×
10.12.2015
216.013.9774

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ВЕРТИКАЛЬНОЙ ДИФФУЗИИ ВЫБРОСОВ ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ В ПРИЗЕМНОМ СЛОЕ АТМОСФЕРЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области исследования или анализа материалов, а именно к определению коэффициента вертикальной диффузии выбросов промышленных предприятий в приземном слое атмосферы с помощью нейтронно-активационного анализа. Способ заключается в том, что в заданном направлении от промышленного предприятия на разных расстояниях от 1 до 5 км отбирают не менее 5 образцов эпифитного мха Pylaisia polyantha (Hedw.) B.S.G. с коры берез, осин и тополей на высоте от 1,5 до 2 м. Кроме того, один образец отбирают на фоновой территории с природно-климатическими условиями, одинаковыми с исследуемой территорией, и удаленной на расстояние более 100 км от промышленных центров в направлении, противоположном преимущественной розе ветров. Очищают образцы мха от инородных примесей, промывают дистиллированной водой, сушат при температуре от 80 до 100°С, гомогенизируют и изготавливают от 5 до 10 параллельных представительных проб. При использовании нейтронно-активационного анализа пробы подвергают облучению потоком тепловых нейтронов в течение 5 часов. После спада активностей Naдо безопасного уровня определяют удельную активность каждой пробы путем сравнения интенсивности гамма-линий радионуклидов химических элементов в пробе с интенсивностью гамма-линий эталонов. Значения концентраций химических элементов в образцах мхов, определенные с помощью нейтронно-активационного метода, методом наименьших квадратов аппроксимируют зависимостью вида: где q - фоновая (природная) концентрация химического элемента в пробе, отобранной на территории, удаленной от промышленных предприятий на расстоянии не менее 100 км; х - расстояние от точек пробоотбора мхов до промышленного предприятия, определяя при этом численные значения коэффициентов А, С и θ, затем рассчитывают коэффициент пропорциональности вертикальной диффузии k: где n - безразмерный параметр для интерполяции вертикального профиля скорости ветра: u(z)=uz, где u - среднегодовая скорость ветра на высоте 1 м; Н - высота трубы промышленного предприятия, и используют его для определения коэффициента вертикальной диффузии выбросов промышленных предприятий в приземном слое атмосферы по формуле: k=kz, где k - коэффициент пропорциональности вертикальной диффузии; z - высота от поверхности земли. Достигается возможность использования для любой местности независимо от ее рельефа и с учетом реализованных за время экспозиции состояний атмосферы. 4 ил., 4 табл.
Основные результаты: Способ определения коэффициента вертикальной диффузии выбросов промышленных предприятий в приземном слое атмосферы, включающий измерение скорости ветра на высоте 1 метр и определение коэффициента вертикальной диффузии выбросов промышленных предприятий в приземном слое по формуле:k=kz,где k - коэффициент пропорциональности вертикальной диффузии; z - высота от поверхности земли,отличающийся тем, что в заданном направлении от промышленного предприятия на разных расстояниях от 1 до 5 км отбирают не менее 5 образцов эпифитного мха Pylaisia polyantha (Hedw.) B.S.G. с коры берез, осин и тополей на высоте от 1,5 до 2 м, кроме того, один образец отбирают на фоновой территории с природно-климатическими условиями, одинаковыми с исследуемой территорией, и удаленной на расстояние более 100 км от промышленных центров в направлении, противоположном преимущественной розе ветров, очищают образцы мха от инородных примесей, промывают дистиллированной водой, сушат при температуре от 80 до 100°C, гомогенизируют и изготавливают от 5 до 10 параллельных представительных проб, при нейтронно-активационном анализе пробы подвергают облучению потоком тепловых нейтронов в течение не более 5 часов, после спада активностей Na до безопасного уровня определяют удельную активность каждой пробы путем сравнения интенсивности гамма-линий радионуклидов химических элементов в пробе с интенсивностью гамма-линий эталонов, значения концентраций химических элементов в образцах мхов, определенные с помощью нейтронно-активационного анализа, методом наименьших квадратов аппроксимируют зависимостью вида: где q - фоновая (природная) концентрация химического элемента в пробе, отобранной на территории, удаленной от промышленных предприятий на расстоянии не менее 100 км;х - расстояние от точек пробоотбора мхов до промышленного предприятия, определяя при этом численные значения коэффициентов А, С и θ, затем рассчитывают коэффициент пропорциональности вертикальной диффузии k: где n - безразмерный параметр для интерполяции вертикального профиля скорости ветра;u - среднегодовая скорость ветра на высоте 1 м;H - высота трубы промышленного предприятия, и используют его для определения коэффициента вертикальной диффузии выбросов промышленных предприятий в приземном слое атмосферы k.

Изобретение относится к области исследования или анализа материалов, а именно к определению коэффициента вертикальной диффузии выбросов промышленных предприятий в приземном слое атмосферы с помощью нейтронно-активационного анализа мхов-биомониторов.

Известен способ определения коэффициента вертикальной диффузии выбросов промышленных предприятий в приземном слое атмосферы [1. Лайхтман Д.Л. Физика пограничного слоя атмосферы. Л.: Гидрометеоиздат, 1970. - С. 130], основанный на формуле Сольберга:

где Rn - нормальная составляющая силы внутреннего трения атмосферных потоков;

σ(z) - длина дуги годографа количества движения атмосферного воздуха, отсчитываемая от точки, соответствующей уровню земли;

z - высота от поверхности земли, на которой определяется коэффициент вертикальной диффузии выбросов промышленных предприятий в приземном слое атмосферы;

r - радиус кривизны годографа.

Для использования формулы Сольберга необходимо произвести измерения на разных высотах скорости ветра, плотности воздуха и атмосферного давления.

Недостатки способа:

1. Измерения скорости ветра, атмосферного давления и плотности воздуха производят на основе большой серии (не менее трех) шаропилотных наблюдений, то есть являются трудоемкими и дорогостоящими процессами.

2. Полученные данным способом значения коэффициента вертикальной диффузии выбросов промышленных предприятий в приземном слое атмосферы характеризуют вполне определенные состояния атмосферы, когда измеряемые на разных высотах скорость ветра, плотность воздуха и атмосферное давление можно считать неизменными величинами. Данное условие выполняется только при сравнительно малых периодах наблюдения.

3. Величина коэффициента вертикальной диффузии выбросов промышленных предприятий в приземном слое атмосферы, определенная данным способом, имеет большую погрешность, так как выражается через производную от функции σ(z), которая определяется по измеряемым на опыте скоростям ветра и плотности воздуха на разных высотах.

Известен способ определения коэффициента вертикальной диффузии выбросов промышленных предприятий в приземном слое атмосферы [1, с. 151-153.], основанный на формуле:

где В(ε,z0) - табулированная в зависимости от параметров ε и z0 функция;

ε - параметр, характеризующий температурную стратификацию атмосферы;

z0 - параметр шероховатости, зависящий от рельефа местности;

z1 - высота от поверхности земли и обычно равная 1 м;

u1 - скорость ветра на высоте z1.

Для осуществления этого способа необходимо измерить скорость ветра на высоте z1, а также с помощью шаропилотных наблюдений определить температурный градиент на основе измерений температуры на разных высотах.

Основные недостатки этого способа:

1. Имеются существенные трудности в определении параметра шероховатости z0. Данные по этой величине, приведенные в литературе для определенных типов рельефа, имеют значительный разброс. Обычно реальная местность имеет сложный рельеф, который трудно отнести к какому-либо определенному типу.

2. Полученные значения коэффициента вертикальной диффузии выбросов промышленных предприятий в приземном слое атмосферы характеризуют вполне определенное состояние атмосферы и не могут быть использованы для других, быстро меняющихся условий.

Наиболее близким является способ определения коэффициента вертикальной диффузии выбросов промышленных предприятий в приземном слое атмосферы [2. Берлянд М.Е. Прогноз и регулирование загрязнения атмосферы. Л.: Гидрометеоиздат, 1985. - С. 28], основанный на формуле:

kz=k1z,

где k1 - коэффициент пропорциональности вертикальной диффузии, определяемый расчетным способом по измеряемым на опыте величинам,

z - высота от поверхности земли, на которой определяется коэффициент вертикальной диффузии выбросов промышленных предприятий в приземном слое атмосферы.

Для устойчивого состояния атмосферы коэффициент k1 определяют по формуле:

где æ=0,38 - аэродинамическая постоянная Кармана;

u2, u1 - скорости ветра, измеренные на двух высотах z2 и z1.

При неравновесных (неустойчивых) условиях в приземном слое атмосферы k1 определяют из выражения [3. Берлянд М.Е. Современные проблемы атмосферной диффузии и загрязнения атмосферы. Л.: Гидрометеоиздат, 1975. - С. 22]:

где Б - параметр устойчивости, ;

δT - разность температур на высотах z3 и z2;

Ta - температура по абсолютной шкале;

h - высота приземного слоя атмосферы;

g - ускорение свободного падения;

z1, z2, z3 - различные высоты, отсчитываемые от поверхности земли.

Для использования данной формулы необходимо произвести измерения температур на высотах h, z2, z3, а также скорость ветра на высоте z1, равной 1 м.

Основные недостатки данного способа:

1. Полученные данным способом значения коэффициента вертикальной диффузии выбросов промышленных предприятий в приземном слое атмосферы характеризуют вполне определенное состояние атмосферы и не могут быть использованы для других, быстро меняющихся условий.

2. При расчете коэффициента вертикальной диффузии выбросов промышленных предприятий в приземном слое атмосферы для неустойчивых состояний атмосферы возникают трудности, связанные с определением параметра шероховатости z0, так как рельеф местности, как правило, трудно отнести к какому-либо одному типу.

3. Высота приземного слоя атмосферы h не имеет однозначного значения, так как изменяется в достаточно широких пределах в зависимости от термической стратификации атмосферы, величины скорости ветра, а также шероховатости земной поверхности. Поэтому при различных условиях значение высоты приземного слоя атмосферы h изменяется от 50 до 250 м.

Задачей изобретения является разработка способа определения коэффициента вертикальной диффузии выбросов промышленных предприятий в приземном слое атмосферы, который можно использовать для любой местности независимо от ее рельефа и с учетом возможных для этой местности состояний атмосферы.

Поставленная задача решена за счет того, что способ определения коэффициента вертикальной диффузии выбросов промышленных предприятий в приземном слое атмосферы так же, как в прототипе, включает измерение скорости ветра на высоте 1 метр и определение коэффициента вертикальной диффузии выбросов промышленных предприятий в приземном слое атмосферы по формуле:

kz=k1z,

где k1 - коэффициент пропорциональности вертикальной диффузии;

z - высота от поверхности земли, на которой проводят определение коэффициента вертикальной диффузии.

Согласно изобретению для определения коэффициента пропорциональности вертикальной диффузии k1 в заданном направлении от промышленного предприятия на разных расстояниях от 1 до 5 км отбирают не менее 5 образцов эпифитного мха Pylaisia polyantha (Hedw.) B.S.G. с коры берез, осин и тополей на высоте от 1,5 до 2 м. Кроме того, один образец отбирают на фоновой территории с природно-климатическими условиями, одинаковыми с исследуемой территорией, и удаленной на расстояние более 100 км от промышленных центров в направлении, противоположном преимущественной розе ветров.

Очищают образцы мха от инородных примесей, промывают дистиллированной водой, сушат при температуре от 80 до 100°С, гомогенизируют и изготавливают от 5 до 10 параллельных представительных проб. При использовании нейтронно-активационного анализа пробы подвергают облучению потоком тепловых нейтронов в течение не более 5 часов. После спада активностей Na24 до безопасного уровня определяют удельную активность каждой пробы путем сравнения интенсивности гамма-линий радионуклидов химических элементов в пробе с интенсивностью гамма-линий эталонов.

Значения концентраций химических элементов в образцах мхов, определенные с помощью нейтронно-активационого анализа, методом наименьших квадратов аппроксимируют зависимостью вида:

где qф - фоновая (природная) концентрация химического элемента в пробе, отобранной на территории, удаленной от промышленных предприятий на расстояние не менее 100 км;

х - расстояние от точек пробоотбора мхов до промышленного предприятия, определяя при этом численные значения эмпирических коэффициентов А, С и θ, затем рассчитывают коэффициент пропорциональности вертикальной диффузии k1:

где n - безразмерный параметр для интерполяции вертикального профиля скорости ветра: u(z)=u1zn,

где u1 - среднегодовая скорость ветра на высоте 1 м;

Н - высота трубы промышленного предприятия.

Найденное значение k1 используют для определения коэффициента вертикальной диффузии выбросов промышленных предприятий в приземном слое атмосферы kz.

Эпифитный мох Pylaisia polyantha (Hedw.) B.S.G. имеет продолжительный жизненный цикл до 10-15 лет, высокие аккумуляционные способности, широкое распространение, высокую встречаемость в различных климатических зонах, произрастают на коре старых осин, берез и тополей, поэтому могут быть отобраны в зоне действия промышленных предприятий. Использование определенной длины прироста мха позволяет варьировать время экспозиции от 2-3 до 10-15 лет, что позволяет определить коэффициент пропорциональности вертикальной диффузии k1 с учетом рельефа подстилающей поверхности и различных состояний атмосферы, реализованных за время экспозиции.

Изготовление параллельных представительных проб из образцов отобранного эпифитного мха позволяет уменьшить погрешность в измерениях без существенного увеличения стоимости анализа. Для проведения анализа необходимо использовать 5-10 параллельных представительных проб. Использование представительных проб для нейтронно-активационного анализа обеспечивает достоверное определение концентраций всех химических элементов в анализируемых пробах, что в свою очередь позволяет с большой точностью и объективностью построить зависимость концентрации химических элементов во мхах от расстояния от источника загрязнения и определить коэффициент вертикальной диффузии выбросов промышленных предприятий в приземном слое атмосферы.

На фиг. 1 представлена карта пробоотбора в зоне влияния угольной ТЭЦ-5 г. Новосибирска; цифрами обозначены точки пробоотбора.

На фиг. 2 представлена карта пробоотбора в зоне влияния алюминиевого завода; цифрами обозначены точки пробоотбора.

В таблице 1 представлены средние значения концентраций Sm, Се, Sr, Cs, Fe, Zn, Sc, Co, U, Eu, Yb, накопленных во мхах, а также средние значения фоновых (природных) концентраций этих элементов (мкг/г) для угольной ТЭЦ-5.

В таблице 2 представлены средние значения концентраций Al, Ва, Со, Cu, Li, Mn, Na, Sr, Ti, V, накопленных во мхах, а также средние значения фоновых (природных) концентраций этих элементов (мкг/г) для Кандалакшского алюминиевого завода.

На фиг. 3 точками изображены результаты измерений концентраций химических элементов во мхах, отобранных в северо-восточном направлении от ТЭЦ-5 г. Новосибирска, сплошными кривыми представлены результаты аппроксимации измеренных концентраций этих элементов, а горизонтальной линией изображены фоновые концентрации химических элементов во мхе Pylaisia polyantha (Hedw.) B.S.G., где а) - Cs, б) - Eu.

На фиг. 4 точками изображены результаты измерений концентраций химических элементов во мхах, отобранных в северном направлении от Кандалакшского алюминиевого завода, сплошными кривыми представлены результаты аппроксимации измеренных концентраций для этих элементов, а горизонтальной линией изображены фоновые концентрации химических элементов во мхе Pylaisia polyantha (Hedw.) B.S.G., где a) - Al, б) - V.

В таблице 3 представлены численные значения эмпирических коэффициентов А, С, θ, среднегодовая скорость ветра u1 на высоте 1 метр, параметр n, а также коэффициент вертикальной диффузии выбросов ТЭЦ-5 г. Новосибирска для различных высот приземного слоя атмосферы.

В таблице 4 представлены численные значения коэффициентов А, С, θ, среднегодовая скорость ветра u1 на высоте 1 метр, параметр n, а также коэффициент вертикальной диффузии выбросов Кандалакшского алюминиевого завода для различных высот приземного слоя атмосферы.

Образцы мха Pylaisia polyantha (Hedw.) B.S.G. в соответствии с розой ветров отбирали в северо-восточном направлении от ТЭЦ-5 г. Новосибирска в 2008 году с коры старых осин и тополей на высоте 1,5-2 метра от земли, что соответствует слою воздуха, которым дышит взрослый человек: два образца отбирали на расстояниях 1-1,5 км, три образца на расстояниях 2-4 км (при высоте трубы ТЭЦ-5 H=260 м) и два образца на расстояниях около 5 км (фиг. 1).

В соответствии с розой ветров образцы мха Pylaisia polyantha (Hedw.) B.S.G отбирали в северном направлении от Кандалакшского алюминиевого завода в 2013 году на расстояниях 1-7 км через приблизительно равные отрезки пути (при высоте трубы КАЗ H=120 м) (фиг. 2).

Кроме того, по одному образцу мха отбирали на фоновых территориях, удаленных на расстояние более 100 км от промышленных центров в направлении, противоположном преимущественной розе ветров.

После отбора образцы мха очищали от земли и различных примесей, затем производили промывку дистиллированной водой. Образцы мха высушивали до постоянного веса в духовом шкафу при температуре 80°-100°С и подвергали процессу гомогенизации, и делали по 5-10 параллельных представительных проб методом квартования.

Для исследования концентраций тяжелых металлов и других микроэлементов в отобранных образцах мха Pylaisia polyantha (Hedw.) B.S.G. методом нейтронно-активационного анализа из каждой пробы были спрессованы таблетки. Для этого измельченный и перемешанный мох помещали в пресс-форму и использовали винтовой пресс. В результате были получены таблетки массой 0,1÷0,4 г диаметром 1 см. Все пробы взвешивали на аналитических весах и пронумеровывали. Каждую таблетку заворачивали в алюминиевую фольгу. Все пробы были разделены на несколько партий по 25-30 штук. Каждую партию заворачивали вместе с эталонами МАГАТЭ (листья березы - ЛБ-1 и листья табака - ТАБАК-5) в отдельную алюминиевую фольгу. Затем каждую упаковку помещали в пенал из алюминия высокой чистоты и облучали в канале реактора ВЭК-6 в потоке тепловых нейтронов плотностью 5·1013 нейтрон/см2·с в течение 5 часов. После окончания облучения пробы выдерживали в течение недели, что необходимо для спада активностей Na24 до безопасного уровня, и распаковывали. Все пробы помещали в измерительные емкости, обозначенные порядковым номером каждой пробы. Удельные активности каждой анализируемой пробы измеряли на полупроводниковом гамма-спектрометре на базе полупроводникового детектора GC4020. Определение концентраций химических элементов проводили относительным методом, сравнивая интенсивности аналитических гамма-линий радионуклидов определяемых элементов с интенсивностью соответствующих гамма-линий эталонов, рассчитывали концентрации определяемых элементов [4. Кузнецов Рафаил Алексеевич. Активационный анализ / Р.А. Кузнецов. - 2-е изд., перераб. и доп. - Москва, Атомиздат, 1974. - С. 37]. Время измерения составляло 1200-1800 секунд в зависимости от удельной активности измеряемых проб. Для обработки аппаратурных гамма-спектров была использована программа «Genia-2000», разработанная компанией CANBERRA. Таким образом, были определены средние концентрации следующих элементов в параллельных пробах мха, отобранных на территории угольной ТЭЦ-5 г. Новосибирска: Sm, Се, Sr, Cs, Fe, Zn, Sc, Co, U, Eu, Yb (таблица 1), и средние концентрации Al, Ва, Со, Cu, Li, Mn, Na, Sr, Ti, V в параллельных пробах мха, отобранных на территории алюминиевого завода (таблица 2). Погрешность измерений составила 15-20%.

Средние концентрации вышеперечисленных химических элементов в образцах, отобранных на разных расстояниях х от промышленных предприятий, с помощью метода наименьших квадратов аппроксимировали зависимостью вида [5. Радиоактивные выбросы в биосфере: справочник / Н.Г. Гусев, В.А. Беляев. - 2-е изд., перераб. и доп. - М.: Энергоатомиздат, 1991. - С. 78. 6. Н.К. Рыжакова, В.Ф. Рапута, Н.С. Рогова, А.Л. Борисенко, Е.А. Покровская. Пространственное распределение химических элементов атмосферных выбросов угольной ТЭЦ // Экология и промышленность России, 2013, №1. - С. 53]:

где qф - фоновая (природная) концентрация химического элемента в пробе, отобранной на территории, удаленной от промышленных предприятий на расстоянии не менее 100 км;

х - расстояние от точек пробоотбора мхов до промышленного предприятия;

А, С, θ - эмпирические коэффициенты, численные значения которых определены методом наименьших квадратов при аппроксимации измеренных концентраций химических элементов, содержащихся во мхах, функцией q(x) (таблица 3, 4).

Концентрации химических элементов во мхах, накопленных за время экспозиции, пропорциональны их содержанию в приземном слое атмосферы, поэтому зависимость концентраций химических элементов во мхах от расстояния от источника имеет тот же аналитический вид, что и зависимость содержания загрязняющих веществ в атмосферном воздухе [2, с. 32]. Тогда для эмпирического коэффициента θ справедливо следующее выражение:

k1 - коэффициент пропорциональности вертикальной диффузии;

n - безразмерный параметр для интерполяции вертикального профиля скорости ветра: u(z)=u1zn,

где u1 - среднегодовая скорость ветра на высоте 1 м;

Н - высота трубы промышленного предприятия, м.

Из формулы для коэффициента θ следует выражение для коэффициента пропорциональности вертикальной диффузии выбросов промышленных предприятий в приземном слое атмосферы:

Как видно из фиг. 3 и 4, зависимость концентраций химических элементов от расстояния х от источников загрязнения описывается функцией q(x).

В таблице 3 приведены значения эмпирических коэффициентов А, С, θ для разных химических элементов, определенных с помощью метода наименьших квадратов, а также значения коэффициента пропорциональности вертикальной диффузии k1 и коэффициента вертикальной диффузии выбросов ТЭЦ-5 в приземном слое атмосферы kz при среднегодовой скорости ветра на высоте 1 м u1=3,7 м/с, n=0,2 [2, с. 28], высоте трубы ТЭЦ-5 H=260 м и высоте от поверхности земли z, равной 50 м, 100 м, 150 м, 200 м и 250 м.

В таблице 4 приведены значения эмпирических коэффициентов А, С, θ для разных химических элементов, определенные с помощью метода наименьших квадратов, а также значения коэффициента пропорциональности вертикальной диффузии k1 и коэффициента вертикальной диффузии выбросов Кандалакшского алюминиевого завода в приземном слое атмосферы kz при среднегодовой скорости ветра на высоте 1 м u1=2,3 м/с, n=0,2 [2, с. 28], высоте трубы КАЗ H=120 м и высоте от поверхности земли z, равной 50 м, 100 м, 150 м, 200 м и 250 м.

Способ определения коэффициента вертикальной диффузии выбросов промышленных предприятий в приземном слое атмосферы, включающий измерение скорости ветра на высоте 1 метр и определение коэффициента вертикальной диффузии выбросов промышленных предприятий в приземном слое по формуле:k=kz,где k - коэффициент пропорциональности вертикальной диффузии; z - высота от поверхности земли,отличающийся тем, что в заданном направлении от промышленного предприятия на разных расстояниях от 1 до 5 км отбирают не менее 5 образцов эпифитного мха Pylaisia polyantha (Hedw.) B.S.G. с коры берез, осин и тополей на высоте от 1,5 до 2 м, кроме того, один образец отбирают на фоновой территории с природно-климатическими условиями, одинаковыми с исследуемой территорией, и удаленной на расстояние более 100 км от промышленных центров в направлении, противоположном преимущественной розе ветров, очищают образцы мха от инородных примесей, промывают дистиллированной водой, сушат при температуре от 80 до 100°C, гомогенизируют и изготавливают от 5 до 10 параллельных представительных проб, при нейтронно-активационном анализе пробы подвергают облучению потоком тепловых нейтронов в течение не более 5 часов, после спада активностей Na до безопасного уровня определяют удельную активность каждой пробы путем сравнения интенсивности гамма-линий радионуклидов химических элементов в пробе с интенсивностью гамма-линий эталонов, значения концентраций химических элементов в образцах мхов, определенные с помощью нейтронно-активационного анализа, методом наименьших квадратов аппроксимируют зависимостью вида: где q - фоновая (природная) концентрация химического элемента в пробе, отобранной на территории, удаленной от промышленных предприятий на расстоянии не менее 100 км;х - расстояние от точек пробоотбора мхов до промышленного предприятия, определяя при этом численные значения коэффициентов А, С и θ, затем рассчитывают коэффициент пропорциональности вертикальной диффузии k: где n - безразмерный параметр для интерполяции вертикального профиля скорости ветра;u - среднегодовая скорость ветра на высоте 1 м;H - высота трубы промышленного предприятия, и используют его для определения коэффициента вертикальной диффузии выбросов промышленных предприятий в приземном слое атмосферы k.
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ВЕРТИКАЛЬНОЙ ДИФФУЗИИ ВЫБРОСОВ ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ В ПРИЗЕМНОМ СЛОЕ АТМОСФЕРЫ
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ВЕРТИКАЛЬНОЙ ДИФФУЗИИ ВЫБРОСОВ ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ В ПРИЗЕМНОМ СЛОЕ АТМОСФЕРЫ
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ВЕРТИКАЛЬНОЙ ДИФФУЗИИ ВЫБРОСОВ ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ В ПРИЗЕМНОМ СЛОЕ АТМОСФЕРЫ
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ВЕРТИКАЛЬНОЙ ДИФФУЗИИ ВЫБРОСОВ ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ В ПРИЗЕМНОМ СЛОЕ АТМОСФЕРЫ
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ВЕРТИКАЛЬНОЙ ДИФФУЗИИ ВЫБРОСОВ ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ В ПРИЗЕМНОМ СЛОЕ АТМОСФЕРЫ
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ВЕРТИКАЛЬНОЙ ДИФФУЗИИ ВЫБРОСОВ ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ В ПРИЗЕМНОМ СЛОЕ АТМОСФЕРЫ
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ВЕРТИКАЛЬНОЙ ДИФФУЗИИ ВЫБРОСОВ ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ В ПРИЗЕМНОМ СЛОЕ АТМОСФЕРЫ
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ВЕРТИКАЛЬНОЙ ДИФФУЗИИ ВЫБРОСОВ ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ В ПРИЗЕМНОМ СЛОЕ АТМОСФЕРЫ
Источник поступления информации: Роспатент

Показаны записи 111-120 из 142.
27.06.2015
№216.013.58d5

Способ измерения тока короткого замыкания

Изобретение относится к энергетике, а именно к измерительной технике, и может быть использовано для измерения токов в электроустановках. Способ измерения тока короткого замыкания в проводнике с помощью герконов заключается в том, что n герконов с нормально разомкнутыми контактами устанавливают...
Тип: Изобретение
Номер охранного документа: 0002554282
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.590f

Способ определения золота дифференциально-импульсным вольтамперометрическим методом в водных растворах

Изобретение направлено на определение золота (III) в водных растворах методом дифференциально-импульсной вольтамперометрии и может быть использовано в различных отраслях народного хозяйства. Способ определения золота дифференциально-импульсным вольтамперометрическим методом в водных растворах...
Тип: Изобретение
Номер охранного документа: 0002554340
Дата охранного документа: 27.06.2015
10.07.2015
№216.013.5c48

Облегченный тампонажный материал

Изобретение относится к тампонажным растворам, используемым для цементирования обсадных колонн нефтяных, газовых и газоконденсатных скважин, осложненных наличием пластов с низким давлением гидроразрыва. Облегченный тампонажный материал содержит цемент ПЦТ-I-100, облегчающую добавку - вспученный...
Тип: Изобретение
Номер охранного документа: 0002555165
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5c6d

Способ оценки ресурса трубных изделий энергетического оборудования

Использование: для оценки фактического состояния и остаточного ресурса эксплуатации трубных изделий энергетического оборудования. Сущность заключается в том, что из трубы, проработавшей в энергетическом оборудовании, подготавливают один образец, а также два эталона из трубы, не бывшей в...
Тип: Изобретение
Номер охранного документа: 0002555202
Дата охранного документа: 10.07.2015
20.07.2015
№216.013.62a6

Способ определения термической совместимости различных конструкционных сталей в плакированном изделии энергетического оборудования

Изобретение относится к способам установления возможности термического совмещения различных конструкционных сталей в плакированных изделиях и может найти применение на предприятиях энергетической отрасли, в проектных и научно-исследовательских организациях при проектировании и изготовлении...
Тип: Изобретение
Номер охранного документа: 0002556801
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.6421

Способ плазменной наплавки порошков системы fe-cr-v-mo-c

Изобретение относится к наплавке, а именно к плазменной порошковой наплавке плоских и цилиндрических поверхностей, и может быть использовано как при изготовлении новых, так и при восстановлении поверхностей изношенных деталей, работающих в условиях интенсивного абразивного и газоабразивного...
Тип: Изобретение
Номер охранного документа: 0002557180
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.6572

Способ тушения пожаров

Изобретение относится к противопожарной технике, а именно к способам тушения пожаров при возгораниях на больших площадях, и может быть использовано для подавления и тушения крупных лесных пожаров, а также при ликвидации возгораний на промышленных и общественных объектах. Способ заключается в...
Тип: Изобретение
Номер охранного документа: 0002557517
Дата охранного документа: 20.07.2015
10.08.2015
№216.013.6b48

Импульсный ионный ускоритель

Импульсный ионный ускоритель предназначен для получения мощных пучков заряженных частиц. Ускоритель содержит генератор импульсного напряжения (1) и установленные в корпусе основной и предварительный газовые разрядники (4, 7), двойную формирующую линию, средний электрод (3) которой соединен с...
Тип: Изобретение
Номер охранного документа: 0002559022
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6c75

Устройство для определения содержания феррита в материале

Изобретение относится к измерительной технике, представляет собой устройство для определения содержания феррита в материале и может быть использовано для определения содержания феррита, измерения температурных зависимостей степени ферритизации и определения по ним температур магнитных фазовых...
Тип: Изобретение
Номер охранного документа: 0002559323
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6d30

Способ синтеза нанокристаллического карбида кремния

Изобретение относится к технологии получения нанокристаллического карбида кремния. Способ включает плазмодинамический синтез карбида кремния в гиперскоростной струе электроразрядной плазмы, содержащей кремний и углерод в соотношении 3,0:1, которую генерируют коаксиальным магнитоплазменным...
Тип: Изобретение
Номер охранного документа: 0002559510
Дата охранного документа: 10.08.2015
Показаны записи 111-120 из 235.
27.05.2014
№216.012.cb59

Устройство для модуляции монохроматического оптического излучения

Изобретение относится к оптической технике. Устройство для модуляции монохроматического оптического излучения содержит оптически прозрачную среду, в которой установлены разделитель монохроматического оптического излучения на первый и второй каналы распространения, отражающий элемент во втором...
Тип: Изобретение
Номер охранного документа: 0002517823
Дата охранного документа: 27.05.2014
10.06.2014
№216.012.ccf3

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования - контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации. Сущность: проводят испытание на изменение величины исходного параметра от...
Тип: Изобретение
Номер охранного документа: 0002518238
Дата охранного документа: 10.06.2014
20.06.2014
№216.012.d280

Комплексный препарат для профилактики и лечения кишечных инфекций

Изобретение относится к медицине и ветеринарии, а именно к медицинским и ветеринарным препаратам, предназначенным для профилактики и лечения кишечных инфекций различной этиологии у человека и животных. В комплексном препарате, содержащем носитель, представляющем собой энтеросорбент,...
Тип: Изобретение
Номер охранного документа: 0002519659
Дата охранного документа: 20.06.2014
20.06.2014
№216.012.d4ed

Способ получения вспененного материала и шихта для его изготовления

Изобретение относится к производству теплоизоляционных строительных материалов. Технический результат изобретения заключается в упрощении технологии получения вспененного материала, снижении температуры вспенивания шихты, снижении термических напряжений в изделии. Шихта для изготовления...
Тип: Изобретение
Номер охранного документа: 0002520280
Дата охранного документа: 20.06.2014
20.06.2014
№216.012.d4ef

Способ направленного затвердевания залитого в форму металла

Изобретение относится к области литейного производства и может быть использовано для получения отливок ответственного назначения. Способ включает нанесение на поверхность литейной формы перед заливкой расплавленного металла защитно-разделительных покрытий различных составов. На нижнюю часть...
Тип: Изобретение
Номер охранного документа: 0002520282
Дата охранного документа: 20.06.2014
27.06.2014
№216.012.d6c1

Способ прогнозирования течения ишемической болезни сердца

Изобретение относится к области медицины, а именно к способу прогнозирования течения ишемической болезни сердца. Сущность способа состоит в том, что до и после лечения одновременно определяют в сыворотке крови аполипопротеин А-1 (Апо А-1), общий холестерин и модифицированные липопротеины ЛП(а)...
Тип: Изобретение
Номер охранного документа: 0002520755
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d8b5

Способ подземной газификации

Изобретение относится к горному делу и может быть применено для получения газообразного энергоносителя из угля или сланца на месте залегания. Способ включает бурение скважин с поверхности земли в обрабатываемый интервал в подземном пласте, размещение в скважинах электродов, приложение...
Тип: Изобретение
Номер охранного документа: 0002521255
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d8f8

Способ оценки прогрессирования атерогенности при ишемической болезни сердца

Изобретение относится к области медицины и предназначено для оценки прогрессирования атерогенности при ишемической болезни сердца. Перед исследованием проводят трехкратное замораживание и оттаивание сыворотки по 20 и 10 минут соответственно, дезинтеграцию, перемешивание смеси при частоте 120...
Тип: Изобретение
Номер охранного документа: 0002521322
Дата охранного документа: 27.06.2014
20.07.2014
№216.012.ddef

Способ получения нитрида циркония

Изобретение относится к области получения порошков тугоплавких соединений, которые могут быть использованы для получения высокотвердой керамики и защитных износостойких покрытий. Способ получения нитрида циркония заключается в проведении самораспространяющегося высокотемпературного синтеза...
Тип: Изобретение
Номер охранного документа: 0002522601
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.ddf0

Способ умягчения воды

Изобретение относится к водоподготовке и может быть использовано как в домашних, так и в производственных условиях для умягчения воды, содержащей большое количество солей жесткости, а также для осветления и очистки оборотных и сточных вод сельского хозяйства, пищевой и химической...
Тип: Изобретение
Номер охранного документа: 0002522602
Дата охранного документа: 20.07.2014
+ добавить свой РИД