основе расчета. В зависимости от состава сырья разделяемая углеводородная смесь в кубовой части ректификационной колонны 1 подвергается воздействию ультразвукового волнового поля с частотой излучения от 16 до 100 кГц и мощностью от 0,25 до 10 кВт при помощи излучателей 3, соединенных с ультразвуковым генератором 2. Указанные значения частоты и мощности излучения определены эмпирическим путем в рамках проведенного натурного эксперимента. С верха ректификационной колонны 1 по линии II отбирают этановую фракцию, преимущественно содержащую этан, с низа ректификационной колонны 2 по линии III отбирают фракцию С3+. В ректификационной колонне 1 применяются способы создания орошения, основанные на использовании дросселирования этановой фракции, выходящей с верха ректификационной колонны, или хладагентов. Установка оснащена необходимой запорной и/или запорно-регулирующей арматурой.

ПРИМЕР 3

Сырье (ШФЛУ) по линии I поступает в ректификационную колонну 1. В зависимости от состава сырья технологический режим работы ректификационной колонны 1 поддерживается при давлениях от 0,5 до 9,0 МПа и температурах от -10 до +40°C. Значения температур и давлений в ректификационной колонне 1 определяют на основе расчета. В зависимости от состава сырья разделяемая углеводородная смесь в кубовой части ректификационной колонны 1 подвергается воздействию ультразвукового волнового поля с частотой излучения от 16 до 100 кГц и мощностью от 0,25 до 10 кВт при помощи излучателей 3, соединенных с ультразвуковым генератором 2. Указанные значения частоты и мощности излучения определены эмпирическим путем в рамках проведенного натурного эксперимента. С верха ректификационной колонны 1 по линии II отбирают пропан-бутановую фракцию (далее - ПБФ), преимущественно содержащую пропан и бутаны, с низа ректификационной колонны 2 по линии III отбирают фракцию С5+. В ректификационной колонне 1 применяются способы создания орошения, основанные на использовании дросселирования ПБФ, выходящей с верха ректификационной колонны, или хладагентов. Установка оснащена необходимой запорной и/или запорно-регулирующей арматурой.

ПРИМЕР 4

Сырье (ШФЛУ) по линии I поступает в ректификационную колонну 1.

В зависимости от состава сырья технологический режим работы ректификационной колонны 1 поддерживается при давлениях от 0,5 до 9,0 МПа и температурах от -10 до +40°C. Значения температур и давлений в ректификационной колонне 1 определяют на основе расчета. В зависимости от состава сырья разделяемая углеводородная смесь в кубовой части ректификационной колонны 1 подвергается воздействию ультразвукового волнового поля с частотой излучения от 16 до 100 кГц и мощностью от 0,25 до 10 кВт при помощи излучателей 3, соединенных с ультразвуковым генератором 2. Указанные значения частоты и мощности излучения определены эмпирическим путем в рамках проведенного натурного эксперимента. С верха ректификационной колонны 1 по линии II отбирают ПБФ, преимущественно содержащую пропан, с низа ректификационной колонны 2 по линии III отбирают бутан-бутиленовую фракцию (далее - ББФ), преимущественно содержащую бутаны. В ректификационной колонне 1 применяются способы создания орошения, основанные на использовании дросселирования ПБФ, выходящей с верха ректификационной колонны, или хладагентов. Установка оснащена необходимой запорной и/или запорно-регулирующей арматурой.

ПРИМЕР 5

Сырье (ПБФ) по линии I поступает в ректификационную колонну 1. В зависимости от состава сырья технологический режим работы ректификационной колонны 1 поддерживается при давлениях от 0,5 до 9,0 МПа и температурах от -10 до +40°C. Значения температур и давлений в ректификационной колонне 1 определяют на основе расчета. В зависимости от состава сырья разделяемая углеводородная смесь в кубовой части ректификационной колонны 1 подвергается воздействию ультразвукового волнового поля с частотой излучения от 16 до 100 кГц и мощностью от 0,25 до 10 кВт при помощи излучателей 3, соединенных с ультразвуковым генератором 2. Указанные значения частоты и мощности излучения определены эмпирическим путем в рамках проведенного натурного эксперимента. С верха ректификационной колонны 1 по линии II отбирают пропан, с низа ректификационной колонны 2 по линии III отбирают ББФ, преимущественно содержащую бутаны. Установка оснащена необходимой запорной и/или запорно-регулирующей арматурой.

ПРИМЕР 6

Сырье (ББФ) по линии I поступает в ректификационную колонну 1. Давление в ректификационной колонне составляет 0,2-4,0 МПа. В зависимости от состава сырья технологический режим работы ректификационной колонны 1 поддерживается при давлениях от 0,5 до 9,0 МПа и температурах от -10 до +40°C. Значения температур и давлений в ректификационной колонне 1 определяют на основе расчета. В зависимости от состава сырья разделяемая углеводородная смесь в кубовой части ректификационной колонны 1 подвергается воздействию ультразвукового волнового поля с частотой излучения от 16 до 100 кГц и мощностью от 0,25 до 10 кВт при помощи излучателей 3, соединенных с ультразвуковым генератором 2. Указанные значения частоты и мощности излучения определены эмпирическим путем в рамках проведенного натурного эксперимента. С верха ректификационной колонны 1 по линии II отбирают изобутан, с низа ректификационной колонны 2 по линии III отбирают н-бутан. В ректификационной колонне 1 применяются способы создания орошения, основанные на использовании дросселирования изобутана, выходящего с верха ректификационной колонны, или хладагентов. Установка оснащена необходимой запорной и/или запорно-регулирующей арматурой.


СПОСОБ ПЕРЕРАБОТКИ ПРИРОДНОГО ИЛИ ПОПУТНОГО НЕФТЯНОГО ГАЗА
СПОСОБ ПЕРЕРАБОТКИ ПРИРОДНОГО ИЛИ ПОПУТНОГО НЕФТЯНОГО ГАЗА
Источник поступления информации: Роспатент

Показаны записи 91-100 из 104.
28.03.2020
№220.018.1166

Реагентный состав для растворения сульфатного кольматанта

Изобретение относится к нефтегазовой промышленности. Технический результат - повышение эффективности растворения сульфатного кольматанта, повышение надежности и продуктивности скважин. Реагентный состав для растворения сульфатного кольматанта включает, мас.%: комплексообразующее вещество...
Тип: Изобретение
Номер охранного документа: 0002717851
Дата охранного документа: 26.03.2020
03.07.2020
№220.018.2dba

Способ защиты подземных вод от загрязнений из поверхностных хранилищ жидких отходов, содержащих токсичные или радиоактивные вещества

Изобретение может быть использовано при строительстве, эксплуатации и ликвидации поверхностных хранилищ жидких отходов, содержащих токсичные или радиоактивные вещества, а также при очистке загрязненных вод поверхностных водоемов. Способ защиты подземных вод от загрязнений из поверхностных...
Тип: Изобретение
Номер охранного документа: 0002725250
Дата охранного документа: 30.06.2020
03.07.2020
№220.018.2def

Ингибированная грунтовка

Изобретение относится к ингибированным грунтовкам для лакокрасочных материалов. Описана ингибированная грунтовка, содержащая ингибирующую композицию для лакокрасочных материалов, включающую бензойную кислоту и октадециламин, взятые в эквимолекулярном соотношении, и грунтовку ПФ-0294 при...
Тип: Изобретение
Номер охранного документа: 0002725249
Дата охранного документа: 30.06.2020
11.07.2020
№220.018.3177

Способ заканчивания строительства эксплуатационной скважины с горизонтальным окончанием ствола

Изобретение относится к нефтяной и газовой промышленности, а именно к разработке нефтяных, газовых и газоконденсатных месторождений. Способ включает спуск и установку в горизонтальное окончание ствола нецементируемого хвостовика-фильтра с разобщающими пакерами, портами многостадийного...
Тип: Изобретение
Номер охранного документа: 0002726096
Дата охранного документа: 09.07.2020
11.07.2020
№220.018.31ab

Способ проведения обработки газовых скважин подземных хранилищ газа

Способ проведения обработки газовых скважин подземных хранилищ газа относится к области газовой промышленности. В заявленном способе на первом этапе в колонну насосно-компрессорных труб закачивают технологическую жидкость, приготовленную на основе водного раствора соляной кислоты, для создания...
Тип: Изобретение
Номер охранного документа: 0002726089
Дата охранного документа: 09.07.2020
31.07.2020
№220.018.39a6

Штамм methylococcus capsulatus вкпм в-13479 - продуцент микробной белковой массы, устойчивый к агрессивной среде

Изобретение относится к микробиологической промышленности и может быть использовано для получения микробной белковой массы. Штамм метанокисляющих бактерий Methylococcus capsulatus ЛБТИ 028 обладает способностью продуцировать микробную белковую массу. Штамм депонирован во Всероссийской...
Тип: Изобретение
Номер охранного документа: 0002728345
Дата охранного документа: 29.07.2020
12.04.2023
№223.018.45c2

Способ оценки выноса пропанта и устройство для сбора пропанта

Использование: для исследования выноса пропанта пластовым флюидом из трещины. Сущность изобретения заключается в том, что в ячейке, заполненной пропантом моделируют термобарические условия трещины и осуществляют несколько циклов прокачки через ячейку жидкости, имитирующей по своему составу...
Тип: Изобретение
Номер охранного документа: 0002790813
Дата охранного документа: 28.02.2023
21.04.2023
№223.018.5029

Способ изоляции водопритоков в газовых скважинах с субгоризонтальным окончанием ствола

Заявлен способ изоляции водопритоков в газовых скважинах с субгоризонтальным окончанием ствола. Техническим результатом является повышение эффективности изоляции водопритоков при максимально возможном сохранении фильтрационно-емкостных свойств призабойной зоны эксплуатационного объекта и...
Тип: Изобретение
Номер охранного документа: 0002794105
Дата охранного документа: 11.04.2023
21.04.2023
№223.018.5045

Пористый композитный адсорбент для селективного разделения газов и способ его получения

Группа изобретений относится к технологии получения адсорбентов и может найти применение для сорбции и селективного разделения газовых смесей, в том числе для очистки природного газа от углекислого газа, концентрирования выхлопного или промышленного углекислого газа. Представлен способ...
Тип: Изобретение
Номер охранного документа: 0002794181
Дата охранного документа: 12.04.2023
21.04.2023
№223.018.50b7

Безглинистый поликатионный буровой раствор

Изобретение относится к буровым растворам на водной основе, а именно к поликатионным буровым растворам, и может найти применение при бурении глинистых и продуктивных отложений и капитальном ремонте скважин с низкими пластовыми давлениями на нефтяных и газовых месторождениях. Технический...
Тип: Изобретение
Номер охранного документа: 0002794112
Дата охранного документа: 11.04.2023
Показаны записи 41-47 из 47.
19.01.2018
№218.016.0384

Способ и установка для получения высокооктановой синтетической бензиновой фракции из природного или попутного газов

Изобретение относится к нефте- и газохимии, а именно к способам получения углеводородов путем каталитической конверсии смеси, преимущественно содержащий СО, Н. Получаемые при этом жидкие углеводородные фракции могут быть использованы в качестве топлив, в том числе автомобильных,...
Тип: Изобретение
Номер охранного документа: 0002630307
Дата охранного документа: 07.09.2017
20.01.2018
№218.016.1b33

Способ транспортирования углеводородной жидкости по трубопроводу

Изобретение относится к трубопроводному транспорту углеводородных жидкостей и может быть использовано для увеличения пропускной способности магистрального трубопровода за счет снижения гидравлического сопротивления в нем посредством введения в поток транспортируемой углеводородной жидкости,...
Тип: Изобретение
Номер охранного документа: 0002635959
Дата охранного документа: 17.11.2017
20.01.2018
№218.016.1d9d

Способ извлечения сжиженных углеводородных газов из природного газа магистральных газопроводов и установка для его осуществления

Группа изобретений относится к газоперерабатывающей промышленности и может использоваться при переработке газа для извлечения сжиженных углеводородных газов из природного газа магистральных газопроводов. Поток природного газа последовательно охлаждают и направляют на первую ступень...
Тип: Изобретение
Номер охранного документа: 0002640969
Дата охранного документа: 12.01.2018
17.02.2018
№218.016.2ada

Облегченная тампонажная смесь

Изобретение относится к нефтегазовой промышленности, в частности к тампонажным смесям, и может быть использовано при одноступенчатом цементировании протяженных (более 2500 м) обсадных колонн, перекрывающих интервалы проницаемых пластов и пластов с низкими градиентами гидроразрыва при...
Тип: Изобретение
Номер охранного документа: 0002642897
Дата охранного документа: 29.01.2018
04.04.2018
№218.016.3152

Способ создания малопроницаемого криволинейного экрана в пористой среде при подземном хранении газа

Изобретение относится к способу создания малопроницаемого экрана в пористой среде при подземном хранении газа в пористых пластах-коллекторах и может быть использовано в нефтегазодобывающей промышленности. Технический результат - повышение надежности экрана за счет закачки раствора и газа,...
Тип: Изобретение
Номер охранного документа: 0002645053
Дата охранного документа: 15.02.2018
01.11.2018
№218.016.9884

Способ расстойки сформованных тестовых заготовок перед выпечкой

Изобретение относится к пищевой промышленности. Способ расстойки заготовок из теста в расстоечном шкафу заключается в том, что помещенные в расстоечный шкаф заготовки из теста выдерживают при 30-42°С при относительной влажности среды в расстойном шкафу от 70% до 80% во влажной среде,...
Тип: Изобретение
Номер охранного документа: 0002671168
Дата охранного документа: 29.10.2018
30.05.2020
№220.018.2273

Гетерогенный катализатор окисления пара-ксилола до терефталевой кислоты

Изобретение относится к гетерогенному катализатору окисления пара-ксилола до терефталевой кислоты, состоящий из носителя, содержащего, % масс.: упорядоченный мезопористый оксид кремния типа МСМ-41 20,0-70,0; алюмосиликатные нанотрубки 30,0-80,0, и оксида металла, выбранного из ряда,...
Тип: Изобретение
Номер охранного документа: 0002722302
Дата охранного документа: 28.05.2020
+ добавить свой РИД