×
10.11.2015
216.013.8b87

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ КОЛЛОИДНОГО РАСТВОРА НАНОЧАСТИЦ СУЛЬФИДА СВИНЦА

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам получения коллоидных растворов, содержащих наночастицы полупроводникового соединения, и может быть использовано в оптоэлектронике и медицине. Предлагается способ получения коллоидного раствора наночастиц сульфида свинца, включающий смешивание исходного раствора ацетата свинца и раствора серосодержащего соединения в присутствии стабилизатора, отличающийся тем, что он в качестве стабилизатора содержит цитрат натрия или динатриевую соль этилендиаминтетрауксусной кислоты (трилон Б) при соотношении компонентов, равном ацетат свинца:сульфид натрия:цитрат натрия или трилон Б=1:1:0,3÷1,25. Предлагаемый способ позволяет реализовать простой управляемый технологический процесс получения стабильных до 30 суток водных коллоидных растворов наночастиц сульфида свинца с размером частиц от 9 до 17 нм. 1 табл.
Основные результаты: Способ получения коллоидных наночастиц сульфида свинца в водных растворах, включающий последовательное добавление к водному раствору ацетата свинца при постоянном перемешивании водного раствора цитрата натрия или динатриевую соль этилендиаминтетрауксусной кислоты (трилон Б) и водного раствора сульфида натрия при температуре 20-24°C, при соотношении компонентов, равном ацетат свинца:сульфид натрия:цитрат натрия или трилон Б=1:1:0,3÷1,25.

Изобретение относится к способам получения коллоидных растворов, содержащих наночастицы полупроводникового соединения, и может быть использовано в оптоэлектронике и медицине.

Известен жидкофазный способ получения коллоидных материалов, в частности сульфида свинца, которые могут быть использованы в лазерах и оптоэлектронных устройствах (патент CN 102387855, МПК B01J 13/00, 2012 год). Способ заключается в жидкофазном разложении серосодержащего соединения в присутствии ионов свинца. На первом этапе получают исходные растворы, содержащие серу, например в триоктилфосфине, трибутилфосфине, октадецене, и карбоксилаты или ацетаты свинца в слабокоординационном растворителе, например в метиленхлориде, тетрагидрофуране, триоктиламине, дизельном топливе. Серосодержащий раствор подвергают дегазации. На втором этапе в полученный раствор вводят ионы свинца. Полученную смесь доводят до кипения в инертной атмосфере, температура при этом варьируется в диапазоне от 100°C до 280°C, а время составляет 30-60 минут.

Недостатком известного способа является его сложность, которая обусловлена многостадийностью процесса, необходимостью использовать инертную атмосферу и высокие температуры. Кроме того, использование сложных органических прекурсоров ухудшает экологическую обстановку.

Известен способ получения наночастиц сульфида свинца, стабилизированных в желатине (патент MD 241; МПК B82B 3/00, C01G 21/21, C08L 89/06, C09K 11/56; 2010 год). В известном способе к водному раствору нитрата свинца добавляют желатин, после чего полученную смесь нагревают до 90°C. Далее к смеси добавляют раствор сульфида натрия.

Недостатком известного способа является использование желатинового стабилизатора, во-первых, это накладывает ограничения на условия хранения и использования продукта при температуре выше 40°C, во-вторых, проблемой желатинового стабилизатора является его растрескивание и старение, в результате которого он перестает быть прозрачным.

Наиболее близким к предлагаемому техническому решению является известный способ получения коллоидных нанокристаллов сульфида свинца (патент US 7118627, МПК C30B 7/00). Известным сольвотермальным способом получают коллоидные нанокристаллы сульфида свинца, обладающие узким распределением по размерам и эмиссией в ближнем инфракрасном диапазоне спектра и могут быть использованы в качестве материала для различных устройств. Известный способ является многостадийным: на первом и втором этапах получают основные растворы, первый содержит ионы свинца, например раствор ацетата свинца, а второй - ионы серы в органическом растворителе. В оба раствора добавляют различные лиганды для стабилизации наночастиц, образующихся на последующих стадиях. На третьем этапе происходит смешивание исходных растворов при постоянном перемешивании и нагревании при температуре 130-150°C (прототип).

Недостатком известного способа является его сложность, обусловленная, во-первых, многостадийностью, во-вторых, использованием достаточно высоких температур и специальной инертной атмосферы, в-третьих, использованием сложных органических прекурсоров, в число которых входит олеиновая кислота, би(триметилсилил)сульфид и триоктилфосфин оксид, и токсичных растворителей, таких как метанол, толуол, хлороформ, гексан.

Таким образом, перед авторами стояла задача - разработать простой способ получения стабильного коллоидного раствора наночастиц сульфида свинца.

Поставленная задача решена в предлагаемом способе получения коллоидного раствора наночастиц сульфида свинца, включающем смешение исходного раствора ацетата свинца и раствора серосодержащего соединения в присутствии стабилизатора, который в качестве стабилизатора содержит цитрат натрия Na3C6H5O7 или динатриевую соль этилендиаминтетра-уксусной кислоты (трилон Б) при соотношении компонентов, равном ацетат свинца:сульфид натрия:цитрат натрия или трилон Б=1:1:0,3÷1,25.

В настоящее время из патентной и научно-технической литературы не известен способ получения стабильного водного коллоидного раствора наночастиц сульфида свинца, в котором в качестве стабилизатора используют цитрат натрия или трилон Б при определенном соотношении исходных компонентов в предлагаемых авторами условиях.

Коллоидные растворы наноструктурированных частиц сульфида свинца являются перспективными материалами для использования в различных областях наноэлектроники и медицины в качестве источников излучения и флуоресцентных меток. Исследования, проведенные авторами предлагаемого технического решения, позволили выявить возможность получения стабильных во времени водных коллоидных растворов сульфида свинца в случае использования в качестве стабилизатора цитрата натрия или трилона Б в определенном их количестве по отношению к исходным компонентам, которые смешивают в стехиометрическом соотношении. Так, если процесс получения коллоидного раствора осуществляют в присутствии стабилизатора при соотношении менее, чем 1:1:0,30; растворы не достаточно стабильны - наночастицы сульфида свинца выпадают в осадок через 4 суток. Если процесс получения коллоидного раствора осуществляют в присутствии стабилизатора при соотношении более, чем 1:1:1,25; наночастицы сульфида свинца не образуются. Особенностью предлагаемого способа является возможность получения стабильных (не коагулирующихся, не агломерирующихся и не оседающих частиц) коллоидных наночастиц в водных растворах.

Предлагаемый способ может быть осуществлен следующим образом. К исходному раствору ацетата свинца Pb(CH3COO)2 при постоянном перемешивании последовательно добавляют раствор стабилизатора цитрата натрия Na3C6H5O7 (Na3Cit) или раствор динатриевой соли этилендиаминтетра-уксусной кислоты C10H14O8N2Na2×2H2O (трилон Б), а затем раствор сульфида натрия Na2S. При этом смешивание осуществляют при температуре 20-30°C и pH, равном 4,5÷7. При смешивании реагентов образование частиц сульфида свинца происходит практически мгновенно, в результате образуется темно-черный раствор, стабильный в течение 23-30 суток.

Для определения размера (гидродинамического диаметра) частиц сульфида свинца непосредственно в растворе используют метод динамического рассеяния света. Для воспроизводимости результатов рассеяние света в каждом растворе измеряют не менее трех раз. Для определения стабильности растворов измеряют их мутность. Измерение мутности проводят в формализованных единицах мутности (FTU), которые соотносятся с нефелометрическими (NTU) как 1:1.

Предлагаемый способ иллюстрируется следующими примерами конкретного исполнения.

Пример 1.

Берут 1 мл (50 ммоль л-1) водного раствора ацетата свинца Pb(AcO)2 и добавляют 197 мл дистиллированной воды. Затем добавляют 1 мл (50 ммоль л-1) водного раствора цитрата натрия (Na3Cit) и 1 мл (50 ммоль л-1) водного раствора сульфида натрия Na2S. При этом pH полученного раствора равно 6,4. Соотношение исходных компонентов равно ацетат свинца:сульфид натрия:цитрат натрия = 1:1:1. Смешивание растворов осуществляют при температуре 20°C. Концентрации компонентов в конечном коллоидном растворе равны, ммоль л-1: Pb(СН3СОО)2 - 0,25; Na2S - 0,25; Na3Cit - 0,25. Данные по размеру частиц и стабильности полученного коллоидного раствора приведены в таблице (образец 4).

Пример 2.

Берут 3,2 мл (50 ммоль л-1) водного раствора ацетата свинца Pb(АсО)2 и добавляют 190,4 мл дистиллированной воды. Затем добавляют 3,2 мл (50 ммоль л-1) водного раствора динатриевой соли этилендиаминтетра-уксусной кислоты C10H14O8N2Na2×2H2O (трилон Б) и 3,2 мл (50 ммоль л-1) водного раствора сульфида натрия Na2S. При этом pH полученного раствора равно 6,7. Соотношение исходных компонентов равно ацетат свинца:сульфид натрия:цитрат натрия = 1:1:1. Смешивание растворов осуществляют при температуре 24°С. Концентрации компонентов в конечном коллоидном растворе равны, ммоль л-1: Pb(СН3СОО)2 - 0,8; Na2S - 0,8; трилон Б - 0,8. Данные по размеру частиц и стабильности полученного коллоидного раствора приведены в таблице (образец 5).

Таблица
Концентрации компонентов в конечном коллоидном растворе, время стабильности и размер частиц сульфида свинца
N образца Концентрация реагентов в коллоидном растворе, ммольл-1 Соотношение компонентов в реакционной смеси Стабильность сутки Размер частиц, нм
Pb(CH3COO)2 Na2S Na3Cit трилон Б
1 1,25 1,25 0,42 0 1:1:0,3 30 12
2 0,8 0,8 0,50 0 1:1:0,65 30 14
3 0,5 0,5 0,625 0 1:1:1,25 28 10
4 0,25 0,25 0,25 0 1:1:1 25 9
5 0,8 0,8 0 0,8 1:1:1 23 15
6 0,5 0,5 0 0,2 1:1:0,3 23 17

Таким образом, предлагаемый способ позволяет реализовать простой управляемый технологический процесс получения стабильных до 30 суток водных коллоидных растворов наночастиц сульфида свинца с размером частиц от 9 до 17 нм.

Способ получения коллоидных наночастиц сульфида свинца в водных растворах, включающий последовательное добавление к водному раствору ацетата свинца при постоянном перемешивании водного раствора цитрата натрия или динатриевую соль этилендиаминтетрауксусной кислоты (трилон Б) и водного раствора сульфида натрия при температуре 20-24°C, при соотношении компонентов, равном ацетат свинца:сульфид натрия:цитрат натрия или трилон Б=1:1:0,3÷1,25.
Источник поступления информации: Роспатент

Показаны записи 11-20 из 99.
20.02.2015
№216.013.2a33

Ионоселективный материал для определения ионов аммония и способ его получения

Изобретение может быть использовано в аналитической химии. Гидратированную оксидную ванадиевую бронзу аммония состава (NH)VO·0,5HO используют в качестве ионоселективного материала для селективного определения концентрации ионов аммония в растворах. Для получения гидратированной оксидной...
Тип: Изобретение
Номер охранного документа: 0002542260
Дата охранного документа: 20.02.2015
27.04.2015
№216.013.45fd

Способ получения наноигл оксидной ванадиевой бронзы натрия

Изобретение может быть использовано в производстве катодного материала химических источников тока, а также термисторов, резисторов, устройств для записи и хранения информации. Способ получения наноигл оксидной ванадиевой бронзы натрия состава α'-NaVO включает получение реакционной смеси,...
Тип: Изобретение
Номер охранного документа: 0002549421
Дата охранного документа: 27.04.2015
10.05.2015
№216.013.4994

Способ извлечения радионуклидов и микроэлементов

Изобретение относится к области сорбционной технологии извлечения радионуклидов и микроэлементов при переработке различных жидких и твердых объектов радиохимических производств. Заявленный способ включает контактирование с сорбентом на основе цианоферрата переходного металла, при этом...
Тип: Изобретение
Номер охранного документа: 0002550343
Дата охранного документа: 10.05.2015
10.06.2015
№216.013.5525

Способ получения галлия из щелочно-алюминатных растворов глиноземного производства

Изобретение относится к способу электрохимического выделения галлия из шелочно-алюминатных растворов глиноземного производства процесса Байера. Способ включает подготовку исходной смеси смешением маточного и оборотного растворов в соотношении, равном 1: (0,8÷0,9), при постоянном перемешивании и...
Тип: Изобретение
Номер охранного документа: 0002553318
Дата охранного документа: 10.06.2015
20.06.2015
№216.013.5738

Способ получения тонких пленок сульфида свинца

Изобретение относится к области получения тонких пленок сульфида свинца нанокристаллической структуры, активных в ближнем ИК-диапазоне. Предложен способ получения тонких пленок сульфида свинца, активных в ближнем инфракрасном диапазоне, включающий осаждение из водного раствора смеси ацетата...
Тип: Изобретение
Номер охранного документа: 0002553858
Дата охранного документа: 20.06.2015
20.08.2015
№216.013.6e94

Никель-алюминиевая шпинель в качестве катализатора парциального окисления метана и способ ее получения

Изобретение относится к катализатору парциального окисления метана, который представляет собой никель-алюминиевую шпинель. Данная шпинель имеет общую химическую формулу (Ni(МO))·γ-АlO, где М - Сr, Мn или Fe, 0,01≤x≤0,99, 0,01≤y≤1. Изобретение также относится к способу получения такого...
Тип: Изобретение
Номер охранного документа: 0002559878
Дата охранного документа: 20.08.2015
27.08.2015
№216.013.7492

Способ извлечения оксида алюминия из красного шлама

Изобретение относится к металлургии, а именно к переработке красного шлама - отхода глиноземного производства переработки бокситов щелочным способом Байера. Способ извлечения оксида алюминия из красного шлама включет автоклавное выщелачивании красного шлама при температуре 230-260°С и давлении...
Тип: Изобретение
Номер охранного документа: 0002561417
Дата охранного документа: 27.08.2015
27.11.2015
№216.013.9496

Сырьевая смесь для сульфатированного цемента

Изобретение относится к области строительных материалов и может быть использовано в производстве портландцементов. Технический результат заключается в повышении прочности на сжатие, ускорении сроков схватывания. Сырьевая смесь для сульфатированного цемента состоит из двуводного гипса,...
Тип: Изобретение
Номер охранного документа: 0002569657
Дата охранного документа: 27.11.2015
20.12.2015
№216.013.9a52

Сплав для получения водорода на основе алюминия

Изобретение относится к области химии и может быть использовано для получения водорода. Сплав для получения водорода на основе алюминия и добавки, разрушающей окисную пленку алюминия при взаимодействии с водой, содержит в качестве добавки лантан при следующем соотношении компонентов: лантан-...
Тип: Изобретение
Номер охранного документа: 0002571131
Дата охранного документа: 20.12.2015
27.12.2015
№216.013.9e2d

Способ получения нанодисперсного ферромагнитного материала

Изобретение относится к химической технологии. Способ включает упаривание смеси водных растворов цинк- и железосодержащих солей карбоновой кислоты, взятых в стехиометрическом соотношении. В качестве солей карбоновой кислоты используют формиат цинка состава Zn(НСОО)·2НО и формиат железа состава...
Тип: Изобретение
Номер охранного документа: 0002572123
Дата охранного документа: 27.12.2015
Показаны записи 11-20 из 42.
20.02.2015
№216.013.2a33

Ионоселективный материал для определения ионов аммония и способ его получения

Изобретение может быть использовано в аналитической химии. Гидратированную оксидную ванадиевую бронзу аммония состава (NH)VO·0,5HO используют в качестве ионоселективного материала для селективного определения концентрации ионов аммония в растворах. Для получения гидратированной оксидной...
Тип: Изобретение
Номер охранного документа: 0002542260
Дата охранного документа: 20.02.2015
27.04.2015
№216.013.45fd

Способ получения наноигл оксидной ванадиевой бронзы натрия

Изобретение может быть использовано в производстве катодного материала химических источников тока, а также термисторов, резисторов, устройств для записи и хранения информации. Способ получения наноигл оксидной ванадиевой бронзы натрия состава α'-NaVO включает получение реакционной смеси,...
Тип: Изобретение
Номер охранного документа: 0002549421
Дата охранного документа: 27.04.2015
10.05.2015
№216.013.4994

Способ извлечения радионуклидов и микроэлементов

Изобретение относится к области сорбционной технологии извлечения радионуклидов и микроэлементов при переработке различных жидких и твердых объектов радиохимических производств. Заявленный способ включает контактирование с сорбентом на основе цианоферрата переходного металла, при этом...
Тип: Изобретение
Номер охранного документа: 0002550343
Дата охранного документа: 10.05.2015
10.06.2015
№216.013.5525

Способ получения галлия из щелочно-алюминатных растворов глиноземного производства

Изобретение относится к способу электрохимического выделения галлия из шелочно-алюминатных растворов глиноземного производства процесса Байера. Способ включает подготовку исходной смеси смешением маточного и оборотного растворов в соотношении, равном 1: (0,8÷0,9), при постоянном перемешивании и...
Тип: Изобретение
Номер охранного документа: 0002553318
Дата охранного документа: 10.06.2015
20.06.2015
№216.013.5738

Способ получения тонких пленок сульфида свинца

Изобретение относится к области получения тонких пленок сульфида свинца нанокристаллической структуры, активных в ближнем ИК-диапазоне. Предложен способ получения тонких пленок сульфида свинца, активных в ближнем инфракрасном диапазоне, включающий осаждение из водного раствора смеси ацетата...
Тип: Изобретение
Номер охранного документа: 0002553858
Дата охранного документа: 20.06.2015
20.08.2015
№216.013.6e94

Никель-алюминиевая шпинель в качестве катализатора парциального окисления метана и способ ее получения

Изобретение относится к катализатору парциального окисления метана, который представляет собой никель-алюминиевую шпинель. Данная шпинель имеет общую химическую формулу (Ni(МO))·γ-АlO, где М - Сr, Мn или Fe, 0,01≤x≤0,99, 0,01≤y≤1. Изобретение также относится к способу получения такого...
Тип: Изобретение
Номер охранного документа: 0002559878
Дата охранного документа: 20.08.2015
27.08.2015
№216.013.7492

Способ извлечения оксида алюминия из красного шлама

Изобретение относится к металлургии, а именно к переработке красного шлама - отхода глиноземного производства переработки бокситов щелочным способом Байера. Способ извлечения оксида алюминия из красного шлама включет автоклавное выщелачивании красного шлама при температуре 230-260°С и давлении...
Тип: Изобретение
Номер охранного документа: 0002561417
Дата охранного документа: 27.08.2015
27.11.2015
№216.013.9496

Сырьевая смесь для сульфатированного цемента

Изобретение относится к области строительных материалов и может быть использовано в производстве портландцементов. Технический результат заключается в повышении прочности на сжатие, ускорении сроков схватывания. Сырьевая смесь для сульфатированного цемента состоит из двуводного гипса,...
Тип: Изобретение
Номер охранного документа: 0002569657
Дата охранного документа: 27.11.2015
20.12.2015
№216.013.9a52

Сплав для получения водорода на основе алюминия

Изобретение относится к области химии и может быть использовано для получения водорода. Сплав для получения водорода на основе алюминия и добавки, разрушающей окисную пленку алюминия при взаимодействии с водой, содержит в качестве добавки лантан при следующем соотношении компонентов: лантан-...
Тип: Изобретение
Номер охранного документа: 0002571131
Дата охранного документа: 20.12.2015
27.12.2015
№216.013.9e2d

Способ получения нанодисперсного ферромагнитного материала

Изобретение относится к химической технологии. Способ включает упаривание смеси водных растворов цинк- и железосодержащих солей карбоновой кислоты, взятых в стехиометрическом соотношении. В качестве солей карбоновой кислоты используют формиат цинка состава Zn(НСОО)·2НО и формиат железа состава...
Тип: Изобретение
Номер охранного документа: 0002572123
Дата охранного документа: 27.12.2015
+ добавить свой РИД