×
20.11.2015
216.013.926b

Результат интеллектуальной деятельности: СПОСОБ ФИЛЬТРАЦИИ АЭРОЗОЛЕЙ В ЗЕРНИСТОМ ФИЛЬТРЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области газоочистки и может применяться для очистки дымовых газов от сажевых частиц, для разделения других аэродисперсных систем. Способ фильтрации аэрозолей в зернистом фильтре включает подачу аэрозоля сверху вниз через фильтрующий зернистый слой сажевых гранул с размером 0,5-3,0 мм, насыпной плотностью 300-1000 кг/м и высотой фильтрующего слоя 100-200 мм. Аэрозоль перед подачей сверху вниз пропускают через фильтрующий зернистый слой сажевых гранул в направлении снизу вверх со скоростью 0,5-1,5 м/с, в течение 20-40 секунд с интервалом от 3 до 20 мин. Технический результат: повышение эффективности очистки газов и снижение затрат на ее осуществление. 1 ил., 5 пр.
Основные результаты: Способ фильтрации аэрозолей в зернистом фильтре, включающий подачу аэрозоля сверху вниз через фильтрующий зернистый слой сажевых гранул с размером 0,5-3,0 мм, насыпной плотностью 300-1000 кг/м и высотой фильтрующего слоя 100-200 мм, отличающийся тем, что аэрозоль перед подачей сверху вниз пропускают через фильтрующий зернистый слой сажевых гранул в направлении снизу вверх со скоростью 0,5-1,5 м/с, в течение 20-40 секунд с интервалом от 3 до 20 мин.

Изобретение относится к области газоочистки и может применяться для очистки дымовых газов от сажевых частиц, для разделения других аэродисперсных систем.

Известен способ фильтрации в зернистом фильтре, содержащем секции, включающие камеры запыленного и очищенного газа, между которыми размещен слой зернистого материала из песка, гравия, резины, коллекторы для подачи запыленного и отвода очищенного газа и устройства для регенерации зернистого материала (Ужов В.Н., Мягков Б.И. Очистка промышленных газов фильтрами. М.: «Химия», 1970, с. 270, рис. VI, 6). Недостатками такого способа являются возможность загрязнения улавливаемого целевого продукта частицами слоя, наличие которых в техническом углероде не допускается действующим ГОСТ, а также низкая эффективность очистки газов от сажи.

Известен также способ фильтрации, осуществляемый в фильтре для очистки газов от сажи, содержащем камеры запыленного и очищенного газа, между которыми размещен слой гранул углерода, а каждая секция снабжена форкамерой, расположенной между коллектором запыленного газа и камерой запыленного газа (а.с. СССР №869797, прототип).

Недостатком указанного способа является низкая эффективность улавливания высокодисперсных аэрозольных частиц сажи при высоких энергетических затратах.

Цель изобретения - повышение эффективности очистки газов и снижение затрат на ее осуществление.

Способ фильтрации аэрозолей в зернистом фильтре включает подачу аэрозоля сверху вниз через фильтрующий зернистый слой сажевых гранул с размером 0,5-3,0 мм, насыпной плотностью 300-1000 кг/м3 и высотой фильтрующего слоя 100-200 мм, причем аэрозоль перед подачей сверху вниз пропускают через фильтрующий зернистый слой сажевых гранул в направлении снизу вверх со скоростью 0,5-1,5 м/с, в течение 20-40 секунд с интервалом от 3 до 20 мин.

Предлагаемый способ фильтрации аэрозолей в зернистом фильтре обеспечивает высокую эффективность фильтрации высокодисперсных аэрозолей при малых концентрациях твердой фазы за счет укрупнения тонких частиц аэрозоля при дополнительном пропускании его через запыленный зернистый слой в обратном направлении, когда резко возрастает концентрация твердой фазы в аэрозоле. При этом обеспечивается регенерация запыленного слоя потоком аэрозоля и удаление уловленной твердой фазы из фильтрующего слоя тем же потоком аэрозоля.

Осуществление предложенного способа фильтрации аэрозолей может быть достигнуто в установке зернистого фильтра, содержащего несколько секций с максимальным использованием рабочего объема при минимальной металлоемкости его. При этом исключается необходимость в использовании специальной тягодутьевой машины для осуществления регенерации фильтрующего слоя.

В качестве зернистого материала фильтрующего слоя может быть применен, например, гранулированный технический углерод с размером гранул 0,5-3,0 мм и насыпной плотностью 300-1000 кг/м3. Высота фильтрующего слоя, размещенного на аэродинамической решетке секции фильтра, может составлять 100-200 мм. При этом скорость пропускания аэрозоля через запыленный слой фильтрующего материала не должна быть менее 0,5 м/с, так как при скорости менее 0,5 м/с не обеспечивается равномерное ожижение слоя потоком аэрозоля. Она не должна быть более 1,5 м/с, так как при скорости более 1,5 м/с не исключен унос гранул фильтрующего материала из слоя, может быть слишком высоким аэродинамическое сопротивление фильтра, снижается эффективность фильтрации аэрозоля. Время регенерации запыленного слоя потоком аэрозоля не должно быть менее 20 с, так как в этом случае не обеспечивается полное удаление уловленных частиц из фильтрующего слоя, но не должно быть более 40 с, так как при этом не исключено падение эффективности фильтрации аэрозоля (проскок уловленных частиц через фильтрующий слой). Регенерацию запыленного слоя осуществляют периодически через интервал не менее 3 мин, когда время регенерации 20 с, и не более 20 мин, когда время регенерации слоя 40 с.

На чертеже представлена принципиальная схема установки зернистого фильтра.

Установка содержит входной патрубок 1, соединенный с клапаном 2, подсоединенным трубопроводами 3 и 4 к камерам 5 и 6, отделенными от камер 7 и 8 слоями 9 и 10 зернистого фильтрующего материала, расположенного на аэродинамических решетках 11 и 12. Камеры 7 и 8 соединены с клапанами 13 и 14 трубопроводами 15 и 16. Клапан 13 соединен с входным патрубком 17 циклона 18, а клапан 14 - с трубопроводом 19 выхода аэрозоля из циклона 18, снабженного шлюзовым питателем 20. Камеры 5 и 6 соединены также с клапаном 21, подсоединенным к трубопроводу 22. Установка может содержать 2-16 секций, соединенных между собой коллектором для подвода аэрозоля (к нему подсоединяют патрубки 1), коллектором, к которому подсоединяют патрубки 17, коллектором, объединяющим трубопроводы 19, и коллектором очищенного газа, к которому подсоединяют трубопроводы 22

Аэрозоль с температурой до 400°C, давлением до 7,0 кПа с содержанием аэрозольных частиц 0,1-0,5 г/м3 подают через входной патрубок 1, клапан 2, трубопровод 3 и камеру 5, пропускают снизу вверх через запыленный слой 9, расположенный на перфорированной решетке 11, в камеру 7, и далее по трубопроводу 15 через клапан 13 и входной патрубок 17 в циклон 18, где уловленная пыль осаждается и удаляется шлюзовым затвором 20, а аэрозоль с укрупненными твердыми частицами по трубопроводу 19 через клапан 14 и трубопровод 16 подают в камеру 8, пропускают сверху вниз через фильтрующий зернистый слой 10, расположенный на перфорированной решетке 12, в камеру 6 и далее по трубопроводу 4 через клапан 21 трубопроводом 22 выводят в атмосферу. По окончании регенерации запыленного слоя 9 через 20-40 с клапаном 13 запирают вход в патрубок 17, а клапаном 14 - вход в него из трубопровода 19. При этом аэрозоль из камеры 7 по трубопроводу 15 через клапаны 13 и 14 подают, минуя циклон 18, через трубопровод 16 в камеру 8, далее через слой 10 и решетку 12 по трубопроводу 4 через клапан 21 и трубопровод 22 направляют в атмосферу. По окончании фильтрации аэрозоля через фильтрующий слой 10, через 3-20 мин клапаном 21 запирают вход в трубопровод 3, клапаном 13 - вход в него из трубопровода 15, клапаном 14 - выход из него в трубопровод 16 и клапаном 21 - вход в него из трубопровода 4. При этом аэрозоль подают через входной патрубок 1, клапан 2, трубопровод 4, камеру 6 и решетку 12 снизу вверх через запыленный слой 10, камеру 8, трубопровод 16, клапан 13, патрубок 17, циклон 18, трубопровод 19, клапан 14, трубопровод 15, камеру 7, сверху вниз через фильтрующий слой 9, решетку 11, камеру 5, трубопровод 3, клапан 21, трубопровод 22. По окончании регенерации запыленного слоя 10 через 20-40 с клапаном 13 запирают вход в патрубок 17, а клапаном 14 - вход в него из трубопровода 19. При этом аэрозоль из камеры 8 через трубопровод 16, клапаны 13 и 14 подают, минуя циклон 18, через трубопровод 15, камеру 7 и далее через фильтрующий слой 9, решетку 11, камеру 5, трубопровод 3, клапан 21 и трубопровод 22. В это время осуществляют регенерацию фильтрующего зернистого слоя 10 в других секциях фильтра, подсоединенных к циклону 18 своими клапанами 13 и 14 (на чертеже не показано).

Пример 1. Отработанные газы дизеля, представляющие собой аэрозоль с содержанием сажевых частиц 350 мг/м3 с температурой 300°C и давлением 4,0 кПа, подают сначала под слой гранулированного технического углерода снизу вверх со скоростью 0,5 м/с, затем - сверху вниз через слой гранулированного технического углерода с той же скоростью. Размер гранул слоя составляет 1,0-2,0 мм, насыпная плотность слоя 750 кг/м3, высота слоя 150 мм. Интервал времени пропускания аэрозоля снизу вверх (время фильтрации аэрозоля до регенерации запыленного слоя) составил 15 мин, время регенерации слоя 40 с. Уловленная в слое сажа осаждалась в циклоне.. Аэродинамическое сопротивление фильтра составило 3,0 кПа, запыленность газов на выходе из фильтра 25 мг/м3. Эффективность фильтрации аэрозоля 92,5%.

Пример 2. Аэрозоль с содержанием сажевых частиц 200 мг/м3 температурой 350°C и давлением 7,0 кПа подают под слой гранул технического углерода снизу вверх со скоростью 1,5 м/с, затем сверху вниз через слой таких же гранул и с той же скоростью. Размер гранул слоя составляет 1,0-1,6 мм, насыпная плотность 400 кг/м3, высота слоя 150 мм. Интервал времени пропускания аэрозоля снизу вверх (время фильтрации аэрозоля до регенерации запыленного слоя) составил 3 мин, время регенерации 30 с. Уловленная в слое сажа осаждалась в циклоне. Сопротивление фильтра составило 6,6 кПа, запыленность газов на выходе из фильтра составила 20 мг/м3, эффективность фильтрации аэрозоля 90%.

Пример 3. Сажевый аэрозоль с концентрацией сажи 250 мг/м3, температурой 320°C и давлением 4,5 кПа подают под слой гранул технического углерода снизу вверх со скоростью 1 м/с, затем сверху вниз через слой гранул с той же скоростью. Размер гранул составляет 1,0-2,0 мм, насыпная плотность слоя 780 кг/м3, высота слоя 150 мм. Интервал времени пропускания аэрозоля снизу вверх (время фильтрации аэрозоля до регенерации запыленного слоя) составил 10 мин, время регенерации 30 с. Уловленная сажа осаждалась в циклоне. Сопротивление фильтра составило 5,5 кПа, запыленность газов на выходе 23 мг/м3. Эффективность фильтрации аэрозоля 91%.

Пример 4. Сажевый аэрозоль с концентрацией сажи 210 мг/м3, температурой 370°C и давлением 6,5 кПа подают под слой гранул технического углерода снизу вверх со скоростью 0,5 м/с, затем сверху вниз через слой гранул с той же скоростью. Размер гранул составляет 0,5-1,0 мм, насыпная плотность слоя 350 кг/м3, высота слоя 200 мм. Интервал времени пропускания аэрозоля снизу вверх (время фильтрации аэрозоля до регенерации запыленного слоя) составил 4 мин, время регенерации 20 с. Уловленная сажа осаждалась в циклоне. Сопротивление фильтра составило 6,0 кПа, запыленность газов на выходе 15 мг/м3. Эффективность фильтрации аэрозоля 93%.

Пример 5. Сажевый аэрозоль с концентрацией сажи 150 мг/м3, температурой 390°C и давлением 7,0 кПа подают под слой гранул технического углерода снизу вверх со скоростью 1,2 м/с, затем сверху вниз через слой гранул с той же скоростью. Размер гранул составляет 2,5-3,0 мм, насыпная плотность слоя 900 кг/м3, высота слоя 170 мм. Интервал времени пропускания аэрозоля снизу вверх (время фильтрации аэрозоля до регенерации запыленного слоя) составил 20 мин, время регенерации 40 с. Уловленная сажа осаждалась в циклоне. Сопротивление фильтра составило 6,5 кПа, запыленность газов на выходе 15 мг/м3. Эффективность фильтрации аэрозоля 90%.

В результате экспериментальных исследований установлено, что эффективность фильтрации аэрозоля предлагаемым способом на 10-12% выше, чем известным способом фильтрации аэрозоля в зернистом фильтре. Регенерация фильтрующего зернистого слоя потоком аэрозоля обеспечивает надежную работу фильтра без дополнительных затрат на нагнетание очищенного газа.

Способ фильтрации аэрозолей в зернистом фильтре, включающий подачу аэрозоля сверху вниз через фильтрующий зернистый слой сажевых гранул с размером 0,5-3,0 мм, насыпной плотностью 300-1000 кг/м и высотой фильтрующего слоя 100-200 мм, отличающийся тем, что аэрозоль перед подачей сверху вниз пропускают через фильтрующий зернистый слой сажевых гранул в направлении снизу вверх со скоростью 0,5-1,5 м/с, в течение 20-40 секунд с интервалом от 3 до 20 мин.
СПОСОБ ФИЛЬТРАЦИИ АЭРОЗОЛЕЙ В ЗЕРНИСТОМ ФИЛЬТРЕ
Источник поступления информации: Роспатент

Показаны записи 21-30 из 31.
10.08.2016
№216.015.5661

Способ осаждения высокодисперсных аэрозолей

Изобретение относится к области пылеулавливания и может найти применение не только в производстве технического углерода при осаждении аэрозоля, а также для улавливания целевых продуктов из аэрозолей и очистки отходящих промышленных газов от вредных веществ. Способ осаждения высокодисперсных...
Тип: Изобретение
Номер охранного документа: 0002593299
Дата охранного документа: 10.08.2016
25.08.2017
№217.015.ba58

Способ получения канального технического углерода

Изобретение может быть использовано в полиграфической, лакокрасочной и резиновой промышленности. Газообразное углеводородное сырьё сжигают в горелочной камере 1. Образовавшийся канальный технический углерод осаждают на вращающейся осадительной поверхности и удаляют с неё. Отходящие сажегазовые...
Тип: Изобретение
Номер охранного документа: 0002615524
Дата охранного документа: 05.04.2017
25.08.2017
№217.015.d0d3

Способ приготовления катализатора крекинга с щелочноземельными элементами

Изобретение относится к области нефтеперерабатывающей и нефтехимической промышленности, а именно к способам приготовления катализаторов каталитического крекинга нефтяных фракций. Способ приготовления катализатора крекинга включает проведение ионных обменов на катионы редкоземельных элементов и...
Тип: Изобретение
Номер охранного документа: 0002621345
Дата охранного документа: 02.06.2017
26.08.2017
№217.015.dc0f

Способ приготовления ультрастабильного цеолита y

Изобретение относится к приготовлению цеолита типа Y. Способ получения ультрастабильного цеолита типа Y включает проведение четырех ионных обменов катионов натрия на катионы редкоземельных элементов и аммония в цеолите NaY и две стадии ультрастабилизации цеолита в среде водяного пара. При...
Тип: Изобретение
Номер охранного документа: 0002624307
Дата охранного документа: 03.07.2017
26.08.2017
№217.015.eac6

Способ приготовления микрокристаллического цеолита nay

Изобретение относится к способу приготовления микрокристаллического цеолита NaY, используемого для получения на его основе адсорбентов и катализаторов, в частности катализаторов крекинга и гидрокрекинга. Способ приготовления микрокристаллического цеолита NaY включает осаждение алюмосиликатного...
Тип: Изобретение
Номер охранного документа: 0002627900
Дата охранного документа: 14.08.2017
20.01.2018
№218.016.10c7

Катализатор изомеризации легких бензиновых фракций и способ его приготовления

Изобретение относится к способу приготовления катализатора для низкотемпературной изомеризации легких бензиновых фракций, применяемых для производства высокооктановых компонентов моторных топлив. Способ приготовления катализатора для изомеризации легких бензиновых фракций включает...
Тип: Изобретение
Номер охранного документа: 0002633756
Дата охранного документа: 18.10.2017
20.01.2018
№218.016.126b

Способ получения углеродных нановолокон

Изобретение относится к нанотехнологии. Сначала смешивают полимер с катализатором и растворителем до получения однородного раствора. Используют карбоцепные полимеры с боковыми функциональными группами, а катализатор выбирают из группы, состоящей из органических или неорганических соединений...
Тип: Изобретение
Номер охранного документа: 0002634126
Дата охранного документа: 24.10.2017
13.02.2018
№218.016.215b

Способ получения наноуглерода

Изобретение относится к нанотехнологиям и может быть использовано для получения наноуглерода. Способ включает подачу в реакционную камеру, выполненную в виде ствола, периодически закрываемого с одного и открытого с другого конца, со стороны закрываемого конца через систему быстродействующих...
Тип: Изобретение
Номер охранного документа: 0002641829
Дата охранного документа: 22.01.2018
29.05.2018
№218.016.596b

Углеродный сорбент с биоспецифическими свойствами и способ его получения

Изобретение относится к области медицины, в частности, к технологии получения углеродных сорбентов и раскрывает способ получения углеродного сорбента, обладающего антибактериальной и антимикотической активностью. Способ включает пропитку гранул углеродного гемосорбента раствором модификатора,...
Тип: Изобретение
Номер охранного документа: 0002655301
Дата охранного документа: 24.05.2018
09.06.2018
№218.016.5bf0

Способ неокислительной конверсии метана

Изобретение относится к способу неокислительной конверсии метана в реакторе идеального смешения, включающему активацию метана на алюмоплатиновом катализаторе при Т 20-550°С, с последующей подачей н-пентана. Способ характеризуется тем, что температура подачи пентана 480-550°С, а алюмоплатиновый...
Тип: Изобретение
Номер охранного документа: 0002655927
Дата охранного документа: 30.05.2018
Показаны записи 21-30 из 45.
10.08.2016
№216.015.5661

Способ осаждения высокодисперсных аэрозолей

Изобретение относится к области пылеулавливания и может найти применение не только в производстве технического углерода при осаждении аэрозоля, а также для улавливания целевых продуктов из аэрозолей и очистки отходящих промышленных газов от вредных веществ. Способ осаждения высокодисперсных...
Тип: Изобретение
Номер охранного документа: 0002593299
Дата охранного документа: 10.08.2016
25.08.2017
№217.015.ba58

Способ получения канального технического углерода

Изобретение может быть использовано в полиграфической, лакокрасочной и резиновой промышленности. Газообразное углеводородное сырьё сжигают в горелочной камере 1. Образовавшийся канальный технический углерод осаждают на вращающейся осадительной поверхности и удаляют с неё. Отходящие сажегазовые...
Тип: Изобретение
Номер охранного документа: 0002615524
Дата охранного документа: 05.04.2017
25.08.2017
№217.015.d0d3

Способ приготовления катализатора крекинга с щелочноземельными элементами

Изобретение относится к области нефтеперерабатывающей и нефтехимической промышленности, а именно к способам приготовления катализаторов каталитического крекинга нефтяных фракций. Способ приготовления катализатора крекинга включает проведение ионных обменов на катионы редкоземельных элементов и...
Тип: Изобретение
Номер охранного документа: 0002621345
Дата охранного документа: 02.06.2017
26.08.2017
№217.015.dc0f

Способ приготовления ультрастабильного цеолита y

Изобретение относится к приготовлению цеолита типа Y. Способ получения ультрастабильного цеолита типа Y включает проведение четырех ионных обменов катионов натрия на катионы редкоземельных элементов и аммония в цеолите NaY и две стадии ультрастабилизации цеолита в среде водяного пара. При...
Тип: Изобретение
Номер охранного документа: 0002624307
Дата охранного документа: 03.07.2017
26.08.2017
№217.015.eac6

Способ приготовления микрокристаллического цеолита nay

Изобретение относится к способу приготовления микрокристаллического цеолита NaY, используемого для получения на его основе адсорбентов и катализаторов, в частности катализаторов крекинга и гидрокрекинга. Способ приготовления микрокристаллического цеолита NaY включает осаждение алюмосиликатного...
Тип: Изобретение
Номер охранного документа: 0002627900
Дата охранного документа: 14.08.2017
20.01.2018
№218.016.10c7

Катализатор изомеризации легких бензиновых фракций и способ его приготовления

Изобретение относится к способу приготовления катализатора для низкотемпературной изомеризации легких бензиновых фракций, применяемых для производства высокооктановых компонентов моторных топлив. Способ приготовления катализатора для изомеризации легких бензиновых фракций включает...
Тип: Изобретение
Номер охранного документа: 0002633756
Дата охранного документа: 18.10.2017
20.01.2018
№218.016.126b

Способ получения углеродных нановолокон

Изобретение относится к нанотехнологии. Сначала смешивают полимер с катализатором и растворителем до получения однородного раствора. Используют карбоцепные полимеры с боковыми функциональными группами, а катализатор выбирают из группы, состоящей из органических или неорганических соединений...
Тип: Изобретение
Номер охранного документа: 0002634126
Дата охранного документа: 24.10.2017
13.02.2018
№218.016.215b

Способ получения наноуглерода

Изобретение относится к нанотехнологиям и может быть использовано для получения наноуглерода. Способ включает подачу в реакционную камеру, выполненную в виде ствола, периодически закрываемого с одного и открытого с другого конца, со стороны закрываемого конца через систему быстродействующих...
Тип: Изобретение
Номер охранного документа: 0002641829
Дата охранного документа: 22.01.2018
29.05.2018
№218.016.596b

Углеродный сорбент с биоспецифическими свойствами и способ его получения

Изобретение относится к области медицины, в частности, к технологии получения углеродных сорбентов и раскрывает способ получения углеродного сорбента, обладающего антибактериальной и антимикотической активностью. Способ включает пропитку гранул углеродного гемосорбента раствором модификатора,...
Тип: Изобретение
Номер охранного документа: 0002655301
Дата охранного документа: 24.05.2018
02.12.2018
№218.016.a29e

Способ приготовления микросферического катализатора для крекинга нефтяных фракций

Предложен способ приготовления микросферического катализатора для крекинга нефтяных фракций, включающий проведение ионных обменов на катионы редкоземельных элементов и аммония на цеолите NaY, двухстадийную ультрастабилизацию цеолита, смешение цеолита с матрицей, в качестве компонентов которой...
Тип: Изобретение
Номер охранного документа: 0002673813
Дата охранного документа: 30.11.2018
+ добавить свой РИД