×
10.11.2015
216.013.8be2

Результат интеллектуальной деятельности: СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЙ НА ОБРАБОТАННЫЕ ПОВЕРХНОСТИ ИЗДЕЛИЙ ИЗ ТИТАНА И ЕГО СПЛАВОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области формирования функциональных покрытий, в частности оксида алюминия, на поверхности изделий из титана и его сплавов методами плазменного напыления и микродугового оксидирования. Способ включает электроплазменное напыление на поверхность изделия порошка оксида алюминия дисперсностью 50-100 мкм с дистанцией напыления от 100 до 120 мм при токе дуги от 300 до 350 А и микродуговое оксидирование в анодном режиме при плотности тока (1-2)×10 А/м, продолжительностью от 10 до 30 минут в щелочном электролите на основе гидрооксида натрия 1-3 г/л. Задачей изобретения является повышение механических свойств плазмонапыленных покрытий на титане и его сплавах, в частности микротвердости, при сокращении времени нанесения. 2 ил., 2 табл., 1 пр.
Основные результаты: Способ нанесения покрытия из оксида алюминия на поверхности изделий из титана и его сплавов, включающий электроплазменное напыление оксида алюминия, отличающийся тем, что на поверхность изделия осуществляют электроплазменное напыление порошка оксида алюминия дисперсностью 50-100 мкм с дистанцией напыления от 100 до 120 мм при токе дуги от 300 до 350 А, затем проводят микродуговое оксидирование в анодном режиме при плотности тока (1-2)×10 А/м, продолжительностью от 10 до 30 минут в щелочном электролите на основе гидрооксида натрия 1-3 г/л.

Изобретение относится к области формирования функциональных покрытий методами плазменного напыления и микродугового оксидирования.

Высокая эффективность функционирования изделий приборостроения обеспечивается упрочнением их рабочих поверхностей газотермическими методами нанесения покрытий. Физико-механическая сущность таких процессов обусловливает неоднородность структуры и свойств получаемых покрытий, наличие в них трещин и отслоений, что снижает функциональные качества поверхностного слоя изделий.

Метод электроплазменного напыления предусматривает проведение упрочняющей обработки покрытия после его нанесения или дополнительную подготовку порошков (например, плакирование металлами) перед напылением, что часто является экономически малоэффективным, при этом не исключается возможность загрязнения покрытия примесями. Это способствует поиску новых путей решения имеющейся проблемы.

Известен способ нанесения защитного покрытия на различные сплавы методом плазменного напыления в вакууме: в течение 20 минут первого слоя, при температуре 900°C, содержащего, мас.%: никель - основу, хром 28-30, алюминий 6-8, тантал 8-10, иттрий 0,8-1,5; затем в течение 6 часов при температуре 1080°C второго слоя, содержащего, мас.%: хром 35, алюминий 15, хлористый аммоний 0,4, оксид алюминия - остальное. После этого покрытие подвергают термообработке в вакууме при температуре 1160-1200°C в течение 1-2 часов с последующим отпуском в вакууме при температуре 900-1000°C в течение 1-2 часов [патент РФ на изобретение №2073742 / Н.В. Абраимов, С.К. Ивашко, И.Г. Петухов, Ю.М. Ануров. М.С. Шерстенникова // Способ получения защитного покрытия на сплавах. - 1997].

Основными недостатками способа являются: большая длительность процесса (от 3 до 7 часов), его технологическая сложность, использование дорогостоящих материалов (тантал, иттрий).

Известен способ осаждения оксида алюминия из водного раствора электролита на стальную подложку, с последующей термической обработкой основы [патент РФ на изобретение №2360043 / Ж.И. Беспалова, В.А. Клушин, И.В. Смирницкая, И.А. Пятерко // Способ нанесения покрытия на сталь. - 2009].

Недостатками способа являются длительность процесса (до 1 часа), токсичность веществ, входящих в состав электролита (борная кислота, этиленгликоль), наличие оксидов железа в составе покрытия.

Известен способ получения покрытий методом микродугового оксидирования, включающий микродуговое оксидирование изделий из алюминия, титана, циркония и их сплавов в режиме постоянного тока в комбинированном электролите на основе жидкого стекла 80-120 г/л, хромата натрия 2-10 г/л и гидроксида натрия 2-10 г/л продолжительностью до 1.5 часов при плотности тока 5-25 А/дм2 и напряжении 120-500 В [патент РФ на изобретение №2238352 / И.А. Казанцев, B.C. Скачков, А.Е. Розен, А.О. Кривенков // Способ получения покрытий. - 2004].

Недостатками способа являются наличие оксида кремния в составе получаемого покрытия, длительность процесса (до 1.5 ч).

Наиболее близким к предлагаемому способу является способ нанесения воздушно-плазменным методом порошка оксида алюминия с соотношением фракционного состава: 20-40 мкм в количестве 75-85% и менее 20 мкм - остальное [патент РФ на изобретение №2462533 / В.И. Кузьмин, А.А. Михальченко, Е.В. Картаев, Н.А. Руденская, Н.В. Соколова // Способ плазменного напыления износостойких покрытий. - 2012].

Недостатком способа является сложность контроля фракционного состава порошка, наличие большого количества пустот и межзеренных границ в нанесенном покрытии, что отрицательно влияет на механические свойства (прототип).

Задачей изобретения является повышение механических свойств плазмонапыленных покрытий на титане и его сплавах, в частности микротвердости, при сокращении времени нанесения.

Поставленная задача решается тем, что электроплазменное напыление порошка оксида алюминия дисперсностью 50-100 мкм на поверхность основы осуществляют с дистанции напыления от 100 до 120 мм при токе дуги от 300 до 350 А, затем проводят микродуговое оксидирование в анодном режиме при плотности тока (1-2)×103 А/м2, продолжительностью от 10 до 30 минут в щелочном электролите на основе гидрооксида натрия 1-3 г/л.

Изобретение поясняется чертежами, на которых представлены схема плазменного напыления (Фиг. 1) и схема микродугового оксидирования (Фиг. 2). В процессе получения покрытия используются: плазмотрон 1 для нанесения материала покрытия в виде порошка 2 на основу изделия 3, компрессор 4, который подает воздух в придонную часть электролитической ванны 6, источник питания 5.

Предлагаемый способ осуществляют следующим образом.

На первом этапе (Фиг. 1) на поверхности детали 3 с использованием установки электроплазменного напыления, в частности плазмотрона 1, производится нанесение порошка оксида алюминия 2 дисперсностью от 50 до 100 мкм с дистанции напыления от 100 до 120 мм, при токе дуги от 300 до 350 А. На втором этапе (Фиг. 2) основу 3 подвергают оксидированию на установке микродугового оксидирования (источник 5) в электролитической ванне 6 (в щелочном электролите, на основе гидрооксида натрия 1-3 г/л), продолжительностью от 10 до 30 мин, в анодном режиме при постоянной плотности тока (1-2)×103 А/м2. Перемешивание электролита осуществляется подачей воздуха с помощью компрессора 4 в придонную область электролитической ванны.

Выбранные режимы электроплазменного напыления позволяют наносить равномерное покрытие с оптимальной толщиной и структурой. При уменьшении дисперсности порошка оксида алюминия (менее 50 мкм) увеличивается разброс напыленных частиц по поверхности основы, толщина покрытия уменьшается. При увеличении дисперсности (более 100 мкм) в структуре наблюдаются непроплавленные зерна, имеющие низкую адгезию к основе; при токе дуги менее 300 А и дистанции напыления менее 100 мм уменьшается степень проплавления частиц напыляемого порошка. При увеличении тока дуги (более 350 А) и дистанции напыления (более 120 мм) увеличивается степень проплавления и разброс по поверхности основы напыляемых частиц, уменьшается равномерность покрытия. Выбранные режимы микродугового оксидирования обеспечивают равномерное проплавление плазмонапыленного покрытия по всей поверхности: при уменьшении длительности процесса (до 10 мин) и плотности тока (до 1×103 А/м2) увеличится доля не проплавленных участков плазмонапыленного покрытия, при увеличении плотности тока (более 2×10 А/м2) увеличивается вероятность разрушения плазмонапыленного покрытия, при увеличении длительности процесса оксидирования (свыше 30 мин) увеличится содержание материала основы в покрытии. Выбранный тип электролита (щелочной на основе гидрооксида натрия) с концентрацией 1-3 г/л, для проведения процесса микродугового оксидирования, позволит избежать: интенсивного травления покрытия и материала основы; наличия в покрытии элементов, входящих в состав электролита.

Пример выполнения способа получения покрытия

На подложке из титанового сплава ВТ 16 последовательно в два этапа формируется покрытие: на первом этапе на поверхности детали методом электроплазменного напыления порошка оксида алюминия дисперсностью от 50 до 100 мкм с дистанции напыления от 100 до 120 мм, при токе дуги от 300 до 350 А формируется покрытие необходимой толщины; на втором этапе - методом микродугового оксидирования продолжительностью от 10 до 30 мин, в анодном режиме при постоянной плотности тока (1-2)×103 А/м2, в щелочном электролите на основе гидрооксида натрия 1-3 г/л. Перемешивание электролита осуществлялось подачей воздуха в придонную область электролитической ванны. Параметры технологического режима нанесения покрытий и их оптимальные значения представлены в таблице 1.

Для подтверждения повышения механических характеристик плазмонапыленных покрытий были проведены испытания образцов, полученных предлагаемым способом (ЭПН+МДО), и образцов, полученных следующими методами: электроплазменного напыления (ЭПН), микродугового оксидирования (МДО) и микродугового оксидирования с последующим электроплазменным напылением (МДО+ЭПН) по технологическим режимам, представленным в таблице 1.

Результаты испытаний образцов опытной партии на микротвердость представлены в таблице 2.

Как показали результаты опытной проверки, предлагаемый способ нанесения покрытий (последовательно в два этапа: сначала ЭПН порошка оксида алюминия и последующее МДО) на титановых сплавах позволяет получать покрытия с более высокой микротвердостью.

Способ нанесения покрытия из оксида алюминия на поверхности изделий из титана и его сплавов, включающий электроплазменное напыление оксида алюминия, отличающийся тем, что на поверхность изделия осуществляют электроплазменное напыление порошка оксида алюминия дисперсностью 50-100 мкм с дистанцией напыления от 100 до 120 мм при токе дуги от 300 до 350 А, затем проводят микродуговое оксидирование в анодном режиме при плотности тока (1-2)×10 А/м, продолжительностью от 10 до 30 минут в щелочном электролите на основе гидрооксида натрия 1-3 г/л.
СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЙ НА ОБРАБОТАННЫЕ ПОВЕРХНОСТИ ИЗДЕЛИЙ ИЗ ТИТАНА И ЕГО СПЛАВОВ
СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЙ НА ОБРАБОТАННЫЕ ПОВЕРХНОСТИ ИЗДЕЛИЙ ИЗ ТИТАНА И ЕГО СПЛАВОВ
Источник поступления информации: Роспатент

Показаны записи 21-30 из 95.
10.04.2014
№216.012.b78b

Способ изготовления внутрикостных имплантатов с антимикробным эффектом

Изобретение относится к медицине, а именно к ортопедической стоматологии. Описан способ изготовления внутрикостных имплантатов, включающий послойное нанесение плазменным напылением на металлическую основу имплантата биологического активного покрытия, при этом первым и вторым слоями дистанционно...
Тип: Изобретение
Номер охранного документа: 0002512714
Дата охранного документа: 10.04.2014
27.04.2014
№216.012.be23

Соус майонезный

Изобретение относится к пищевой промышленности, а именно к общественному питанию и масложировой промышленности, и может быть использовано для производства эмульсионных продуктов типа соусов майонезных функционального назначения. Соус майонезный содержит масло растительное рафинированное...
Тип: Изобретение
Номер охранного документа: 0002514415
Дата охранного документа: 27.04.2014
20.05.2014
№216.012.c587

Способ удаления заусенцев с малогабаритных деталей

Изобретение относится к области неразмерной ультразвуковой обработки в жидких средах и может быть использовано для удаления заусенцев с малогабаритных деталей преимущественно из легких сплавов и полимерных материалов, обладающих низким пределом прочности и модулем упругости. Детали погружают в...
Тип: Изобретение
Номер охранного документа: 0002516326
Дата охранного документа: 20.05.2014
10.06.2014
№216.012.ccff

Тепловой приемник

Изобретение относится к области оптоэлектроники, к конструкциям тепловых многоэлементных приемников, предназначенных для регистрации пространственно-энергетических характеристик импульсного и непрерывного лазерного излучения. Тепловой приемник содержит герметичный корпус с входным окном,...
Тип: Изобретение
Номер охранного документа: 0002518250
Дата охранного документа: 10.06.2014
20.07.2014
№216.012.e26f

Способ персональной автономной навигации

Изобретение относится к области приборостроения, в частности к способам персональной навигации (пешеходной, автомобильной и пр.), и может быть использовано при решении задач локальной навигации (мининавигации). Технический результат - получение наиболее полной и достоверной информации о...
Тип: Изобретение
Номер охранного документа: 0002523753
Дата охранного документа: 20.07.2014
20.08.2014
№216.012.ea19

Способ изготовления внутрикостного стоматологического имплантата

Изобретение относится к области медицинской техники, а именно к ортопедической стоматологии, и может быть использовано при изготовлении внутрикостных стоматологических имплантатов путем нанесения на их металлическую основу многослойных плазменных покрытий. Проводят пескоструйную обработку...
Тип: Изобретение
Номер охранного документа: 0002525737
Дата охранного документа: 20.08.2014
20.08.2014
№216.012.ec10

Способ изготовления автоэмиссионного катода

Изобретение относится к лазерной технике, а именно к способам лазерной обработки материалов при изготовлении автоэмиссионных катодов из стеклоуглерода, которые могут быть использованы в области приборостроения электронной техники, а именно в электровакуумных приборах с большой плотностью...
Тип: Изобретение
Номер охранного документа: 0002526240
Дата охранного документа: 20.08.2014
20.08.2014
№216.012.ec1c

Способ изготовления внутрикостных имплантатов с многослойным покрытием

Изобретение относится к медицине, а именно к челюстно-лицевой хирургии и травматологии, и предназначено для использования при изготовлении внутритканевых эндопротезов на титановой основе. На металлическую основу имплантата осуществляют многослойное плазменное напыление биологического активного...
Тип: Изобретение
Номер охранного документа: 0002526252
Дата охранного документа: 20.08.2014
10.09.2014
№216.012.f0e6

Безглютеновый овощной соус

Изобретение относится к пищевой промышленности и может быть использовано для производства эмульсионных продуктов типа овощных соусов функционального назначения. Безглютеновый овощной соус содержит следующее соотношение исходных компонентов: томатную пасту 30%-ную - 34,00-35,00 масс.%, лук...
Тип: Изобретение
Номер охранного документа: 0002527492
Дата охранного документа: 10.09.2014
27.09.2014
№216.012.f79d

Способ энерготехнологической переработки сланца

Изобретение может быть использовано в области переработки сланца для получения энергетического и технологического газов и химических продуктов, таких как метилтиофен, тиофен, бензол. Способ энерготехнологической переработки сланца включает полукоксование мелкозернистого сланца с твердым...
Тип: Изобретение
Номер охранного документа: 0002529226
Дата охранного документа: 27.09.2014
Показаны записи 21-30 из 103.
10.01.2014
№216.012.9527

Система подачи смазочного материала в двигатель внутреннего сгорания

Изобретение относится к области машиностроения и может использоваться при конструировании, производстве и ремонте двигателей внутреннего сгорания. Система подачи смазочного материала в двигатель внутреннего сгорания содержит масляный насос с клапанами смазочной системы - редукционным и...
Тип: Изобретение
Номер охранного документа: 0002503877
Дата охранного документа: 10.01.2014
20.01.2014
№216.012.96fa

Способ формирования антимикробного покрытия

Изобретение относится к медицине, а именно к челюстно-лицевой хирургии и травматологии, и может быть использовано для формирования антимикробного покрытия при изготовлении внутритканевых эндопротезов на титановой основе. Для этого осуществляют предварительную подготовку серебросодержащего...
Тип: Изобретение
Номер охранного документа: 0002504349
Дата охранного документа: 20.01.2014
10.04.2014
№216.012.b78b

Способ изготовления внутрикостных имплантатов с антимикробным эффектом

Изобретение относится к медицине, а именно к ортопедической стоматологии. Описан способ изготовления внутрикостных имплантатов, включающий послойное нанесение плазменным напылением на металлическую основу имплантата биологического активного покрытия, при этом первым и вторым слоями дистанционно...
Тип: Изобретение
Номер охранного документа: 0002512714
Дата охранного документа: 10.04.2014
27.04.2014
№216.012.be23

Соус майонезный

Изобретение относится к пищевой промышленности, а именно к общественному питанию и масложировой промышленности, и может быть использовано для производства эмульсионных продуктов типа соусов майонезных функционального назначения. Соус майонезный содержит масло растительное рафинированное...
Тип: Изобретение
Номер охранного документа: 0002514415
Дата охранного документа: 27.04.2014
20.05.2014
№216.012.c587

Способ удаления заусенцев с малогабаритных деталей

Изобретение относится к области неразмерной ультразвуковой обработки в жидких средах и может быть использовано для удаления заусенцев с малогабаритных деталей преимущественно из легких сплавов и полимерных материалов, обладающих низким пределом прочности и модулем упругости. Детали погружают в...
Тип: Изобретение
Номер охранного документа: 0002516326
Дата охранного документа: 20.05.2014
10.06.2014
№216.012.ccff

Тепловой приемник

Изобретение относится к области оптоэлектроники, к конструкциям тепловых многоэлементных приемников, предназначенных для регистрации пространственно-энергетических характеристик импульсного и непрерывного лазерного излучения. Тепловой приемник содержит герметичный корпус с входным окном,...
Тип: Изобретение
Номер охранного документа: 0002518250
Дата охранного документа: 10.06.2014
27.06.2014
№216.012.d7cb

Устройство для рыхления прочных грунтов

Изобретение относится к строительству и может найти применение для послойного рыхления прочных грунтов, а также снятия льда и снежного наката на автомобильных дорогах и тротуарах. Устройство содержит раму, на которой в опорах вращения установлен вал с закрепленными к нему зубьями, привод...
Тип: Изобретение
Номер охранного документа: 0002521021
Дата охранного документа: 27.06.2014
20.07.2014
№216.012.e26f

Способ персональной автономной навигации

Изобретение относится к области приборостроения, в частности к способам персональной навигации (пешеходной, автомобильной и пр.), и может быть использовано при решении задач локальной навигации (мининавигации). Технический результат - получение наиболее полной и достоверной информации о...
Тип: Изобретение
Номер охранного документа: 0002523753
Дата охранного документа: 20.07.2014
20.08.2014
№216.012.ea19

Способ изготовления внутрикостного стоматологического имплантата

Изобретение относится к области медицинской техники, а именно к ортопедической стоматологии, и может быть использовано при изготовлении внутрикостных стоматологических имплантатов путем нанесения на их металлическую основу многослойных плазменных покрытий. Проводят пескоструйную обработку...
Тип: Изобретение
Номер охранного документа: 0002525737
Дата охранного документа: 20.08.2014
20.08.2014
№216.012.ec10

Способ изготовления автоэмиссионного катода

Изобретение относится к лазерной технике, а именно к способам лазерной обработки материалов при изготовлении автоэмиссионных катодов из стеклоуглерода, которые могут быть использованы в области приборостроения электронной техники, а именно в электровакуумных приборах с большой плотностью...
Тип: Изобретение
Номер охранного документа: 0002526240
Дата охранного документа: 20.08.2014
+ добавить свой РИД