×
27.11.2015
216.013.9429

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ МАССИВОВ УГЛЕРОДНЫХ НАНОТРУБОК С УПРАВЛЯЕМОЙ ПОВЕРХНОСТНОЙ ПЛОТНОСТЬЮ

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано при изготовлении сорбентов и армирующих добавок. Сначала подготавливают ростовую подложку путем нанесения на ее поверхность нанодисперсных частиц катализатора конденсацией микрокапель коллоидного раствора, находящегося под воздействием ультразвука. Во время конденсации дополнительно воздействуют ультразвуком на ростовую подложку при мощности ультразвукового генератора 25-40 Вт. Подготовленную подложку помещают в ростовую печь, подают в реакционную зону ацетилен и выращивают на подложке массивы углеродных нанотрубок, поверхностная плотность которых растёт с увеличением мощности ультразвукового генератора, воздействующего на подложку. 3 пр.
Основные результаты: Способ получения массивов углеродных нанотрубок, включающий подготовку ростовой подложки путем нанесения на ее поверхность нанодисперсных частиц катализатора конденсацией микрокапель коллоидного раствора, находящегося под воздействием ультразвука, и помещение подготовленной подложки в ростовую печь с последующим выращиванием углеродных нанотрубок, отличающийся тем, что производят дополнительное воздействие ультразвуком на ростовую подложку, причем мощность ультразвукового генератора задают в пределах от 25 до 40 Вт.

Изобретение относится к каталитическому способу производства углеродных нанотрубок из углеводородов, предназначено для выращивания массивов углеродных нанотрубок. Оно может быть использовано в производстве сорбентов, армирующих добавок и др.

Известен способ получения углеродных нанотрубок термокаталитическим разложением ацетилена с участием нанодисперсных частиц железа и никеля, размещенных на поверхности подложек монокристаллического кремния [1]. Недостатком данного способа является невозможность получения углеродных нанотрубок, а также большой разброс их по диаметрам и неравномерность распределения по площади подложки.

Известен способ получения углеродных нанотрубок каталитическим разложением ацетилена с осаждением углерода на заполненные кобальтом мезопористые подложки из анодированного оксида алюминия [2]. Недостатками способа являются достаточно большой разброс получаемых нанотрубок по диаметрам, относительно низкая равномерность распределения трубок по площади подложки, недостаточная воспроизводимость процесса на отдельных участках подложки.

Наиболее близким техническим решением, выбранным в качестве прототипа, является способ нанесения антикоррозионных покрытий на защищаемые поверхности металлов путем плазменного напыления, вакуумного испарения или осаждения из газовой фазы с одновременным ультразвуковым воздействием на металл [3]. Недостатком данного способа является то, что ультразвуковое воздействие на металл при нанесении антикоррозионных покрытий на защищаемую поверхность приводит к неконтролируемому заполнению неровностей поверхности, пор, трещин, что обуславливает неравномерное распределение наносимого материала по поверхности. Неравномерность нанесения защитного покрытия определяется использованием ультразвукового воздействия в интервале частот, соответствующих частотам собственных колебаний метала и приводящих к возникновению резонанса. Данный способ не позволяет управляемо наносить наночастицы металлов на поверхность ростовой подложки без заполнения трещин, неровностей, не сплошным слоем. Использование данного способа для получения массивов углеродных нанотрубок невозможно.

Изобретение направлено на получение на поверхности ростовой подложки массивов углеродных нанотрубок.

Это достигается тем, что перед помещением ростовой подложки в печь и выращиванием массивов углеродных нанотрубок на подложку наносят катализатор путем конденсации микрокапель коллоидного раствора при воздействии на него ультразвука, при этом ультразвуком дополнительно воздействуют на ростовую подложку во время проведения процесса конденсации, причем мощность ультразвукового генератора задается в пределах от 25 до 40 Вт.

Способ получения массивов углеродных нанотрубок осуществляется следующим способом. Ростовая подложка с предварительно очищенной подготовленной поверхностью закрепляется над свободной поверхностью коллоидного раствора, состоящего из наночастиц катализатора и жидкого растворителя, причем тип растворителя и катализатора, а также их количественное соотношение в растворе устанавливается заранее, с учетом поставленной задачи. Под воздействием УЗ над поверхностью коллоидного раствора образуется пар, в микрокаплях которого содержатся наночастицы катализатора. Попадая в более холодную зону над подложкой, пар конденсируется на поверхности ростовой подложки в виде микрокапель. Во время проведения процесса конденсации ростовая подложка дополнительно подвергается воздействию УЗ с мощностью ультразвукового генератора в заданных пределах. Затем ростовая подложка помещается в печь, нагревается до температуры выращивания углеродных нанотрубок и производится выращивание углеродных нанотрубок.

Применение ультразвукового воздействия на ростовую подложку во время проведения процесса конденсации определяется тем, что в конденсирующихся на поверхности ростовой подложки микрокаплях коллоидного раствора, происходят непрерывные процессы коагуляции и седиментации каталитических наночастиц, а воздействие УЗ на ростовую подложку минимизирует негативные последствия, связанные с протеканием данных процессов. Т.е. воздействие УЗ на ростовую подложку позволяет размещать на ее поверхности каталитические наночастицы с максимальной равномерностью за счет поддержания равномерного распределения наночастиц в объеме осажденных микрокапель на всем протяжении процесса, вплоть до полного испарения растворителя.

Мощность У3-генератора, задаваемая в пределах от 25 до 40 Вт, определяется тем, что в данном интервале, варьируя конкретную величину мощности ультразвукового генератора, можно управлять процессом нанесения каталитических наночастиц. При более низких чем 25 Вт значениях мощности на поверхности ростовой подложки образуются скопления каталитических наночастиц в виде комков и участки с различной плотностью расположения наночастиц, т.е. однородность в распределении каталитических наночастиц на поверхности ростовой подложки нарушается, и получить необходимую поверхностную плотность расположения частиц на подложке не удается. При большем чем 40 Вт значении мощности происходит отрыв значительной части каталитических наночастиц от поверхности ростовой подложки и, как следствие, процесс управляемого нанесения наночастиц становится невозможным.

Использование предлагаемого способа позволяет получать массивы углеродных нанотрубок с управляемой поверхностной плотностью.

Примеры осуществления способа

Пример 1

В качестве ростовой подложки применялись пластины монокристаллического кремния ориентации {111} типа ЭКБД. В качестве источника наночастиц металла-катализатора использовался нанопорошок никеля чистотой 99,99% со средними диаметрами отдельных частиц от 20 до 80 нм.

Для обработки коллоидного раствора ультразвуком использовалась ультразвуковая ванна типа «ULTRASONIC CLEANER CT-400D». В качестве растворителя применялась дистиллированная вода.

Нанесение нанодисперсных частиц металла-катализатора на ростовую подложку осуществлялось следующим образом. Ростовую подложку с отмытой и обезжиренной поверхностью закрепляли над ванной с коллоидным раствором необходимой концентрации. Затем коллоидный раствор подвергали воздействию УЗ в течение 60 с при мощности генератора в 30 Вт. Мощность УЗ генератора, оказывающего воздействие на ростовую подложку во время проведения процесса конденсации, устанавливали на уровне 25 Вт. Затем подложки помещались в сушильный шкаф до полного удаления жидкости. Далее подготовленные подложки помещались в ростовую печь, в реакционную зону подавали газообразный ацетилен С2Н2 и выращивали УНТ. Время выращивания составляло от 10 до 15 минут, в зависимости от необходимой длины углеродных нанотрубок. Поверхностная плотность выращенных массивов углеродных нанотрубок составила 1,21×10 мм-2. Полученные нанотрубки имели диаметр 80±1 нм и длину от ~800 нм до~3 мкм.

Пример 2

Выполнение изобретения осуществляли аналогично примеру 1, но мощность УЗ генератора, оказывающего воздействие на ростовую подложку, устанавливали на уровне 30 Вт. Поверхностная плотность выращенных массивов углеродных нанотрубок составила 4,41×106 мм-2. Полученные нанотрубки имели диаметр 60±1 нм и длину от ~500 нм до ~3 мкм.

Пример 3

Выполнение изобретения осуществляли аналогично примеру 1, но мощность УЗ генератора, оказывающего воздействие на ростовую подложку, устанавливали на уровне 40 Вт. Поверхностная плотность выращенных массивов углеродных нанотрубок составила 2,21×107 мм-2. Полученные нанотрубки имели диаметр 30±1 нм и длину от ~250 нм до ~1 мкм.

Источники информации

1. Патент РФ №2301821 «Способ получения углеродных нановолокон», МПК6 С09С 1/44, В82В 3/00, С01В 31/00 / Пешнев Б.В., Николаев А.И.

2. Suh J. S., Lee J. S. Highly ordered two-dimensional carbon nanotube arrays // Appl. Phys. Lett. 1999. V.75. P. 2047.

3. Патент РФ N 2026887 «Способ нанесения антикоррозионных покрытий», кл. С23С 4/00, С23С 14/00, С23С 16/00, 1995 / Бакулин В.Н., Бакулин А.В.

Способ получения массивов углеродных нанотрубок, включающий подготовку ростовой подложки путем нанесения на ее поверхность нанодисперсных частиц катализатора конденсацией микрокапель коллоидного раствора, находящегося под воздействием ультразвука, и помещение подготовленной подложки в ростовую печь с последующим выращиванием углеродных нанотрубок, отличающийся тем, что производят дополнительное воздействие ультразвуком на ростовую подложку, причем мощность ультразвукового генератора задают в пределах от 25 до 40 Вт.
Источник поступления информации: Роспатент

Показаны записи 11-20 из 245.
27.05.2014
№216.012.c9cf

Генератор управляемый напряжением

Генератор, управляемый напряжением, относится к области радиотехники и может быть использован в качестве источника высокочастотных колебаний в радиопередающих, радиоприемных устройствах и измерительной технике. Достигаемый технический результат - повышение диапазона рабочих частот и...
Тип: Изобретение
Номер охранного документа: 0002517429
Дата охранного документа: 27.05.2014
27.05.2014
№216.012.ca23

Ротор сегментного ветроэлектроагрегата

Изобретение относится к области ветроэнергетики. Ротор сегментного ветроэлектрогенератора содержит ступицу, лопасти, обод и ферромагнитные тела, установленные на ободе. Ферромагнитные тела выполнены в виде отрезков труб прямоугольного профиля. Средняя часть отрезков имеет выборку трех сторон...
Тип: Изобретение
Номер охранного документа: 0002517513
Дата охранного документа: 27.05.2014
10.06.2014
№216.012.cbb9

Полупроводниковый фотопреобразователь

Изобретение относится к полупроводниковой технике, а именно к фотоэлектрическим преобразователям (ФП) для прямого преобразования солнечной энергии в электрическую энергию. Область применения - возобновляемые источники энергии. Согласно изобретению в полупроводниковом ФП, состоящем из...
Тип: Изобретение
Номер охранного документа: 0002517924
Дата охранного документа: 10.06.2014
10.07.2014
№216.012.da9c

Автомобильный генератор

Изобретение относится к области электротехники, в частности к электрическим машинам, а именно к бесконтактным синхронным генераторам индукторного типа, работающим преимущественно на выпрямительную нагрузку, применяемым в генераторных установках автотракторной техники. Технический результат,...
Тип: Изобретение
Номер охранного документа: 0002521742
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.db62

Способ струйной электрохимической обработки

Изобретение относится к струйной электрохимической обработке деталей из металлических материалов. Способ включает электрохимическую обработку металлической детали при подаче струи жидкости с пористыми токопроводящими гранулами, которые предварительно насыщают газообразными продуктами...
Тип: Изобретение
Номер охранного документа: 0002521940
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.db63

Способ магнитно-импульсной обработки деталей

Изобретение относится к машиностроению и может быть использовано при стабилизации геометрии деталей за счет выравнивания остаточных напряжений в их поверхностном слое, в том числе при сложной форме участка обработки. Способ включает обработку детали импульсами тока, осуществляемую индуктором с...
Тип: Изобретение
Номер охранного документа: 0002521941
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.dbc5

Цифровой демодулятор сигналов с частотной модуляцией

Цифровой демодулятор сигналов с частотной модуляцией относится к области радиотехники и может быть использован в устройствах приема дискретной и аналоговой информации для цифровой демодуляции сигналов с частотной модуляцией или манипуляцией (ЧМ). Достигаемый технический результат - обеспечение...
Тип: Изобретение
Номер охранного документа: 0002522039
Дата охранного документа: 10.07.2014
20.07.2014
№216.012.dd78

Мобильный агрегат

Изобретение относится к транспортным средствам типа самоходного шасси, предназначенным для различных работ с присоединяемыми навесными машинами. Мобильный агрегат содержит раму, моторно-силовое отделение, кабину, переднеуправляемые колеса и балансирную тележку с промежуточным балансиром. Рама...
Тип: Изобретение
Номер охранного документа: 0002522482
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de8d

Теплообменный элемент

Изобретение относится к теплообменным аппаратам и может быть использовано в энергетике и смежных с ней отраслях промышленности. Теплообменный элемент представляет собой спиралевидную гибкую трубу с периодически расположенными на ее внутренней поверхности турбулизаторами, предпочтительно, в виде...
Тип: Изобретение
Номер охранного документа: 0002522759
Дата охранного документа: 20.07.2014
20.08.2014
№216.012.eb62

Способ получения нитевидных нанокристаллов полупроводников

Изобретение относится к технологии получения полупроводниковых наноматериалов. Способ включает подготовку кремниевой пластины путем нанесения на ее поверхность нанодисперсных частиц катализатора с последующим помещением в ростовую печь, нагревом и осаждением кристаллизуемого вещества из газовой...
Тип: Изобретение
Номер охранного документа: 0002526066
Дата охранного документа: 20.08.2014
Показаны записи 11-20 из 289.
20.04.2014
№216.012.b8e3

Тракт охлаждения теплонапряженных конструкций

Изобретение относится к области ракетной техники, а именно к двигателестроению и может быть использовано при создании камер жидкостных ракетных двигателей (ЖРД). Тракт охлаждения теплонапряженных конструкций содержит наружную и огневую оболочки с каналами охлаждения между ними, образованными...
Тип: Изобретение
Номер охранного документа: 0002513059
Дата охранного документа: 20.04.2014
27.04.2014
№216.012.bd7b

Пресс для штамповки с кручением

Изобретение относится к кузнечно-прессовому оборудованию, в частности к механическим прессам для штамповки с кручением. Пресс содержит расположенные в станине привод, муфту, тормоз, маховик, ползун с нижним подпятником, верхний подпятник. Ползун, маховик и оба подпятника соосны. Маховик имеет...
Тип: Изобретение
Номер охранного документа: 0002514247
Дата охранного документа: 27.04.2014
27.04.2014
№216.012.bdff

Статор ветроэлектрогенератора

Изобретение относится к области ветроэнергетики. Изобретение направлено на увеличение степени использования стоек U-образных магнитопроводов. Статор ветроэлектрогенератора содержит источник магнитного поля, U-образные магнитопроводы, катушки и крепежные элементы, источники возбуждения...
Тип: Изобретение
Номер охранного документа: 0002514379
Дата охранного документа: 27.04.2014
27.04.2014
№216.012.be8c

Ветроэлектроагрегат

Изобретение относится к области ветроэнергетики. Ветроэлектроагрегат, содержащий поворотное основание, с неподвижной и подвижной частями, башню с противовесом, траверсу, поворотные стойки с магнитопроводами и ветроколесами со втулками и с роторными элементами, направляющий элемент. Неподвижная...
Тип: Изобретение
Номер охранного документа: 0002514520
Дата охранного документа: 27.04.2014
27.04.2014
№216.012.be8e

Способ подачи топлива в газотурбинный двигатель

Изобретение относится к области авиационной техники, в частности к способам подачи топлива в газотурбинный двигатель (ГТД), а также к топливным системам ГТД. Способ подачи топлива в газотурбинный двигатель при запуске после длительного пребывания при низких температурах заключается в подогреве...
Тип: Изобретение
Номер охранного документа: 0002514522
Дата охранного документа: 27.04.2014
10.05.2014
№216.012.bf9d

Испаритель криогенной жидкости

Изобретение относится к области теплотехники и может быть использовано для испарения сред, находящихся в жидком состоянии. Испаритель криогенной жидкости содержит корпус, в котором расположены теплообменные элементы и нагреватель. Корпус выполнен в виде двух двухслойных оболочек, образующих...
Тип: Изобретение
Номер охранного документа: 0002514802
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c018

Мехатронно-модульный робот

Изобретение относится к машиностроению, а именно к робототехнике. Технический результат - повешенная эффективная ориентация мехатронно-модульного робота в окружающей среде. Мехатронно-модульный робот состоит, как минимум, из двух сопряженных между собой модулей, сопряжение каждого нового модуля...
Тип: Изобретение
Номер охранного документа: 0002514925
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c16c

Индукторный синхронный генератор

Изобретение относится к области электротехники, в частности к электрическим машинам, и касается особенностей конструктивного выполнения синхронных генераторов индукторного типа, применяемых, например, в автотракторном оборудовании. В предлагаемом синхронном генераторе, содержащем источник...
Тип: Изобретение
Номер охранного документа: 0002515265
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c177

Автотракторный бесконтактный электрогенератор

Изобретение относится к электрическим машинам, а именно к бесконтактным синхронным генераторам индукторного типа, работающим преимущественно на выпрямительную нагрузку, применяемым в генераторных установках автотракторной техники. Технический результат, заключающийся в минимальном вмешательстве...
Тип: Изобретение
Номер охранного документа: 0002515276
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c191

Ротор

Изобретение относится к области ветроэнергетики. Ротор содержит вертикальный вал, башню, основные и дополнительные лопасти. Вертикальный вал снабжен основанием, вертикальными стойками и перемычкой, расположенной между вертикальными стойками. Стойки снабжены горизонтальными валами, вращающимися...
Тип: Изобретение
Номер охранного документа: 0002515302
Дата охранного документа: 10.05.2014
+ добавить свой РИД