×
10.12.2015
216.013.959d

Результат интеллектуальной деятельности: СПОСОБ СВЕТОЛОКАЦИОННОГО ИЗМЕРЕНИЯ ВЫСОТЫ ОБЛАЧНЫХ СЛОЕВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технике измерения оптических характеристик атмосферы. Одновременно с первым зондирующим импульсом производят включение фотоприемника излучения первым стробом-импульсом питания. Принимают эхо-сигнал и передают значение времени задержки между зондирующим импульсом и регистрацией эхо-сигнала в многоканальный сумматор и далее в блок управления и обработки сигналов. Каждый последующий строб-импульс питания фотоприемника смещают на величину, равную времени между началом первого зондирующего импульса и последовательно каждым следующим выключением фотоприемника в первом стробе-импульсе питания. При завершении измерений осуществляют формирование в ячейках памяти гистограммы распределения числа единичных импульсов по времени задержки относительно зондирующего светового импульса по всей длине зондируемого пространства. В течение первого строба производится оцифровка и запись последовательности эхо-сигналов, а также динамический анализ последовательности для обнаружения момента окончания первого слоя облачности и фиксирования в этот момент уровня фонового эхо-сигнала, который в дальнейшем вычитается из последующих уровней принимаемых эхо-сигналов. Технический результат - повышение эффективности использования энергии зондирующего импульса при увеличении вероятности приема эхо-сигнала.
Основные результаты: Способ светолокационного измерения высоты облачных слоев, заключающийся в направлении зондирующих импульсов света к облачным слоям, включении фотоприемника излучения первым стробом-импульсом питания одновременно с первым зондирующим импульсом, причем фотоприемник во время строба периодически включается и выключается, причем время выключения равно или больше времени восстановления фотоприемника, приеме эхо-сигнала, определении времени задержки между зондирующим импульсом и срабатыванием фотоприемника, направлении в момент срабатывания фотоприемника единичного импульса в ячейку памяти, соответствующую времени срабатывания фотоприемника, смещении каждого последующего строба-импульса питания фотоприемника на величину, равную времени между началом первого зондирующего импульса и последовательно каждым следующим выключением фотоприемника в первом стробе-импульсе питания, повторении измерений, суммировании единичных импульсов в соответствующих ячейках памяти и передаче данных на компьютер для построения гистограммы, а число смещений равно отношению длительности выключения фотоприемника в стробе к длительности строба включения фотоприемника, и при завершении измерений - формирование в ячейках памяти гистограммы - распределение числа единичных импульсов по времени задержки относительно зондирующего светового импульса по всей длине зондируемого пространства, отличающийся тем, что в течение первого строба производится оцифровка и запись последовательности эхо-сигналов, а также динамический анализ формируемой последовательности для обнаружения момента окончания первого слоя облачности и фиксирования в этот момент уровня фонового эхо-сигнала, который в дальнейшем вычитается из последующих уровней принимаемых эхо-сигналов.

Изобретение относится к технике измерения оптических характеристик атмосферы с целью определения высоты обнаружения взлетно-посадочной полосы и мониторинга аэрозольного следа, образованного продуктами сгорания топлива летательных аппаратов, в интересах обеспечения безопасности полетов авиации.

Известен способ светолокационного измерения высоты облачных слоев (Бухарин А.В., Першин С.М. «Теоретическое рассмотрение лидара обратного рассеяния с безопасным для глаз уровнем излучения» // Оптика атмосферы и океана, т. 7, 1994 г., с. 521-537), заключающийся в направлении зондирующих импульсов света к облачным слоям и включении фотоприемника излучения строб-импульсом питания, в течение которого может произойти только одно срабатывание фотоприемника, приеме эхо-сигнала, срабатывании фотоприемника, передаче значения задержки времени между зондирующим импульсом и срабатыванием фотоприемника в блок управления и обработки сигналов, где находятся ячейки памяти, причем строб разделяется на целое число равных по величине временных интервалов и каждому временному интервалу соответствует своя ячейка памяти. При приеме эхо-сигналов в ячейку памяти, соответствующую временному интервалу строба, в который произошло это событие, поступает единичный импульс, то есть содержимое этой ячейки памяти увеличивается на единицу. Прием эхо-сигнала с другой временной задержкой будет увеличивать на единицу содержимое другой, соответствующей этой временной задержке, ячейки памяти. Причем в случае слабых фоновых потоков и эхо-сигнала фотоприемник может не регистрировать эти сигналы. В этом случае содержимое ячеек памяти остается без изменения. После чего содержимое ячеек памяти считывается и передается в компьютер, который формирует гистограмму распределения числа приема эхо-сигналов фотоприемником по номерам ячеек памяти и, следовательно, по дальности расположения облачных слоев-источников эхо-сигналов в данном стробе. Затем строб перемещается на фиксированную задержку, равную или меньшую длительности строба, относительно первого светового импульса зондирования, и цикл измерения повторяется. Число смещений строба определяется дальностью зондирования. Причем уровень фонового потока (шума) измеряется отдельно, для чего импульс строба подается на приемник также в середине интервала между световыми импульсами. Таким образом, компьютер формирует две гистограммы распределения числа приема эхо-сигналов фотоприемником по номерам ячеек, одна из которых отражает распределение «сигнал + шум», а другая - только «шум». Полная гистограмма по всей трассе зондирования составляется как последовательность отдельных гистограмм, измеренных в каждом положении строба при его «сшивке» на границе совмещения. Гистограмма распределения эхо-сигнала получается вычитанием гистограмм «сигнал + шум» - «шум».

Недостаток: низкая эффективность использования энергии излученного импульса из-за отсутствия компенсации фонового излучения от первого слоя облачности.

Известен принятый за прототип способ светолокационного измерения высоты облачных слоев (Патент РФ №2361237, МПК G01S 17/10, опубликован 10.07.2009, Бюл. №19), заключающийся в направлении зондирующих импульсов света к облачным слоям, включении фотоприемника излучения первым стробом-импульсом питания одновременно с первым зондирующим импульсом, причем фотоприемник во время строба периодически включается и выключается, при этом время выключения равно или больше времени восстановления фотоприемника, приеме эхо-сигнала, определении времени задержки между зондирующим импульсом и срабатыванием фотоприемника, направлении в момент срабатывания фотоприемника единичного импульса в ячейку памяти, соответствующую времени срабатывания фотоприемника, смещении каждого последующего строба-импульса питания фотоприемника на величину, равную времени между началом первого зондирующего импульса и последовательно каждым следующим выключением фотоприемника в первом стробе-импульсе питания, повторении измерений, суммировании единичных импульсов в соответствующих ячейках памяти и передаче данных на компьютер для построения гистограммы, а число смещений равно отношению длительности выключения фотоприемника в стробе к длительности строба включения фотоприемника, и после завершения измерений - формирование в ячейках памяти гистограммы - распределение числа единичных импульсов по времени задержки относительно зондирующего светового импульса по всей длине зондируемого пространства.

Недостаток способа: низкая эффективность использования энергии излученного импульса из-за отсутствия компенсации фонового излучения от первого слоя облачности.

Техническим результатом заявляемого способа является увеличение эффективности использования энергии зондирующего импульса при увеличении вероятности приема эхо-сигнала.

Технический результат достигается тем, что в способе светолокационного измерения высоты облачных слоев, заключающемся в направлении зондирующих импульсов света к облачным слоям, включении фотоприемника излучения первым стробом-импульсом питания одновременно с первым зондирующим импульсом, причем фотоприемник во время строба периодически включается и выключается, причем время выключения равно или больше времени восстановления фотоприемника, приеме эхо-сигнала, определении времени задержки между зондирующим импульсом и срабатыванием фотоприемника, направлении в момент срабатывания фотоприемника единичного импульса в ячейку памяти, соответствующую времени срабатывания фотоприемника, смещении каждого последующего строба-импульса питания фотоприемника на величину, равную времени между началом первого зондирующего импульса и последовательно каждым следующим выключением фотоприемника в первом стробе-импульсе питания, повторении измерений, суммировании единичных импульсов в соответствующих ячейках памяти и передаче данных на компьютер для построения гистограммы, а число смещений равно отношению длительности выключения фотоприемника в стробе к длительности строба включения фотоприемника, и при завершении измерений - формирование в ячейках памяти гистограммы - распределение числа единичных импульсов по времени задержки относительно зондирующего светового импульса по всей длине зондируемого пространства, дополнительно в течение первого строба производится оцифровка и запись последовательности эхо-сигналов, а также динамический анализ формируемой последовательности для обнаружения момента окончания первого слоя облачности и фиксирования в этот момент уровня фонового эхо-сигнала, который в дальнейшем вычитается из последующих уровней принимаемых эхо-сигналов.

Техническая сущность предлагаемого изобретения заключается в фиксировании фонового сигнала от первого слоя облачности для компенсации при последующих включениях фотоприемника.

Способ осуществляется следующим образом.

Зондирующие импульсы света направляются к облачным слоям, одновременно с первым зондирующим импульсом производится включение фотоприемника первым стробом-импульсом питания, причем в стробе происходит последовательное включение и выключение фотоприемника излучения, прием эхо-сигнала, срабатывание фотоприемника, передача значения задержки времени между зондирующим импульсом и регистрацией эхо-сигнала в многоканальный сумматор и далее в блок управления и обработки сигналов, где находятся ячейки памяти, причем интервал между включением и выключением фотоприемника выбирается равным или большим времени восстановления фотоприемника после регистрации эхо-сигнала, а число включений определяется дальностью зондирования, и каждому включению соответствует своя ячейка памяти. При срабатывании фотоприемника в ячейку памяти, номер которой соответствует номеру включения фотоприемника в стробе, при котором произошло это событие, поступает единичный импульс, то есть содержимое этой ячейки памяти увеличивается на единицу. Регистрация эхо-сигнала в другой временной интервал будет увеличивать на единицу содержимое другой соответствующей этой временной задержке ячейки памяти. Одновременно в течение первого строба производится оцифровка и запись последовательности эхо-сигналов, а также динамический анализ формируемой последовательности для обнаружения момента окончания первого слоя облачности и фиксирования в этот момент уровня фонового эхо-сигнала, который в дальнейшем вычитается из последующих уровней принимаемых эхо-сигналов. Далее происходит смещение второго строба-импульса питания на величину, равную времени между началом первого зондирующего импульса и окончанием включения фотоприемника первым импульсом в первом стробе-импульсе питания. Повторение измерений, заполнение соответствующих ячеек памяти, вновь смещение строб-импульса питания на величину, равную времени между началом первого зондирующего импульса и окончанием включения фотоприемника вторым импульсом питания. Число смещений периодической последовательности импульсов в стробе питания фотоприемника определяется отношением длительности интервала между импульсами в стробе к длительности строба включения фотоприемника.

После завершения последнего цикла измерения в ячейках памяти формируется распределение числа единичных импульсов по времени задержки относительно зондирующего светового импульса. Это распределение передается для отображения и хранения.

Эффективность предложенного способа определяется тем, что сигнал от второго слоя облачности принимается вместе с фоновым солнечным сигналом от первого слоя облачности. Компенсация фонового сигнала позволит повысить отношение сигнал/фон при приеме сигнала от второго слоя облачности и, как следствие, - увеличить вероятность приема эхо-сигнала при меньшей мощности зондирующего светового импульса.

Способ светолокационного измерения высоты облачных слоев, заключающийся в направлении зондирующих импульсов света к облачным слоям, включении фотоприемника излучения первым стробом-импульсом питания одновременно с первым зондирующим импульсом, причем фотоприемник во время строба периодически включается и выключается, причем время выключения равно или больше времени восстановления фотоприемника, приеме эхо-сигнала, определении времени задержки между зондирующим импульсом и срабатыванием фотоприемника, направлении в момент срабатывания фотоприемника единичного импульса в ячейку памяти, соответствующую времени срабатывания фотоприемника, смещении каждого последующего строба-импульса питания фотоприемника на величину, равную времени между началом первого зондирующего импульса и последовательно каждым следующим выключением фотоприемника в первом стробе-импульсе питания, повторении измерений, суммировании единичных импульсов в соответствующих ячейках памяти и передаче данных на компьютер для построения гистограммы, а число смещений равно отношению длительности выключения фотоприемника в стробе к длительности строба включения фотоприемника, и при завершении измерений - формирование в ячейках памяти гистограммы - распределение числа единичных импульсов по времени задержки относительно зондирующего светового импульса по всей длине зондируемого пространства, отличающийся тем, что в течение первого строба производится оцифровка и запись последовательности эхо-сигналов, а также динамический анализ формируемой последовательности для обнаружения момента окончания первого слоя облачности и фиксирования в этот момент уровня фонового эхо-сигнала, который в дальнейшем вычитается из последующих уровней принимаемых эхо-сигналов.
Источник поступления информации: Роспатент

Показаны записи 231-231 из 231.
26.10.2018
№218.016.9663

Аппаратно-программный комплекс для макетирования и отладки цифровых устройств на базе микроконтроллеров различных архитектур

Аппаратно-программный комплекс для макетирования и отладки цифровых устройств на базе микроконтроллеров различных архитектур относится к области вычислительной техники, а именно к диагностическому оборудованию, в частности к техническим средствам, позволяющим производить макетирование цифровых...
Тип: Изобретение
Номер охранного документа: 0002670730
Дата охранного документа: 24.10.2018
Показаны записи 221-228 из 228.
21.07.2018
№218.016.7344

Способ визуализации подкожных вен в инфракрасном диапазоне спектра излучения

Изобретение относится к медицине, а именно к области лучевой диагностики, анестезиологии и реанимации, и может быть использовано для визуализации подкожных вен конечностей в процессе лечения тромбофлебитов. Способ содержит этапы, содержащие: укладку пациента, механическое воздействие в виде...
Тип: Изобретение
Номер охранного документа: 0002661699
Дата охранного документа: 19.07.2018
13.01.2019
№219.016.af51

Устройство для измерения температуры

Предлагаемое изобретение относится к измерительной технике и может быть использовано для измерения физических величин с первичными резисторными датчиками. Устройство содержит термометр сопротивления R, включенный в мостовую схему 1, диагональ питания которой через балластный резистор 2...
Тип: Изобретение
Номер охранного документа: 0002676821
Дата охранного документа: 11.01.2019
18.01.2019
№219.016.b130

Цифровой измеритель температуры

Предлагаемое изобретение относится к термометрии. Заявлен цифровой измеритель температуры, который содержит мостовую измерительную схему 1, в плечи которой включены датчик температуры 2 и термочувствительный элемент терморезистора косвенного подогрева-охлаждения (ТКП) 3, измерительная...
Тип: Изобретение
Номер охранного документа: 0002677262
Дата охранного документа: 16.01.2019
01.06.2019
№219.017.722c

Цифровой термометр

Изобретение относится к термометрии и предназначено для работы с термопреобразователями с импульсным выходным сигналом. Цифровой термометр содержит термопреобразователь с импульсным выходом, генератор прямоугольных импульсов, преобразователь кода в частоту (ПКЧ), реверсивный счетчик...
Тип: Изобретение
Номер охранного документа: 0002690079
Дата охранного документа: 30.05.2019
11.07.2019
№219.017.b2a8

Способ определения диэлектрической проницаемости и толщины многослойных диэлектрических покрытий на металле в диапазоне свч

Использование: для определения диэлектрической проницаемости и толщины многослойных твердых образцов на поверхности металла. Сущность изобретения заключается в том, что способ заключается в создании СВЧ-электромагнитного поля бегущей поверхностной волны типа Е над поверхностью диэлектрик-металл...
Тип: Изобретение
Номер охранного документа: 0002694110
Дата охранного документа: 09.07.2019
25.07.2019
№219.017.b8dc

Маршрутизатор пакетов в сетях с неоднородной тороидальной топологией

Изобретение относится к области связи и может быть использовано для построения цифровых сетей связи с коммутацией пакетов, в системах коммутации для построения коммутационных полей АТС, сетей ЭВМ, микропроцессорных систем, суперкомпьютеров. Технический результат заключается в увеличении...
Тип: Изобретение
Номер охранного документа: 0002695494
Дата охранного документа: 23.07.2019
21.05.2020
№220.018.1e87

Способ определения диэлектрической проницаемости анизотропных диэлектриков

Изобретение относится к области электротехники, в частности к способу определения диэлектрической проницаемости анизотропных диэлектриков, и может быть использовано при контроле качества твердых диэлектрических материалов и покрытий. Способ измерения диэлектрической проницаемости материалов...
Тип: Изобретение
Номер охранного документа: 0002721472
Дата охранного документа: 19.05.2020
01.06.2023
№223.018.74ef

Устройство летного контроля наземных средств радиотехнического обеспечения полетов

Изобретение относится к области радиотехники, в частности к проведению летных проверок наземных средств радиотехнического обеспечения полетов. Техническим результатом изобретения является обеспечение проведения летных проверок наземных средств радиотехнического обеспечения без использования...
Тип: Изобретение
Номер охранного документа: 0002796411
Дата охранного документа: 23.05.2023
+ добавить свой РИД