×
27.11.2015
216.013.9429

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ МАССИВОВ УГЛЕРОДНЫХ НАНОТРУБОК С УПРАВЛЯЕМОЙ ПОВЕРХНОСТНОЙ ПЛОТНОСТЬЮ

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано при изготовлении сорбентов и армирующих добавок. Сначала подготавливают ростовую подложку путем нанесения на ее поверхность нанодисперсных частиц катализатора конденсацией микрокапель коллоидного раствора, находящегося под воздействием ультразвука. Во время конденсации дополнительно воздействуют ультразвуком на ростовую подложку при мощности ультразвукового генератора 25-40 Вт. Подготовленную подложку помещают в ростовую печь, подают в реакционную зону ацетилен и выращивают на подложке массивы углеродных нанотрубок, поверхностная плотность которых растёт с увеличением мощности ультразвукового генератора, воздействующего на подложку. 3 пр.
Основные результаты: Способ получения массивов углеродных нанотрубок, включающий подготовку ростовой подложки путем нанесения на ее поверхность нанодисперсных частиц катализатора конденсацией микрокапель коллоидного раствора, находящегося под воздействием ультразвука, и помещение подготовленной подложки в ростовую печь с последующим выращиванием углеродных нанотрубок, отличающийся тем, что производят дополнительное воздействие ультразвуком на ростовую подложку, причем мощность ультразвукового генератора задают в пределах от 25 до 40 Вт.

Изобретение относится к каталитическому способу производства углеродных нанотрубок из углеводородов, предназначено для выращивания массивов углеродных нанотрубок. Оно может быть использовано в производстве сорбентов, армирующих добавок и др.

Известен способ получения углеродных нанотрубок термокаталитическим разложением ацетилена с участием нанодисперсных частиц железа и никеля, размещенных на поверхности подложек монокристаллического кремния [1]. Недостатком данного способа является невозможность получения углеродных нанотрубок, а также большой разброс их по диаметрам и неравномерность распределения по площади подложки.

Известен способ получения углеродных нанотрубок каталитическим разложением ацетилена с осаждением углерода на заполненные кобальтом мезопористые подложки из анодированного оксида алюминия [2]. Недостатками способа являются достаточно большой разброс получаемых нанотрубок по диаметрам, относительно низкая равномерность распределения трубок по площади подложки, недостаточная воспроизводимость процесса на отдельных участках подложки.

Наиболее близким техническим решением, выбранным в качестве прототипа, является способ нанесения антикоррозионных покрытий на защищаемые поверхности металлов путем плазменного напыления, вакуумного испарения или осаждения из газовой фазы с одновременным ультразвуковым воздействием на металл [3]. Недостатком данного способа является то, что ультразвуковое воздействие на металл при нанесении антикоррозионных покрытий на защищаемую поверхность приводит к неконтролируемому заполнению неровностей поверхности, пор, трещин, что обуславливает неравномерное распределение наносимого материала по поверхности. Неравномерность нанесения защитного покрытия определяется использованием ультразвукового воздействия в интервале частот, соответствующих частотам собственных колебаний метала и приводящих к возникновению резонанса. Данный способ не позволяет управляемо наносить наночастицы металлов на поверхность ростовой подложки без заполнения трещин, неровностей, не сплошным слоем. Использование данного способа для получения массивов углеродных нанотрубок невозможно.

Изобретение направлено на получение на поверхности ростовой подложки массивов углеродных нанотрубок.

Это достигается тем, что перед помещением ростовой подложки в печь и выращиванием массивов углеродных нанотрубок на подложку наносят катализатор путем конденсации микрокапель коллоидного раствора при воздействии на него ультразвука, при этом ультразвуком дополнительно воздействуют на ростовую подложку во время проведения процесса конденсации, причем мощность ультразвукового генератора задается в пределах от 25 до 40 Вт.

Способ получения массивов углеродных нанотрубок осуществляется следующим способом. Ростовая подложка с предварительно очищенной подготовленной поверхностью закрепляется над свободной поверхностью коллоидного раствора, состоящего из наночастиц катализатора и жидкого растворителя, причем тип растворителя и катализатора, а также их количественное соотношение в растворе устанавливается заранее, с учетом поставленной задачи. Под воздействием УЗ над поверхностью коллоидного раствора образуется пар, в микрокаплях которого содержатся наночастицы катализатора. Попадая в более холодную зону над подложкой, пар конденсируется на поверхности ростовой подложки в виде микрокапель. Во время проведения процесса конденсации ростовая подложка дополнительно подвергается воздействию УЗ с мощностью ультразвукового генератора в заданных пределах. Затем ростовая подложка помещается в печь, нагревается до температуры выращивания углеродных нанотрубок и производится выращивание углеродных нанотрубок.

Применение ультразвукового воздействия на ростовую подложку во время проведения процесса конденсации определяется тем, что в конденсирующихся на поверхности ростовой подложки микрокаплях коллоидного раствора, происходят непрерывные процессы коагуляции и седиментации каталитических наночастиц, а воздействие УЗ на ростовую подложку минимизирует негативные последствия, связанные с протеканием данных процессов. Т.е. воздействие УЗ на ростовую подложку позволяет размещать на ее поверхности каталитические наночастицы с максимальной равномерностью за счет поддержания равномерного распределения наночастиц в объеме осажденных микрокапель на всем протяжении процесса, вплоть до полного испарения растворителя.

Мощность У3-генератора, задаваемая в пределах от 25 до 40 Вт, определяется тем, что в данном интервале, варьируя конкретную величину мощности ультразвукового генератора, можно управлять процессом нанесения каталитических наночастиц. При более низких чем 25 Вт значениях мощности на поверхности ростовой подложки образуются скопления каталитических наночастиц в виде комков и участки с различной плотностью расположения наночастиц, т.е. однородность в распределении каталитических наночастиц на поверхности ростовой подложки нарушается, и получить необходимую поверхностную плотность расположения частиц на подложке не удается. При большем чем 40 Вт значении мощности происходит отрыв значительной части каталитических наночастиц от поверхности ростовой подложки и, как следствие, процесс управляемого нанесения наночастиц становится невозможным.

Использование предлагаемого способа позволяет получать массивы углеродных нанотрубок с управляемой поверхностной плотностью.

Примеры осуществления способа

Пример 1

В качестве ростовой подложки применялись пластины монокристаллического кремния ориентации {111} типа ЭКБД. В качестве источника наночастиц металла-катализатора использовался нанопорошок никеля чистотой 99,99% со средними диаметрами отдельных частиц от 20 до 80 нм.

Для обработки коллоидного раствора ультразвуком использовалась ультразвуковая ванна типа «ULTRASONIC CLEANER CT-400D». В качестве растворителя применялась дистиллированная вода.

Нанесение нанодисперсных частиц металла-катализатора на ростовую подложку осуществлялось следующим образом. Ростовую подложку с отмытой и обезжиренной поверхностью закрепляли над ванной с коллоидным раствором необходимой концентрации. Затем коллоидный раствор подвергали воздействию УЗ в течение 60 с при мощности генератора в 30 Вт. Мощность УЗ генератора, оказывающего воздействие на ростовую подложку во время проведения процесса конденсации, устанавливали на уровне 25 Вт. Затем подложки помещались в сушильный шкаф до полного удаления жидкости. Далее подготовленные подложки помещались в ростовую печь, в реакционную зону подавали газообразный ацетилен С2Н2 и выращивали УНТ. Время выращивания составляло от 10 до 15 минут, в зависимости от необходимой длины углеродных нанотрубок. Поверхностная плотность выращенных массивов углеродных нанотрубок составила 1,21×10 мм-2. Полученные нанотрубки имели диаметр 80±1 нм и длину от ~800 нм до~3 мкм.

Пример 2

Выполнение изобретения осуществляли аналогично примеру 1, но мощность УЗ генератора, оказывающего воздействие на ростовую подложку, устанавливали на уровне 30 Вт. Поверхностная плотность выращенных массивов углеродных нанотрубок составила 4,41×106 мм-2. Полученные нанотрубки имели диаметр 60±1 нм и длину от ~500 нм до ~3 мкм.

Пример 3

Выполнение изобретения осуществляли аналогично примеру 1, но мощность УЗ генератора, оказывающего воздействие на ростовую подложку, устанавливали на уровне 40 Вт. Поверхностная плотность выращенных массивов углеродных нанотрубок составила 2,21×107 мм-2. Полученные нанотрубки имели диаметр 30±1 нм и длину от ~250 нм до ~1 мкм.

Источники информации

1. Патент РФ №2301821 «Способ получения углеродных нановолокон», МПК6 С09С 1/44, В82В 3/00, С01В 31/00 / Пешнев Б.В., Николаев А.И.

2. Suh J. S., Lee J. S. Highly ordered two-dimensional carbon nanotube arrays // Appl. Phys. Lett. 1999. V.75. P. 2047.

3. Патент РФ N 2026887 «Способ нанесения антикоррозионных покрытий», кл. С23С 4/00, С23С 14/00, С23С 16/00, 1995 / Бакулин В.Н., Бакулин А.В.

Способ получения массивов углеродных нанотрубок, включающий подготовку ростовой подложки путем нанесения на ее поверхность нанодисперсных частиц катализатора конденсацией микрокапель коллоидного раствора, находящегося под воздействием ультразвука, и помещение подготовленной подложки в ростовую печь с последующим выращиванием углеродных нанотрубок, отличающийся тем, что производят дополнительное воздействие ультразвуком на ростовую подложку, причем мощность ультразвукового генератора задают в пределах от 25 до 40 Вт.
Источник поступления информации: Роспатент

Показаны записи 41-50 из 245.
10.01.2015
№216.013.1719

Способ определения свойств деформирования

Изобретение относится к обработке металлов давлением, в частности к определению технологических параметров процессов, и может быть использовано при определении механических свойств листовых материалов. Плоский образец круглой формы нагружают эластичным пуансоном в круглой жесткой матрице в...
Тип: Изобретение
Номер охранного документа: 0002537341
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.171d

Способ изготовления электрода-проволоки

Изобретение относится к изготовлению пластичного проволочного электрода-инструмента, используемого при электроэрозионной, электрохимической, комбинированной прошивке глубоких отверстий малого диаметра в металлических материалах. Сначала с одного конца проволоки снижают ее диаметр на величину...
Тип: Изобретение
Номер охранного документа: 0002537345
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.175b

Способ изготовления диффузионной сваркой стоистой тонкостенной конструкции из титановых листовых материалов

Изобретение может быть использовано при изготовлении слоистых тонкостенных титановых конструкций из листового материала, в частности, выпускных окон энергетических установок для вывода пучка электронов. Между технологическими листами размещают пакет, содержащий плоские решетки с мелкозернистой...
Тип: Изобретение
Номер охранного документа: 0002537407
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.175c

Способ объемной штамповки на механическом прессе

Изобретение относится к обработке металлов давлением и может быть использовано при объемной штамповке на механических прессах. Устанавливают величину закрытой высоты пресса менее закрытой высоты штампа. Заготовку, расположенную на нижней половине штампа, деформируют верхней половиной штампа....
Тип: Изобретение
Номер охранного документа: 0002537408
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.175d

Инструмент и способ калибровки отверстий малого сечения в форсунках

Изобретение относится к калибровке отверстий малого сечения в форсунках. Предложен инструмент в виде токопроводящей проволоки с нанесенными нетокопроводящими износостойкими твердыми узкими поясками, наружный диаметр которых уменьшается по длине проволоки пропорционально толщине наносимого...
Тип: Изобретение
Номер охранного документа: 0002537409
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.175e

Электрод-инструмент для прошивки отверстий

Изобретение относится к области машиностроения и может быть использовано при прошивке отверстий преимущественно малого диаметра в металлических заготовках. Электрод-инструмент содержит металлическую рабочую часть с рабочим и технологическим торцами, выполненную с возможностью подачи в зону...
Тип: Изобретение
Номер охранного документа: 0002537410
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.175f

Способ упрочнения каналов детали

Изобретение относится к области машиностроения и может быть использовано для отделочно-упрочняющей обработки внутренних поверхностей каналов детали. Обеспечивают вибрацию с частотой 20-30 Гц корпуса контейнера, содержащего токопроводящие стальные шарики для возвратно-поступательного движения...
Тип: Изобретение
Номер охранного документа: 0002537411
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.177a

Способ удаления диэлектрических покрытий с металлической основы

Изобретение относится к области машиностроения и может быть использовано при удалении диэлектрических покрытий с металлических изделий путем их обработки вращаемым непрофилированным электродом-щеткой. В способе электрод-щетку с ворсом в виде радиальных проволок перед обработкой устанавливают с...
Тип: Изобретение
Номер охранного документа: 0002537438
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.17b4

Устройство для очистки воздуха

Изобретение относится к очистке воздуха и может быть использовано в газовой, нефтяной, нефтехимической и других отраслях промышленности. Техническим результатом является создание блока осушки с адсорбером, конструкция которого позволит исключить попадание капельной влаги на зерна адсорбента....
Тип: Изобретение
Номер охранного документа: 0002537496
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.180d

Способ очистки воздуха и устройство для его реализации

Изобретение относится к очистке воздуха и может быть использовано в газовой, нефтяной, нефтехимической и других отраслях промышленности. Техническим результатом является создание блока осушки с адсорбером, конструкция которого позволит исключить попадание капельной влаги на зерна адсорбента....
Тип: Изобретение
Номер охранного документа: 0002537585
Дата охранного документа: 10.01.2015
Показаны записи 41-50 из 289.
27.05.2014
№216.012.ca23

Ротор сегментного ветроэлектроагрегата

Изобретение относится к области ветроэнергетики. Ротор сегментного ветроэлектрогенератора содержит ступицу, лопасти, обод и ферромагнитные тела, установленные на ободе. Ферромагнитные тела выполнены в виде отрезков труб прямоугольного профиля. Средняя часть отрезков имеет выборку трех сторон...
Тип: Изобретение
Номер охранного документа: 0002517513
Дата охранного документа: 27.05.2014
10.06.2014
№216.012.cbb9

Полупроводниковый фотопреобразователь

Изобретение относится к полупроводниковой технике, а именно к фотоэлектрическим преобразователям (ФП) для прямого преобразования солнечной энергии в электрическую энергию. Область применения - возобновляемые источники энергии. Согласно изобретению в полупроводниковом ФП, состоящем из...
Тип: Изобретение
Номер охранного документа: 0002517924
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cbd2

Камера жидкосного ракетного двигателя

Изобретение относится к области ракетной техники. Камера жидкостного ракетного двигателя содержит наружную и огневую оболочки с каналами охлаждения между ними, образованными двутавровыми проставками, на которых размещены турбулизаторы потока. Полки двутавровых проставок выполнены переменной...
Тип: Изобретение
Номер охранного документа: 0002517949
Дата охранного документа: 10.06.2014
10.07.2014
№216.012.da9c

Автомобильный генератор

Изобретение относится к области электротехники, в частности к электрическим машинам, а именно к бесконтактным синхронным генераторам индукторного типа, работающим преимущественно на выпрямительную нагрузку, применяемым в генераторных установках автотракторной техники. Технический результат,...
Тип: Изобретение
Номер охранного документа: 0002521742
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.db43

Грейферная подача для перемещения деталей в прессе

Изобретение относится к грейферным транспортирующим устройствам многопозиционных процессов, преимущественно кривошипных горячештамповочных. Подача содержит неподвижное основание, грейферные захваты, механизм перемещения грейферных захватов вдоль позиций пресса, механизм их вертикального...
Тип: Изобретение
Номер охранного документа: 0002521909
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.db48

Износостойкое наноструктурное покрытие

Изобретение относится к наноэлектронике и наноэлектромеханике и может быть использовано в различных областях современной наноиндустрии, микроэлектронике, альтернативной энергетике и т.д. Износостойкое наноструктурное покрытие выполнено из нанокомпозиционного металл-керамического материала,...
Тип: Изобретение
Номер охранного документа: 0002521914
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.db62

Способ струйной электрохимической обработки

Изобретение относится к струйной электрохимической обработке деталей из металлических материалов. Способ включает электрохимическую обработку металлической детали при подаче струи жидкости с пористыми токопроводящими гранулами, которые предварительно насыщают газообразными продуктами...
Тип: Изобретение
Номер охранного документа: 0002521940
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.db63

Способ магнитно-импульсной обработки деталей

Изобретение относится к машиностроению и может быть использовано при стабилизации геометрии деталей за счет выравнивания остаточных напряжений в их поверхностном слое, в том числе при сложной форме участка обработки. Способ включает обработку детали импульсами тока, осуществляемую индуктором с...
Тип: Изобретение
Номер охранного документа: 0002521941
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.dbc5

Цифровой демодулятор сигналов с частотной модуляцией

Цифровой демодулятор сигналов с частотной модуляцией относится к области радиотехники и может быть использован в устройствах приема дискретной и аналоговой информации для цифровой демодуляции сигналов с частотной модуляцией или манипуляцией (ЧМ). Достигаемый технический результат - обеспечение...
Тип: Изобретение
Номер охранного документа: 0002522039
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.dbd4

Мобильный модуль автоматизированной клепки панелей

Изобретение относится к области авиастроения и может быть применено для клепки панелей в сборочных приспособлениях. Мобильный модуль содержит гидропресс, стержень-ловитель и расклепывающее устройство. Также он снабжен блоком перемещения гидропресса, соединенным с ним посредством тросовой...
Тип: Изобретение
Номер охранного документа: 0002522054
Дата охранного документа: 10.07.2014
+ добавить свой РИД