×
20.11.2015
216.013.914a

Результат интеллектуальной деятельности: КАТАЛИЗАТОР, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ И ПРОЦЕСС ОБОГАЩЕНИЯ СМЕСЕЙ УГЛЕВОДОРОДНЫХ ГАЗОВ МЕТАНОМ

Вид РИД

Изобретение

Аннотация: Изобретение относится к нефтяной и газовой промышленности, в частности к переработке попутных нефтяных газов (ПНГ). Описан катализатор для обогащения метаном смесей углеводородных газов, который содержит в основном никель в количестве 25-60 мас. %, хром в пересчете на CrO в количестве 5-35%, оксид алюминия в количестве 5-70% и кислородсодержащее соединение магния - остальное. Предложен способ получения этого катализатора, включающий смешение кислородсодержащих соединений никеля, хрома, алюминия и магния с последующими стадиями сушки, прокаливания, таблетирования или формования. Описан также способ обогащения метаном смесей углеводородных газов путем конверсии в присутствии кислородсодержащих соединений на катализаторе, описанном выше. Технический результат - повышение активности, стабильности катализатора при проведении процесса обогащения метаном смесей углеводородных газов, преимущественно, при температуре 250-350°C и мольных отношениях HO/C=0.60-0.70 в расчете на углеводороды тяжелее метана или общем мольном отношении HO/C=0.33-0.63 в расчете на все присутствующие в смеси углеводороды. 3 н. и 8 з.п. ф-лы, 1 табл., 5 пр.

Изобретение относится к нефтяной и газовой промышленности, в частности к переработке попутных нефтяных газов (ПНГ).

Получаемый при нефтедобыче попутный нефтяной газ (ПНГ), представляющий собой смесь углеводородных газов, может быть источником получения широкого спектра C2+ углеводородов и метана. В качестве примера в таблице 1 приведены варианты составов ПНГ с малым и большим содержанием C2+ углеводородов.

Существующие в настоящее время технологии переработки попутных нефтяных газов ПНГ преимущественно основаны на сепарации углеводородов выше C2+ с последующим их использованием в технологических процессах газохимии.

Пример такого способа приведен в патенте RU 2340841, F25J 3/02, B01D 5/00, 10.12.2008. Процесс включает компримирование исходного попутно нефтяного газа ПНГ, его охлаждение и сепарацию с получением сухого газа и газового конденсата. Газовый конденсат подвергают дистилляции в ректификационной колонне с получением пропан-бутановой фракции и стабильного газового конденсата, после чего пропан-бутановую фракцию охлаждают и конденсируют. Предлагаемый технологический процесс подготовки попутного газа на малогабаритных установках пригоден к эксплуатации в условиях нефтепромыслов со слаборазвитой инфраструктурой и благодаря использованию малогабаритных газожидкостных сепараторов щелевого типа остается экономически эффективным в широком диапазоне производительностей от 1 млн до 1 млрд нм3/год. Таким образом, ПНГ от малоресурсных и малонапорных месторождений с расходом менее 1 млн нм3/год, идущий под низким давлением, в настоящее время в основном и сжигается на факелах (доля в общем объеме сжигаемого газа с таких скважин составляет более 50%). Организация сбора газа с подобных месторождений по сформировавшейся схеме является весьма капиталоемким мероприятием, со значительными эксплуатационными затратами. В связи с этим единственным экономически оправданным вариантом переработки ПНГ может быть конверсия углеводородов выше C2+ в метан и его дальнейшее использование для местного тепло- и энергоснабжения, например, согласно способам, приведенным в патентах РФ №244281, C10L 3/10, F17D 1/029, 20.02.2012 и РФ 2443764, C10L 3/10, 27.02.2012.

В общем случае протекающие в присутствии воды реакции можно характеризовать следующими уравнениями:

Возможность одновременного протекания этих реакций приводит к необходимости выбора условий и разработки катализатора селективного в отношении реакции (1)-(3), в присутствии которого можно проводить реакцию паровой конверсии CnHm и реакцию метанирования таким образом, чтобы не подвергать конверсии метан, содержащийся в исходной углеводородной смеси.

Наличие экзо- и эндотермических стадий приводит к тому, что общий тепловой эффект реакции зависит от температуры проведения процесса. Также с изменением температуры и соотношения H2O/C происходит изменение состава продуктов реакции - для увеличения выхода метана процесс необходимо проводить при возможно более низкой температуре и мольных отношениях H2O/C<1. Таким условиями могут быть диапазон температур 250-350°C и мольные отношения H2O/C=0.60-0.70 в расчете на CnHm или общим мольным отношении H2O/C=0.33-0.63 в расчете на все присутствующие в смеси углеводороды. Поскольку исходная смесь содержит достаточное количество метана, то катализатор конверсии должен быть селективен только для проведения реакций паровой конверсии CnHm и метанирования.

В настоящее время известен катализатор предриформинга смеси, состоящей из природного газа, пропан-бутана и других углеводородов для получения водорода, синтез-газа в производствах аммиака и метанола (CN 102949994 (A). Катализатор содержит никель в количестве 6-22%, носитель оксид магния и оксид алюминия в соотношении от 3:1 до 12:1. Катализатор применим при температурах 350-650°C, мольных отношениях H2O/C=0.5-4.5, времени контакта 400-6000 ч-1, давлении 0.1-4 МПа.

Известен катализатор паровой конверсии смеси углеводородов, состоящей из метана и высших углеводородов при мольных отношениях 1.5: - 5:1 в области температур 300-700°C, содержащий 1-20 мас.% никеля и 0.4-5.0 мас.% KOH (US 7449168, B01J 23/78, C01B 3/26, 11.11.2009). В результате протекания реакции в продуктах образуются водород, оксид и диоксид углерода, непрореагировавщий метан и вода. Концентрация высших углеводородов в продуктах конверсии снижается по сравнению исходной смесью.

Известен никельсодержащий катализатор с добавками металлов VIII группы, использующийся для конверсии смеси метана и высших углеводородов (EP 1586535 A2). Катализатор содержит 25-80 мас.% никеля (преимущественно, 5-25%), в качестве носителя используется оксид алюминия или алюминат кальция. Катализатор работает при температурах 400-650°C, мольном отношении H2O/C=1,5-3, обеспечивает конверсию смеси углеводородов состава: метан 85-90%, этан 0,1-10%, пропан 0,1-5%, бутан 0,1-2%. Для снижения возможного коксообразования в реакционную смесь добавляется 0.1-0.50 молей кислорода на моль углеводородов.

Недостатками вышеуказанных катализаторов являются низкая активность при температуре 250-350°C, образование большого количества водорода и монооксида углерода при проведении процесса выше 350°C, быстрое протекание процессов зауглероживания при мольных отношениях H2O/C=1.5 и меньше.

Известен способ получения никель-алюмо-хромового катализатора (SU №403429, B01J 23/86, 1970) для гидрирования, например, органических соединений, очистки газов от кислорода и кислородсодержащих примесей, а также для процессов метанирования окислов углерода. Катализатор готовят путем смешения соединений никеля, алюминия и хрома с последующей сушкой, прокаливанием, таблетированием и восстановлением, при этом пастообразную или сухую смесь основного карбоната никеля и гидроокиси или окиси алюминия обрабатывают раствором хромого ангидрида.

Известен катализатор для гидрирования ароматических углеводородов и очистки газов от кислорода и окиси углерода (SU №780881, B01J 37/02, 1980), содержащий мас.%: 32,8-50,0 никеля, 20,4-23,8 оксида хрома, остальное - оксид алюминия. Катализатор готовят путем обработки пастообразной или сухой смеси основного карбоната никеля и окиси или гидроокиси алюминия раствором хромового ангидрида с последующей сушкой, прокаливанием и таблетированием.

Известен катализатор для очистки водородсодержащих газов от окислов углерода, (SU №1051764, B01J 23/86, 1990), содержащий, мас.%: 31,9-50,8 окись никеля, 17,2-30,0 алюминат кальция, 2,0-16,4 окись хрома и остальное - окись алюминия. Катализатор согласно изобретению готовят путем смешения исходных компонентов основного карбоната никеля, окиси алюминия, алюмината кальция и раствора хромового ангидрида с последующей сушкой, и прокалкой с образованием твердых растворов окислов на основе решеток NiO и Al2O3.

Известен способ получения катализатора для очистки водорода от примесей оксида углерода (RU 2055015, C01B 3/50, 1996), включающий смешение основного карбоната никеля, хромовой кислоты и измельченного гидрооксида или оксида алюминия с последующими сушкой, прокаливанием и формованием экструзией в гранулы и термообработкой. Катализатор содержит, мас.%: 20-25 никель, 7-10 оксида хрома, остальное - оксид алюминия.

Известен способ приготовления никельхромового катализатора для гидрирования бензола (RU 2054319, B01J 23/86, 20.02.96), включающий соосаждение активной никельхромовой композиции из раствора, содержащего нитрат никеля и хромовый ангидрид, в присутствии карбамида, обезвоживание, сушку и прокалку полученной массы с последующим формованием катализатора.

Известен никельалюмохромовый катализатор (прототип) для гидрирования органических соединений, для метанирования CO и CO2 и других процессов, содержащий никель в количестве 20-50 мас.%, оксид хрома (III) в количестве 10-30 мас.%, носитель на основе оксида алюминия - остальное, при этом носитель содержит по крайней мере одно соединение элемента из группы: К, Na, Si, Fe, Са в количестве 0,001-0,5 мас.% в пересчете на оксид (RU 2185240, B01J 23/883, 2002).

Практически во всех способах приготовления вышеописанных катализаторов присутствует стадия высокотемпературной термообработки, которая выполняется при температурах 650-850°C. Недостатком указанных катализаторов является высокая склонность к зауглероживанию и потеря активности в ходе проведения обогащения метаном смесей углеводородных газов, низкая термостабильность. В большинстве случаев этот недостаток связан с наличием высокотемпературных стадий термообработки при приготовлении катализаторов. Известно, что при температурах 700-850°C происходит агрегация частиц никеля и увеличение их размеров. Как следует из результатов работы (М. Tan et all. Journal of Catalysis 314 (2014) 117-131), при увеличении размеров частиц никеля с 5.6 нанометров до 12.3 нанометров в реакции паровой конверсии смеси метана и пропан-бутана реакция конверсии переходит в режим гидрокрекинга и содержание углерода на грамм катализатора увеличивается на порядок. Поэтому технология приготовления катализаторов должна обеспечивать размер частиц никеля не более шести нанометров.

Задачей, на решение которой направлено настоящее изобретение, является эффективно проводить, например, конвертирование попутных нефтяных или сырых природных газов в метан, удаляя тем самым отличные от метана углеводородсодержащие компоненты.

Технический результат - повышение активности, стабильности катализатора при проведении процесса обогащения смесей углеводородных газов метаном, при температуре ниже 450°C, преимущественно при температуре 250-350°C, и мольных отношениях H2O/С=0.60-0.70 в расчете на углеводороды тяжелее метана или общем мольном отношении H2O/С=0.33-0.63 в расчете на все присутствующие в смеси углеводороды.

Задача решается благодаря использованию более активных, стабильных и селективных по отношению к образованию метана катализаторов, содержащих никель, кислородсодержащие соединения хрома, алюминия и магния. Катализатор содержит в основном никель в количестве 25-60 мас.%, хром в пересчете на Cr2O3 в количестве 5-35 мас.%, оксид алюминия в количестве 5-70 мас.% и кислородсодержащее соединение магния Mg - остальное.

Задача решается также способом получения катализатора для обогащения метаном смесей углеводородных газов, включающим смешение кислородсодержащих соединений никеля, хрома, алюминия и магния с последующими стадиями сушки, прокаливания, таблетирования или формования. Способ получения катализатора предусматривает, что добавление кислородсодержащего соединения магния Mg производят одновременно со смешением кислородсодержащих соединений никеля, хрома, алюминия и/или после сушки, и/или прокаливания катализаторной массы, полученной смешением кислородсодержащих соединений никеля, хрома, алюминия. Способ получения катализатора предусматривает, что перед таблетированием или формованием в катализаторную массу добавляют графит или графитоподобный углеродный материал. При этом графитоподобный углеродный материал может представлять собой трехмерную углеродную матрицу с объемом пор 0.2-1.7 см3/г, образованную ленточными слоями углерода толщиной 10-1000 нм и с радиусом кривизны 10-1000 нм, обладающую истинной плотностью, равной 1.80-2.10 г/см3, рентгеновской плотностью 2.112-2.236 г/см3 и пористой структурой с распределением пор с максимумом в диапазоне 20-200 нм или бипористой структурой с распределением пор с дополнительным максимумом в диапазоне 4-20 нм.

Задача решается также способом обогащения метаном смесей углеводородных газов путем конверсии в присутствии кислородсодержащих соединений на катализаторе, описанном выше. В качестве кислородсодержащих соединений, используют, например, пары воды или углекислый газ, или кислорода, или воздуха, или их любую смесь, преимущественно, пары воды. Обогащение метаном смесей углеводородных газов проводят ниже 450°C, преимущественно, при температуре 250-350°C, при мольных отношениях H2O/С=0.60-0.70 в расчете на углеводороды тяжелее метана или общем мольном отношении H2O/С=0.33-0.63 в расчете на все присутствующие в смеси углеводороды. Конверсия может быть проведена при давлении выше атмосферного. Кроме метана, продуктами конверсии могут являться, например, водород и/или монооксид углерода, и/или углекислый газ.

Предлагаемое изобретение иллюстрируется следующими примерами по приготовлению катализаторов определенного выше состава и примерами, описывающими результаты испытаний катализаторов в процессе обогащения метаном смесей углеводородных газов.

Пример 1

В смеситель засыпают 1 кг основного карбоната никеля, затем оксид алюминия в количестве 0,72 кг, перемешивают в течение 30 мин, затем засыпают хромовый ангидрид в количестве 0,22 кг. Вновь перемешивают в течение 10 мин, вливают 750 мл воды с растворенным азотнокислым магнием в количестве 260 г, перемешивают в течение не менее 1 ч при 80-90°C до получения густой массы, далее прокаливают при 400°C, таблетируют с графитом, восстанавливают.

Полученный катализатор содержит, мас.%: NiO - 37, Cr2O3 - 9,5, Al2O3 - 48,5, MgO - 5.

Пример 2

Аналогично примеру 1, только процесс таблетирования проводят с графитоподобным углеродным материалом.

Пример 3

В смеситель засыпают 1,3 кг основного карбоната никеля, затем оксид алюминия в количестве 0,3 кг, азотнокислый магний в количестве 260 г, перемешивают в течение 30 мин, затем засыпают хромовый ангидрид в количестве 0,63 кг. Вновь перемешивают в течение 10 мин, вливают 750 мл воды, перемешивают в течение не менее 1 ч при 80-90°C до получения густой массы, далее прокаливают при 400°C, таблетируют с графитом, восстанавливают.

Полученный катализатор содержит, мас.%: NiO - 48, Cr2O3 - 27, Al2O3 - 20, MgO - 5.

Пример 4

Проведение процесса обогащения метаном смесей углеводородных газов проводят с использованием смеси следующего состава, об.%: 17 C3H8, 34 CH4, 49 H2O. Отношение H2O/C=0.58. Скорость потока 2000 ч-1.

Катализатор используют согласно примеру 1. При температуре 300°C обеспечивается 100% конверсия пропана. Концентрация метана в смеси (на сухой газ) составляет 86 об.%. Другие продукты конверсии - 4 об.% H2 и 10 об.% CO2.

Пример 5

Проведение процесса обогащения метаном смесей углеводородных газов проводят с использованием смеси следующего состава, об.%: 20 C3H8, 39 CH4, 41 H2O. Отношение H2O/C=0.42. Скорость потока 3100 ч-1. Давление - 5 атм.

Катализатор используют согласно примеру 3. При температуре 320°C обеспечивается 100% конверсия пропана. Концентрация метана в смеси (на сухой газ) составляет 85 об.%. Другие продукты конверсии - 5 об.% H2 и 10 об.% CO2.

Рассмотренные примеры не показывают и не ограничивают всех возможных вариантов проведения процесса обогащения метаном смесей углеводородных газов, а также способов приготовления катализаторов.

Предложенный катализатор, способ его приготовления и способ проведения процесса обогащения метаном смесей углеводородных газов позволяет эффективно проводить, например, конвертирование попутных нефтяных или сырых природных газов в метан, удаляя тем самым отличные от метана углеводородсодержащие компоненты.

Источник поступления информации: Роспатент

Показаны записи 101-104 из 104.
09.06.2018
№218.016.6022

Катализатор для окислительной конверсии этана в этилен и способ его получения

Изобретение относится к катализаторам для окислительных превращений углеводородов, а также к способу получения данных катализаторов. Более конкретно изобретение относится к оксидным промотированным MoVTeNb катализаторам для окислительной конверсии этана в этилен, наиболее многотоннажный продукт...
Тип: Изобретение
Номер охранного документа: 0002656849
Дата охранного документа: 07.06.2018
28.07.2018
№218.016.7630

Блок каталитической ароматизации легких углеводородов и способ его работы

Изобретение относится к блоку каталитической ароматизации легких углеводородов, включающему нагреватель, каталитический реактор, рекуперационный теплообменник, отличающемуся тем, что в реакторе расположены по меньшей мере одна зона катализа и по меньшей мере одна зона окисления, разделенные...
Тип: Изобретение
Номер охранного документа: 0002662442
Дата охранного документа: 26.07.2018
05.09.2018
№218.016.8305

Способ приготовления катализатора для конверсии углеводородных топлив в синтез-газ и процесс конверсии с применением этого катализатора

Изобретение относится к катализаторам, способам их приготовления и применения в процессах конверсии различных видов углеводородных топлив, таких как природный газ, дизельное топливо, сжиженный углеводородный газ (СУГ), в синтез-газ. Описан способ приготовления катализатора конверсии...
Тип: Изобретение
Номер охранного документа: 0002665711
Дата охранного документа: 04.09.2018
Показаны записи 111-120 из 122.
29.05.2019
№219.017.69a0

Устройство предпускового подогрева двигателя, автономного отопления, генерации водородсодержащего газа и способ работы устройства

Изобретения относятся к области машиностроения, а именно к предпусковому подогревателю двигателя и способу работы указанного устройства. Предпусковой подогреватель двигателя, автономного отопления, генерации водородсодержащего газа состоит из системы запуска, конвертора, теплообменника, системы...
Тип: Изобретение
Номер охранного документа: 0002440507
Дата охранного документа: 20.01.2012
30.05.2019
№219.017.6bd8

Бифункциональный катализатор и способ получения обогащенной по водороду газовой смеси из диметилового эфира

Изобретение относится к каталитическому способу осуществления реакции паровой конверсии диметилового эфира (ДМЭ) с целью получения обогащенной по водороду газовой смеси, которая может использоваться в водородной энергетике, в частности, в качестве топлива для питания топливных элементов...
Тип: Изобретение
Номер охранного документа: 0002286210
Дата охранного документа: 27.10.2006
30.05.2019
№219.017.6bdb

Катализатор, способ его приготовления и способ очистки водородсодержащих газовых смесей от оксида углерода

Изобретение относится к катализатору, способу его приготовления и процессу каталитической очистки от оксида углерода обогащенных водородом газовых смесей. Описан катализатор очистки водородсодержащих газовых смесей от оксида углерода путем метанирования оксида углерода, содержащий...
Тип: Изобретение
Номер охранного документа: 0002323044
Дата охранного документа: 27.04.2008
30.05.2019
№219.017.6bdc

Катализатор, способ его приготовления и способ получения водорода

Изобретение относится к каталитическому способу осуществления реакции паровой конверсии метанола с целью получения обогащенной по водороду газовой смеси, которая может использоваться в водородной энергетике, в частности, в качестве топлива для питания топливных элементов различного назначения....
Тип: Изобретение
Номер охранного документа: 0002431526
Дата охранного документа: 20.10.2011
19.06.2019
№219.017.87ac

Катализатор очистки водородсодержащей газовой смеси от со и способ его приготовления

Изобретение относится к области катализаторов, в частности предназначенных для процессов очистки водородсодержащей газовой смеси от СО путем селективного каталитического окисления СО кислородом воздуха. Описан катализатор очистки водородсодержащей газовой смеси от СО, включающий металлическую...
Тип: Изобретение
Номер охранного документа: 0002336947
Дата охранного документа: 27.10.2008
27.06.2019
№219.017.9930

Способ приготовления катализатора и способ очистки газовых смесей от оксида углерода

Изобретение относится к катализатору и процессу каталитического метода очистки газовых смесей от оксида углерода. Описан способ приготовления оксидного медно-цериевого катализатора процесса очистки газовых смесей от СО, в котором синтез катализатора ведут через получение полимерного...
Тип: Изобретение
Номер охранного документа: 0002381064
Дата охранного документа: 10.02.2010
27.06.2019
№219.017.9931

Катализатор, способ его приготовления (варианты) и способ гидродеоксигенации жирных кислот, их эфиров и триглицеридов

Изобретение относится к области получения углеводородов путем каталитической гидродеоксигенации животных жиров, растительных масел, эфиров жирных кислот, свободных жирных кислот и разработки катализатора для этого процесса. Описан катализатор гидродеоксигенации кислородсодержащих алифатических...
Тип: Изобретение
Номер охранного документа: 0002356629
Дата охранного документа: 27.05.2009
27.06.2019
№219.017.9938

Способ приготовления платиновых катализаторов

Изобретение относится к области приготовления металл-углеродных композиций. Описан способ приготовления платиновых катализаторов, представляющих собой металл-углеродные композиции на основе наночастиц платины, закрепленных на поверхности пористых углеродных носителей, с содержанием металла от...
Тип: Изобретение
Номер охранного документа: 0002415707
Дата охранного документа: 10.04.2011
27.06.2019
№219.017.9940

Способ работы устройства подготовки попутных нефтяных газов для использования в энергоустановках

Изобретение относится к нефтяной и газовой промышленности, в частности к системам утилизации и использования попутных нефтяных и сырых природных газов в энергетике. Описан способ работы устройства подготовки каталитической конверсией попутных нефтяных или сырых природных газов для использования...
Тип: Изобретение
Номер охранного документа: 0002443764
Дата охранного документа: 27.02.2012
27.06.2019
№219.017.9941

Способ работы устройства для переработки попутных нефтяных газов

Изобретение относится к нефтяной и газовой промышленности, в частности к системам утилизации и использования попутных нефтяных и сырых природных газов в энергетике. Устройство для переработки попутных нефтяных или сырых природных газов состоит из системы запуска, системы подачи и дозирования...
Тип: Изобретение
Номер охранного документа: 0002442819
Дата охранного документа: 20.02.2012
+ добавить свой РИД