×
20.11.2015
216.013.8f6f

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ДАЛЬНОСТИ ДО ОБЪЕКТОВ ПО ИХ ИЗОБРАЖЕНИЯМ ПРЕИМУЩЕСТВЕННО В КОСМОСЕ

Вид РИД

Изобретение

№ охранного документа
0002568335
Дата охранного документа
20.11.2015
Аннотация: Изобретение относится к способам измерения дальности и линейных размеров объектов по их изображениям. Согласно способу измеряют размеры и координаты центра изображения объекта до и после перемещения средства наблюдения под углом к оптической оси. Определение дальности производят в зависимости от величины сдвига изображения, который сравнивают с изменением размера объекта при перемещении. Технический результат - повышение точности измерения дальности. 1 з.п. ф-лы, 3 ил.

Изобретение относится к информационно-измерительному телевидению и предназначается для решения задач измерения дальности и линейных размеров объектов по их телевизионным (ТВ) изображениям, формируемых с помощью монокулярных черно-белых, цветных, спектрозональных ТВ камер.

Возникновение отрасли техники - ТВ автоматики, обусловлено непрерывно возрастающей тенденцией автоматизации процесса контроля, измерения и управления различными процессами. В настоящее время наблюдается резкое возрастание удельного веса таких систем и устройств, в связи с обновлением элементной базы в телевидении, миниатюризацией и возможностью широкого использования методов и высокопроизводительных средств вычислительной техники. Главной особенностью прикладных систем телевидения при решении задач дальнометрии является возможность их отнесения к средствам пассивной локации по сравнению с известными активными системами локации, например лазерными дальномерами и более энергоемкими, громоздкими радиолокационными системами. Неоспоримым достоинством ТВ методов и устройств является их скрытность по сравнению с активными системами локации, мобильность, возможность проведения измерений без своего обнаружения на не кооперируемых объектах, а также объектах, находящихся в движении, или в условиях, труднодоступных и опасных для человека.

Существует большое число разновидностей прикладных ТВ систем и устройств, решающих задачи по обнаружению и селекции объектов в наблюдаемом пространстве, осуществляющих измерения параметров объектов по их спектрально-энергетическим или пространственным признакам, мониторинга охраняемой зоны и др. Известны ТВ устройства, на которые возложены задачи, связанные с определением геометрических параметров объектов (высоты, длины, ширины, конфигурации, площади и т.д.), подсчета их числа, измерения дальности до объектов или скорости их движения, а также угловых координат и их производных, контроля изменения цвета объекта и т.д. на основе черно-белых, цветных или спектрозональных ТВ изображений (см. Полоник B.C. Телевизионные автоматические устройства. - М.: Связь, 1974. - 216 с. [1], Барсуков Ф.И., Величкин А.И. Сухарев А.Д. Телевизионные системы летательных аппаратов / Под ред. А.И. Величкина. - М.: Сов. Радио. 1979. - 256 с. [2], Горелик С.Л., Кац Б.М., Киврии В.Н. Телевизионные измерительные системы. - М.: Связь, 1980. - 168 с. [3], Зубарев Ю.Б., Сагдуллаев Ю.С. Спектральная селекция оптических изображений Ташкент. Фан, 1987, 108 с. [4], Системы технического зрения: Справочник / В.И. Сырямкин, В.С. Титов, Ю.Г. Якушенков и др.; Под общей редакцией В.И. Сырямкина, В.С. Титова. Томск: МГП "РАСКО", 1993, 367 с. [5], Распознавание оптических изображений / Под общей ред. Ю.С. Сагдуллаева, В.С. Титова. - Ташкент: ТЭИС, 2000. - 315 с. [6], Никитин В.В., Цыцулин А.К. Телевидение в системах физической защиты. Учеб. пособие. - СПб., Изд-во СПбГЭТУ "ЛЭТИ", 2001. - 135 с. [7] и др.

Известны способы и устройства для измерения дальности до объектов. Известны способы и системы стереотелевидения, которые можно использовать для измерения дальности объектов (Шмаков П.В. Стереотелевидение. - М.: Связь, 1968, - 298 с.[9]). Стереотелевизионная камера включает два ТВ датчика, которые разнесены между собой на некоторое базисное расстояние B0. Применение такой камеры увеличивает энергопотребление, габаритно-весовые показатели системы, что особенно проявляется в случае увеличения базисного расстояния между отдельными датчиками. Это в ряде случаев ограничивает и затрудняет их практическое использование, когда минимальные весовые и габаритные показатели системы очень важны и выходят на первое место.

В работе (Сагдуллаев Ю.С., Шелепов Н.Ю., Гизатулин Р.З. Определение дальности объектов по их телевизионному изображению // Радиотехнические и оптические системы связи: Сб. науч. тр. учеб. ин-тов связи / ЛЭИС.- Л., 1988, с. 121-125 [12]) показан принцип измерения дальности объектов на основе их ТВ изображений. Суть его сводится к следующему. Захват в пространстве по объекту наблюдения зависит от угла поля зрения ТВ камеры и относительной дальности ρ до него, фокусного расстояния объектива ТВ камеры F и других величии. Относительную дальность можно определить в соответствии с выражением

где L - линейный размер объекта в направлении строчной или кадровой развертки изображения;

А - линейный размер оптической проекции изображения объекта на светочувствительной поверхности (фотомишени) ТВ датчика.

При неизвестных линейных размерах объектов использование данного способа для измерения дальности объектов по их ТВ изображениям становится невозможным.

В качестве наиболее близкого аналога заявляемого изобретения по совокупности признаков и операций над сигналами принят способ измерения дальности до объектов по их изображениям преимущественно в космосе, при неизвестных линейных размерах за счет перемещения (смещения) монокулярной ТВ камеры к объекту в радиальном, продольном или произвольном направлении на некоторое априорно известное расстояние S (Сагдуллаев Ю.С., Абдуллаев Д.А., Смирнов А.И. Основы телевизионного контроля процесса сближения космических аппаратов. Изд-во ФАН АН РУз. Ташкент, 1997, 27-30 с.). Данный способ определения расстояния (дальности) до объектов применим к широкому классу светоинформационных систем (оптических, фотографических, телевизионных и др.). Использование последовательного монокулярного технического зрения в ряде случаев предпочтительней одновременного бинокулярного, поскольку изменение базиса съемки изображений объектов во втором случае может быть более затруднительным или невозможным. Способ основан на последовательном формировании двух ТВ изображений, с помощью ТВ камеры, имеющей фокусное расстояние объектива F, с разных точек наблюдения, разнесенных между собой на априорно известное расстояние S, измерение размеров A1 изображения объекта, перемещение камеры под углом к оптической оси, измерение размеров изображения объекта А2 и определение дальности ρ1 в соответствии с выражением

Данный способ обеспечивает измерение дальности (с помощью одной монокулярной ТВ камеры) при неизвестных линейных размерах объектов за счет последовательного формирования сигналов изображений и их последующей совместной обработки Анализ выражения (10) показывает, что точность определения дальности с использованием прототипа снижается как при увеличении угла φ, так и при увеличении дальности и уменьшении разности между размерами изображений. При достижении указанными параметрами пороговых значений точность определения дальности может стать неприемлемой.

В частности выражение (2) становится вообще неработоспособным при cos⌀-A2-(A2-A1)-0. А ведь это вполне возможные реальные ситуации (соответственно перемещение камеры перпендикулярно оптической оси, дальность настолько велика, что изображение превращается в точку, облет объекта по круговой траектории при неизменной дальности). Кроме того, иногда бывает затруднительно измерить угол перемещения, или погрешность его определения велика, или для его измерения требуются дополнительные средства, увеличивающие стоимость, вес и объем.

Техническим результатом, достигаемым предлагаемым способом, является повышение точности определения дальности во всем диапазоне возможных углов перемещения камеры относительно ее оптической оси, а также обеспечение определения дальности при неизвестных углах перемещения и больших значениях дальности.

Технический результат достигается за счет того, что в способе измерения дальности до объектов преимущественно в космосе, включающем измерение размеров A1 изображения объекта, полученного с использованием средства наблюдения с фокусным расстоянием объектива перемещение средства наблюдения под углом к оптической оси, измерение размеров изображения объекта А2 и определение дальности ρ1, в отличие от известного, перед перемещением измеряют координаты центра изображения объекта X1, Y1, в процессе перемещения поддерживают постоянную ориентацию в пространстве средства наблюдения, а после перемещения измеряют координаты центра изображения объекта X2,Y2, определяют сдвиг изображения В по выражению:

осуществляют сравнение сдвига изображения В и изменения размеров изображения объекта ΔA-А2-A1, и в случае, если отсутствуют условия для измерения угла φ между направлением перемещения камеры и оптической осью, дальность ρ1 определяют по выражению:

,

где K=A1/A2;

α - угол визирования объекта (α=arctg (В/F));

S - величина перемещения камеры),

если ΔA>B, дальность ρ1 определяют по выражению:

если ΔA<B - по выражению: ρ1=s·sin(180°-φ-α)/sinα.

По мере увеличения угла φ изменяется ракурс наблюдения объекта и могут изменяться размеры изображения, что влияет на точность определения дальности. Если измерение размеров изображения A1, A2 осуществлять в направлении, перпендикулярном сдвигу изображения, то размеры изображения объекта в этом направлении инвариантны к ракурсу. Так, например, изображение объекта цилиндрической формы, торцевая часть которого направлена на наблюдателя, представляет собой окружность. По мере его «облета» окружность превращается в эллипс, однако большая ось эллипса в направлении, перпендикулярном направлению облета, остается неизменной. Таким образом, измерение размеров изображения объекта целесообразно проводить именно в этом направлении. Процесс перемещения ТВ камеры может осуществляться различными путями, например, за счет носимого варианта с помощью человека или мобильного варианта, за счет движения наземных, подводных, надводных, воздушных и других средств, со скоростью V, при этом S=V·Δt, где Δt - время перемещения ТВ камеры из одной точки в другую.

Суть изобретения поясняется графическими материалами, где: на Фиг. 1 представлено совмещенное изображение объекта до перемещения камеры (с центром в т. O1) и после перемещения (с центром в т. O2);

на Фиг. 2 приведена схема, иллюстрирующая взаимоположение средства наблюдения в процессе его перемещения относительно объекта наблюдения.

Значение сдвига в предлагаемом способе в совокупности с размерами изображения цели влияет на повышение точности и расширение диапазона измерения дальности. Для определения сдвига изображения можно использовать как центр изображения объекта, так и любую его точку. Для иллюстрации процесса определения параметров изображения (изменения их размеров и сдвига) представлена фиг. 1. На фиг. 1 стрелка из т. O1 в O2 показывает направление сдвига. Величина сдвига является гипотенузой треугольника, катетами которого являются разности абсцисс (X1,X2) и ординат (Y1,Y2) точек O1 и O2.

В связи с вышесказанным значение сдвига можно определить по выражению

На Фиг. 2 в исходном состоянии камера находится в точке D, цель - в точке М. Дальность от камеры до цели - ρ1. Оптическая ось направлена на цель. Камеру перемещают под углом φ к оптической оси на величину S в точку С. Дальность после перемещения составляет ρ2.

Используя для треугольника DMC теорему косинусов, получим:

где K=А12, α=arctg (B/F); или:

Используя для треугольника ABC теорему синусов, получим:

Таким образом, по сравнению с прототипом обеспечивается определение дальности при неизвестном угле перемещения камеры, который бывает трудно или невозможно определить. Кроме того, как видно из формулы, нам достаточно измерять отношение размеров изображений, т.е. измерения можно проводить при любых единицах измерения и масштабах изображения. Выражение (5) позволяет также определять дальность даже при такой большой дальности, при которой изображение объекта представляют собой точку.

Рассмотрим конкретные примеры для различных направлений движения камеры относительно объекта, используя выражения (3-5): перемещение направлено вдоль оптической оси (угол φ=0)

ρ1=S/(1-K);

перемещение направлено перпендикулярно оптической оси (угол φ - прямой)

перемещение происходит вокруг объекта с постоянной дальностью (K=1)

при перемещении достигается «пролетная» точка (минимальное расстояние до объекта (cosα=K),

Приведенные примеры показывают, что предлагаемый способ обеспечивает измерение дальности во всем диапазоне изменения угла φ.

На Фиг. 3, в качестве примера, показана структурная схема для измерения дальности и линейных размеров объектов, основанная на использовании ТВ устройства. Данное ТВ устройство реализует предлагаемый способ измерения дальности и линейных размеров объектов по их телевизионным изображениям. Оно содержит в своем составе объектив с известным фокусным расстоянием 1, блок изменения фокусного расстояния 2, оптический фильтр с регулируемой спектральной характеристикой 3, телевизионный датчик (преобразователь "свет-сигнал") 4, синхрогенератор 5, усилитель-формирователь 6, первый, второй и третий управляемые коммутаторы 7, 14 и 16, сумматор сигналов 8, видоискатель (или видеоконтрольное устройство - ВКУ) 9, блок памяти на ТВ кадр 10, генератор тактовых и управляющих импульсов 11, блок автоматического выделения и формирования изображения 12, формирователь измерительных сигналов, формирующий горизонтальные или вертикальные линии 13, блок измерения параметров 15, блок управления 17, блок наведения 18, внешние потребители информации 19. Фактически блоки 10, 11, 12, 13, 14, 15, 16, 17, 18 могут рассматриваться как составляющие некоторой специализированной микроЭВМ. Важнейшим компонентом, входящим в состав блока измерения параметров 15, является центральный процессор, который характеризуется определенными параметрами: быстродействием, разрядностью, числом программно-доступных регистров и т.д., и выполняет арифметические, логические и другие операции, обработку сигналов от устройств ввода-вывода и др. Имеет определенный объем памяти ОЗУ и ПЗУ. Для вычисления дальности и линейных размеров объектов используется специальная программа. После окончания цикла измерений результаты измерений могут сохраняться в оперативной памяти или стираться.

Обрабатываемые данные из центрального процессора выводятся для отображения на экране видоискателя или ВКУ в виде упорядоченной информации, содержащей результаты измерения, время, если необходимо -графики, характеризующие результаты измерения во времени и т.д. Использование режима синхронизации в блоке измерения параметров 15 с ТВ сигналом позволяет отобразить измерительную информацию с любым стандартным видеосигналом на экране единого ВКУ.

Синхрогенератор 5 формирует необходимые строчные и кадровые импульсы, которые используются для развертки изображения в ТВ датчике 4, для формирования полного ТВ сигнала на выходе усилителя-формирователя 6, а также вырабатывает необходимые тактовые импульсы для генератора тактовых и управляющих импульсов 11, выходные сигналы которого необходимой длительности и периода следования поступают на входы соответствующих блоков 10, 13, 15, 16, 17. В качестве ТВ датчика 4 могут быть использованы любые передающие трубки (типа видикон) или ПЗС матрицы.

Рассмотрим процесс работы ТВ устройства для измерения дальности. Вначале осуществляется поиск и визуальное наблюдение объектов контроля. Когда объект контроля находится на расстоянии ρ1=(L·F)/A1 в поле зрения ТВ камеры, он отражает или излучает поток лучистой энергии, с помощью объектива 1, имеющего фокусное расстояние F, он проецируется на светочувствительную поверхность (фотомишень) ТВ датчика 4 с рабочим размером X, через оптический фильтр с выбранной спектральной характеристикой 3, при этом размер оптической проекции наблюдаемого объекта на светочувствительной поверхности ТВ датчика характеризуется величиной A1. После преобразования лучистого (светового) потока с помощью ТВ датчика в сигнал изображения, он поступает на усилитель-формирователь 6, где осуществляется коррекция и усиление сигнала изображения до необходимого уровня и далее происходит его смешивание с гасящими и синхронизирующими импульсами кадровой и строчной развертки, после чего на его выходе формируется полный ТВ сигнал, который, проходя через первый управляемый коммутатор 7, сумматор сигналов 8, поступает на вход видоискателя (ВКУ) и отображается на экране для визуального восприятия изображения объекта оператором. При нахождении объекта контроля в поле зрения ТВ устройства для измерения дальности и необходимости проведения измерений осуществляется формирование первого ТВ изображения. Управляющий сигнал с выхода блока управления 17 поступает на второй вход управляемого коммутатора 7. Он дает разрешение на прохождение ТВ сигнала на первый вход блока памяти на ТВ кадр 10. Потом на второй вход кадровой памяти 10 поступает управляющий сигнал, дающий разрешение на запись видеосигнала в блоке памяти на ТВ кадр 10. Для контроля записанного статичного ТВ изображения видеосигнал считывается с блока кадровой памяти на ТВ кадр 10 и через первый управляемый коммутатор 7, пройдя сумматор сигналов 8, отображается на экране видоискателя 9. После этого происходит операция селекции по длительности сигнала, приходящего от изображения объекта в автоматическом или операторном режиме. В автоматическом режиме -управляющие разрешительные сигналы с выхода блока 17 поступают на второй вход блока автоматического выделения и формирования изображения 12, на выходе которого формируется временные интервалы Δt1-1 и Δt1-2 соответствующие границам изображения объекта. Эти сигналы через второй управляемый коммутатор 14 поступают на блок измерения параметров 15, где производится стробирование их серией импульсов N1-1, N1-2 с периодом следования Т0, при этом Δr1-1=N1-1·T0, Δt1-2=N1-2·T0, а затем в этом блоке 15 осуществляется запоминание полученных чисел импульсов N1-1, N1-2. В операторном режиме - управляющий разрешительный сигнал поступает на формирователь измерительных сигналов (ИС), вырабатывающий горизонтальные или вертикальные линии 13, с выхода которого сигналы горизонтальных или вертикальных линий, через третий управляемый коммутатор 16, сумматор сигнала 8, отображаются на экране видоискателя 9.

Оператор с использованием блока наведения 18 наводит изображения ИС в виде горизонтальных или вертикальных линий на габаритные размеры объекта контроля в направлении кадровой или строчной развертки изображения. Поскольку с использованием блока кадровой памяти на ТВ кадр 10 оператор наводит изображение ИС на статическое изображение объекта контроля, то достоверность снятия отсчетов увеличивается и тем самым повышается точность измерения дальности. Далее дается управляющий разрешительный сигнал на второй коммутатор 14 и сигналы с длительностью Δt1-1 и Δt1-2, соответствующие границам изображения объекта, поступают в блок измерения параметров 15. Далее с ними проводят идентичные операции обработки, как и в автоматическом режиме, стробируют серией импульсов и запоминают полученные числа импульсов N1-1. N1-2. После осуществления процесса перемещения ТВ камеры на расстояние S к объекту контроля, например, за счет носимого варианта с помощью человека или мобильного варианта, за счет движения наземных, надводных, воздушных и других средств, со скоростью V, при этом S=V·Δt, формируют второе ТВ изображение идентично первому. Порядок выполнения операций и их последовательность такая же. Они заканчиваются для второго ТВ изображения формированием временных интервалов Δt2-1 и Δt2-2, их стробироваиием серией импульсов N2-1, N2-2 и запоминанием. Завершающий этап измерения дальности до объектов предусматривает операции совместной обработки сигналов в блоке измерений параметров 15, включающем центральный процессор, с учетом числа полученных импульсов N1-1 N1-2 N2-1. N2-2, приходящихся на первое и второе ТВ изображения объекта, после подачи управляющего разрешительного сигнала. В блоке 15, с учетом априорных параметров ТВ камеры и других величин (заданных в виде постоянного числа), вычисляют дальность ρ в соответствии с выражениями 11-13. Полученные результаты измерений с первого выхода блока измерения параметров 15 подаются на вход сумматора сигналов 8, с выхода которого поступают на вход видоискателя 9, отображаются на экране видоискателя в виде численных данных для визуального анализа оператором. Со второго выхода блока 15 полученные данные могут поступать к внешним потребителям информации 19, сигналы от которых могут поступать на блок управления 17 (показано штрихпунктирной линией на чертеже).


СПОСОБ ИЗМЕРЕНИЯ ДАЛЬНОСТИ ДО ОБЪЕКТОВ ПО ИХ ИЗОБРАЖЕНИЯМ ПРЕИМУЩЕСТВЕННО В КОСМОСЕ
СПОСОБ ИЗМЕРЕНИЯ ДАЛЬНОСТИ ДО ОБЪЕКТОВ ПО ИХ ИЗОБРАЖЕНИЯМ ПРЕИМУЩЕСТВЕННО В КОСМОСЕ
СПОСОБ ИЗМЕРЕНИЯ ДАЛЬНОСТИ ДО ОБЪЕКТОВ ПО ИХ ИЗОБРАЖЕНИЯМ ПРЕИМУЩЕСТВЕННО В КОСМОСЕ
СПОСОБ ИЗМЕРЕНИЯ ДАЛЬНОСТИ ДО ОБЪЕКТОВ ПО ИХ ИЗОБРАЖЕНИЯМ ПРЕИМУЩЕСТВЕННО В КОСМОСЕ
СПОСОБ ИЗМЕРЕНИЯ ДАЛЬНОСТИ ДО ОБЪЕКТОВ ПО ИХ ИЗОБРАЖЕНИЯМ ПРЕИМУЩЕСТВЕННО В КОСМОСЕ
СПОСОБ ИЗМЕРЕНИЯ ДАЛЬНОСТИ ДО ОБЪЕКТОВ ПО ИХ ИЗОБРАЖЕНИЯМ ПРЕИМУЩЕСТВЕННО В КОСМОСЕ
Источник поступления информации: Роспатент

Показаны записи 191-200 из 372.
20.04.2016
№216.015.3761

Способ управления ориентацией космического аппарата при проведении экспериментов с научной аппаратурой по изучению конвекции

Изобретение относится к управлению ориентацией космического аппарата (КА). Способ включает закрутку КА, измерение расстояния от научной аппаратуры КА по изучению конвекции до оси закрутки, измерение и фиксацию температуры в этой аппаратуре, а также угловой скорости КА. При этом скорость...
Тип: Изобретение
Номер охранного документа: 0002581281
Дата охранного документа: 20.04.2016
10.05.2016
№216.015.3ab9

Способ определения высоты облачности

Изобретение относится к измерительной технике и может быть использовано в метеорологии для определения физических параметров атмосферы. Технический результат - повышение оперативности. Для этого дополнительно выполняют навигационные измерения орбиты космического аппарата (КА), производят съемку...
Тип: Изобретение
Номер охранного документа: 0002583877
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3b47

Способ определения характеристик срабатывания пиротехнических изделий при тепловом воздействии и устройство для его реализации

Группа изобретений относится к оборудованию для испытаний пиротехнических изделий (ПИ). Способ определения характеристик самопроизвольного срабатывания ПИ включает тепловое воздействие на корпус ПМ с заданным темпом нагрева до момента его самопроизвольного срабатывания и фиксацию температуры...
Тип: Изобретение
Номер охранного документа: 0002583979
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3b6f

Способ выведения спутника на заданную околоземную орбиту

Изобретение относится к технологии запуска спутников на орбиту. Способ включает размещение спутника внутри космического корабля (КК) перед его выведением на орбиту. После выведения и стыковки КК с орбитальной станцией размещают спутник на внешней поверхности КК. Приводят в рабочее положение...
Тип: Изобретение
Номер охранного документа: 0002583981
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3beb

Двигательная установка космического объекта и гидравлический конденсатор для нее

Изобретение относится к ракетно-космической технике и может быть использовано в двигательных установках (ДУ) космических объектов (КО). ДУ КО содержит криогенный бак с расходным клапаном и с бустерным турбонасосом, баллон высокого давления с газообразным криогенным компонентом для раскрутки...
Тип: Изобретение
Номер охранного документа: 0002583994
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3d40

Способ определения высоты облачности (варианты)

Изобретение относится к измерительной технике и может найти применение при измерении высоты облачности. Технический результат - повышение оперативности. Для этого по варианту 1 выполняют навигационные измерения орбиты космического аппарата. Производят съемку с космического аппарата (КА)...
Тип: Изобретение
Номер охранного документа: 0002583954
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3dee

Пассивное устройство фиксации полезного груза преимущественно к корпусу находящегося на орбите космического корабля

Изобретение относится к стыковочным средствам и инструментам внекорабельной деятельности. Устройство содержит корпус (1), закрепленный на внешней поверхности космического корабля, с кольцом (2), имеющим направляющие выступы (3) и датчики касания (4) с взаимодействующим активным устройством...
Тип: Изобретение
Номер охранного документа: 0002583992
Дата охранного документа: 10.05.2016
20.05.2016
№216.015.3eb5

Устройство фиксации разделяемых элементов конструкции

Изобретение относится к машиностроению и может быть использовано в агрегатах, например, в ракетно-космической технике. Техническим результатом является повышение надежности и долговечности. Устройство фиксации разделяемых элементов конструкции содержит корпус с двумя пневмоцилиндрами и...
Тип: Изобретение
Номер охранного документа: 0002584122
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.3f62

Ракетный разгонный блок и способ его сборки

Изобретение относится к ракетно-космической технике, а именно, к конструкции ракетных разгонных блоков. Ракетный разгонный блок содержит криогенный бак окислителя и бак горючего в виде сегментов полого тора, двухконтурную ферму, корпусной отсек и маршевый двигатель. К нижнему шпангоуту...
Тип: Изобретение
Номер охранного документа: 0002584045
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.3fcb

Воздуховод

Изобретение относится к гибким трубопроводам, предназначенным для обеспечения подачи воздуха в обитаемые и межмодульные отсеки космических объектов. Техническим результатом является повышение скорости стыковки-расстыковки и герметичности узла стыковки. Технический результат достигается тем, что...
Тип: Изобретение
Номер охранного документа: 0002584052
Дата охранного документа: 20.05.2016
Показаны записи 191-200 из 295.
10.04.2016
№216.015.3021

Устройство для мажоритарного выбора сигналов (3 варианта)

Изобретение относится к области построения высоконадежных резервированных устройств и систем. Технический результат заключается в повышении надежности за счет формирования сигналов неисправности каждого канала (блока с число-импульсным выходом) и интегрировании сигнала неисправности каждого...
Тип: Изобретение
Номер охранного документа: 0002580791
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3034

Способ разгрузки силовых гироскопов космического аппарата с создаваемым магнитным моментом

Изобретение относится к управлению угловым движением космических аппаратов. Для разгрузки системы силовых гироскопов от накопленного кинетического момента используют токовые контуры фазированной антенной решетки (ФАР). По магнитным моментам этих контуров определяют суммарное значение магнитного...
Тип: Изобретение
Номер охранного документа: 0002580593
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.30ad

Устройство формирования сигналов управления (2 варианта)

Предлагаемая группа изобретений относится к области электронной техники и может быть использована в системах управления, где требуется высокая надежность выполнения заданного режима, например, в системах управления космическими аппаратами, в авиационной технике и в других системах. Технический...
Тип: Изобретение
Номер охранного документа: 0002580476
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.319b

Устройство обеспечения чистоты объектов космической головной части (2 варианта)

Изобретение относится к ракетно-космической технике и может быть использовано при подготовке к старту ракеты космического назначения (РКН). Устройство обеспечения чистоты объектов космической головной части содержит побудитель расхода газового компонента, газовод, фильтр, рассекатель потока...
Тип: Изобретение
Номер охранного документа: 0002580602
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3212

Спасательный модуль

Изобретение относится к спасательной технике. Спасательный модуль включает жесткий корпус с носовой и кормовой частями, внутренней камерой, закрепленный на жестком корпусе салон с такелажным устройством. Он снабжен раскладываемыми опорами для установки на сушу. Жесткий корпус выполнен в виде...
Тип: Изобретение
Номер охранного документа: 0002580592
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.34ac

Комбинированное терморегулирующее покрытие и способ его формирования

Изобретение относится к терморегулирующим покрытиям и способу их формирования на внешних поверхностях космических аппаратов с применением метода газотермического напыления. Комбинированное терморегулирующее покрытие содержит нанесенный на подложку подслой из металлического материала, слой...
Тип: Изобретение
Номер охранного документа: 0002581278
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3761

Способ управления ориентацией космического аппарата при проведении экспериментов с научной аппаратурой по изучению конвекции

Изобретение относится к управлению ориентацией космического аппарата (КА). Способ включает закрутку КА, измерение расстояния от научной аппаратуры КА по изучению конвекции до оси закрутки, измерение и фиксацию температуры в этой аппаратуре, а также угловой скорости КА. При этом скорость...
Тип: Изобретение
Номер охранного документа: 0002581281
Дата охранного документа: 20.04.2016
10.05.2016
№216.015.3ab9

Способ определения высоты облачности

Изобретение относится к измерительной технике и может быть использовано в метеорологии для определения физических параметров атмосферы. Технический результат - повышение оперативности. Для этого дополнительно выполняют навигационные измерения орбиты космического аппарата (КА), производят съемку...
Тип: Изобретение
Номер охранного документа: 0002583877
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3b47

Способ определения характеристик срабатывания пиротехнических изделий при тепловом воздействии и устройство для его реализации

Группа изобретений относится к оборудованию для испытаний пиротехнических изделий (ПИ). Способ определения характеристик самопроизвольного срабатывания ПИ включает тепловое воздействие на корпус ПМ с заданным темпом нагрева до момента его самопроизвольного срабатывания и фиксацию температуры...
Тип: Изобретение
Номер охранного документа: 0002583979
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3b6f

Способ выведения спутника на заданную околоземную орбиту

Изобретение относится к технологии запуска спутников на орбиту. Способ включает размещение спутника внутри космического корабля (КК) перед его выведением на орбиту. После выведения и стыковки КК с орбитальной станцией размещают спутник на внешней поверхности КК. Приводят в рабочее положение...
Тип: Изобретение
Номер охранного документа: 0002583981
Дата охранного документа: 10.05.2016
+ добавить свой РИД