×
27.10.2015
216.013.8aa5

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ РЕНИЯ (VII) В ВОДНЫХ РАСТВОРАХ МЕТОДОМ ИНВЕРСИОННОЙ ВОЛЬТАМПЕРОМЕТРИИ ПО ПИКУ СЕЛЕКТИВНОГО ЭЛЕКТРООКИСЛЕНИЯ МЕДИ ИЗ ИНТЕРМЕТАЛЛИЧЕСКОГО СОЕДИНЕНИЯ ReCu

Вид РИД

Изобретение

Аннотация: Изобретение относится к аналитической химии и может быть использовано для анализа вод различного происхождения: питьевые воды, геотермальные источники, смывы хвостов обогащения, а также технологические сливы. Способ определения рения (VII) в водных растворах методом инверсионной вольтамперометрии по пику селективного электроокисления меди из интерметаллического соединения ReCu заключается в том, что рений осаждают на поверхности графитового электрода вместе с медью, образуя сплав, накопление ионов рения на графитовом электроде в перемешиваемом растворе в присутствии ионов меди (II) проводят в течение 120-180 секунд при потенциале электролиза минус 1,0 В из фонового электролита 1 М HCl с последующей регистрацией анодных пиков селективного электроокисления меди из сплава с рением при скорости развертки потенциала 10-20 мВ/с, концентрацию ионов рения определяют по току анодного пика селективного электроокисления меди в диапазоне потенциалов от -0,4 до -0,1 В отн. нас. х.с.э., используя метод добавок аттестованных смесей. Изобретение обеспечивает возможность количественно определять содержание ионов рения (VII) в интервале содержаний 0,01-1 мг/дм по пику селективного электроокисления меди из сплава с рением, полученного на стадии предварительного электроконцентрирования. 2 ил., 1 пр., 2 табл.
Основные результаты: Способ определения рения (VII) в водных растворах методом инверсионной вольтамперометрии по пику селективного электроокисления меди из интерметаллического соединения ReCu, заключающийся в том, что рений осаждают на поверхности графитового электрода вместе с медью, образуя сплав, накопление ионов рения на графитовом электроде в перемешиваемом растворе в присутствии ионов меди (II) проводят в течение 120-180 секунд при потенциале электролиза минус 1,0 В из фонового электролита 1 М HCl с последующей регистрацией анодных пиков селективного электроокисления меди из сплава с рением при скорости развертки потенциала 10-20 мВ/с, концентрацию ионов рения определяют по току анодного пика селективного электроокисления меди в диапазоне потенциалов от -0,4 до -0,1 В отн. нас. х.с.э., используя метод добавок аттестованных смесей.

Изобретение относится к аналитической химии, а именно к способам определения содержания ионов металлов, и может быть использовано для анализа вод различного происхождения (питьевые воды, геотермальные источники, смывы хвостов обогащения), а также технологических сливов методом инверсионной вольтамперометрии (ИВ).

Известен метод полярографического определения рения (VII), впервые изученный в растворах кислот (HCl, H2SO4, H2SO4) и нейтральных растворах (KCl, фосфатном буфере). Определяемая концентрация рения (VII), использованная в исследованиях, составляла 1·10-3 M [Lingan J.J. / J. Am. Chem. Soc. 64, 1001 (1942); Lingan J.J. // J. Am. Chem. Soc. 64, 2182 (1942)]. Недостатком метода является низкая чувствительность и использование больших количеств металлической ртути в ходе полярографических определений рения (VII) в растворе.

Известна методика определения рения (VII) в сернокислых и гидроксонатриевых растворах. Показано, что число волн восстановления и их характер меняются в зависимости от концентрации H2SO4. Потенциал полуволны (E1/2) для рения (VII) в 3,5 M H2SO4 меняется от 0,2 до -0,45 В. В 2 M растворе щелочи E1/2 для рения (VII) равен -1,4 В. Определяемая концентрация рения составляет 1·10-4 M [Geyer R. // Ζ. anorg. u. allgem. Chem., 263, 47 (1950)]. Недостатком методики является низкая чувствительность определяемых содержаний рения; использование металлической ртути, пары которой являются токсичными. При определении рения данным методом мешают анионы Cl-, , , а также ионы металлов Mo, Fe и Ti.

Известен способ восстановления перренат-иона на ртутно-капельном катоде. Величина диффузионного тока в 4 M растворе HClO4 прямо пропорциональна концентрации в растворе в интервале от 1·10-4 до 1·10-3 М. В 2 M и 4,2 M растворах HCl E1/2 равны соответственно -0,45 В и -0,31 В (относительно н.к.э.). [Rulfs C.L., Elving P.J. // J. Am. Chem. Soc. 73, 3284 (1951)]. Недостатком способа является низкая чувствительность определяемых содержаний рения и использование металлической ртути, пары которой ядовиты.

Известна методика определения малых концентраций рения в нейтральных, щелочных и буферных растворах. На скорость каталитического выделения водорода существенное влияние оказывает pH раствора и буферная емкость раствора. В исследованиях использовался ртутно-капельный электрод, а вспомогательным и электродом сравнения служили насыщенные каломельные электроды. Предельный ток достигает максимального значения в интервале pH 7-9. Концентрация перренат-иона, использованная в исследованиях, составляла 8·10-5 моль/л [Рубинская Т.Я., Майрановский С.Г. О восстановлении перренат-иона на ртутном капельном электроде в щелочных и нейтральных средах // Электрохимия, 1971, Т. 7, №10, С. 1403-1408]. Недостатком методики является существенное влияние pH раствора и его буферная емкость. Низкая чувствительность, каталитические волны, пригодные для аналитических целей, находятся в сильно отрицательной области потенциалов -1,6 В, а также использование в анализе высокотоксичного ртутно-капающего электрода.

Известен метод определения рения на фоне раствора NaCl с Na2SO3 (pH=11,3-11,5) E1/2=-0,45 В. Открываемый минимум равен 1·10-5 М. Определение проводят также после подготовки пробы, в ходе которой рений отделяют от молибдена, вольфрама и других сопутствующих элементов [Duca A., Stanescu D., Puscasu M. Studii si cercetari chim. Acad. RPR Fil. Cluj, 6, 123 (1955); 13, 197 (1962)]. При растворении проб, содержащих рений, используется азотная кислота, а нитрат-ионы мешают определению, поэтому необходимо удалять оксиды азота.

Известна методика (прототип), где использовался ртутно-капающий электрод. В качестве фонового электролита использовали раствор, состоящий из 3 M по NH3, 3 M по KSCN, 3 M по ЭДТА и 0,16 M по Na2SO3. Предел обнаружения рения по данному методу составил 0,05 мг/л (2,5·10-7), что позволяет при навеске 2 г и конечном объеме 10 мл определять от 2·10-5% рения. Метод обладает высокой селективностью. Определению не мешает большинство элементов: Mo, W, Fe, Cd, Zn, Sb, Bi, Ag, Al. Полярографирование проводят от -1,0 до -1,5 В [Васильева Л.И., Семенова И.Α., Юстус З.Л. Полярографическое определение рения в сложных продуктах цветной металлургии // Журнал аналитической химии. 1986, т. 41, №2, с. 293-297] (прототип). Недостатком методики является использование ртути. В качестве фонового электролита используется сложный по составу фон, который готовится в день использования. Метод, обладая высокой селективность, однако, уступает в чувствительности определения рения другим методам.

Задача изобретения: разработать методику определения рения (VII) методом инверсионной вольтамперометрии, используя электроконцентрирование рения в сплавы с медью на поверхность графитового электрода с последующим селективным электроокислением меди из интерметаллического соединения с рением.

Электроконцентрирование рения и меди на поверхность графитового электрода проводят при потенциале минус 1 В из фонового электролита 1 M HCl в течение 120-180 секунд с последующей регистрацией анодных пиков электроокисления меди и селективного электроокисления меди из интерметаллического соединения с рением при скорости развертки потенциала 10-20 мВ/с. Концентрацию ионов рения (VII) определяют по току анодного пика селективного электроокисления меди из сплава с рением, наблюдаемого в области потенциалов от -0,4 до -0,1 В отн. нас. х.с.э.

Для количественной оценки содержания рения (VII) используют метод добавок аттестованных смесей. Новым в способе является то, что для получения полезного сигнала, зависящего от концентрации ионов рения (VII) в растворе, используется процесс селективного электроокисления меди из сплава с рением.

В предлагаемом способе впервые установлена способность меди селективно окисляться из сплава с рением при другом потенциале, чем чистая медь. В качестве индикаторного применяли ГЭ, модифицированный медью (в прототипе применяли ртутно-капающий электрод). Использование таких электродов обусловлено высокой химической и электрохимической устойчивостью графита, широкой областью рабочих потенциалов, а также простотой механического обновления поверхности и требованиям техники безопасности. Нижняя граница определяемых содержаний по данному методу составила 0,01 мг/дм3.

Результаты определения рения из сплава с медью в фоновом электролите 1M HCl с добавкой рения (VII) приведены в таблице 1. Результаты определения рения (VII) в водопроводной воде приведены в таблице 2. Правильность определения рения (VII) оценивалась методом «введено-найдено».

Методика определения рения (VII) в водопроводной воде. Для удаления органических ионов проводят их разрушение путем облучения раствора УФ в течение 1 минуты в присутствии 1 М HCOOH. Электроконцентрирование сплава рения и меди на поверхность графитового электрода проводят в перемешиваемом растворе 1 M HCl, содержащем ионы рения (VII) и меди (VII) в течение 120-180 с при потенциале электролиза минус 1,0 В. Снимают вольт-амперную кривую электроокисления осадка при скорости развертки потенциала 10-20 мВ/с. Концентрацию ионов рения (VII) определяют по высоте анодного пика меди в диапазоне потенциалов от -0,4 до -0,1 В относительно насыщенного хлоридсеребряного электрода (нас. х.с.э). На фиг. 1 представлены вольт-амперные кривые электроокисления меди из сплава с рением. Кривая 1 - фон 1М HCl+CCu(II)=0,2 мг/дм3 и CRe(VII)=0,02 мг/дм3, кривая 2 - фон 1М HCl+CCu(II)=0,2 мг/дм3 и CRe(VII)=0,04 мг/дм3, кривая 3 - фон 1М HCl+CCu(II)=0,2 мг/дм3 и CRe(VII)=0,06 мг/дм3.

Таким образом, установленные условия впервые позволили количественно определять содержание ионов рения (VII) в интервале содержаний 0,01-1 мг/дм3 по пику селективного электроокисления меди из сплава с рением, полученного на стадии предварительного электроконцентрирования (фиг. 2).

Примеры конкретного выполнения.

Пример 1 (фиг. 1). Измерения были проведены на искусственных смесях. 10 мл фонового электролита (1 М HCl) помещают в кварцевый стаканчик. Не прекращая перемешивания, проводят электролиз раствора, при Eэ=-1,0 В и при τэ=120 с, снимают вольт-амперную кривую электроокисления при скорости развертки 20 мВ/с. Затем добавляют аттестованный раствор Cu (II) 0,02 мл из 100 мг/дм3 и проводят электрохимическое концентрирование осадка при аналогичных условиях. Вносят добавку стандартного образца рения 0,02 мл из 10 мг/дм3, регистрируют аналитический сигнал рения при потенциале накопления -1,0 В. Затем вносят еще одну добавку стандартного образца рения 0,02 мл из 10 мг/дм3 и регистрируют аналитический сигнал рения при аналогичных условиях. По разнице токов пиков меди вычисляют концентрацию рения в растворе. Пик тока меди регистрируют в диапазоне потенциалов от -0,4 до -0,1 В (нас. х.с.э.).

Пример 2. Измерения рения были проведены в водопроводной воде (таблица 2). 100 мл раствора помещают в коническую колбу и выпаривают до минимального объема. Количественно переносят раствор в кварцевый стакан объемом 20 мл и добавляют 37% HCl, чтобы в 10 мл водного раствора концентрация по соляной кислоте составила 1 М, для перевода солей рения в хлориды.

Снимают фоновую кривую: 10 мл фонового электролита (1 М HCl) помещают в кварцевый стаканчик, добавляют аттестованный раствор Cu (II) 0,02 мл из 100 мг/дм3, не прекращая перемешивания, проводят электролиз раствора, при Eэ=-1,0 В и при τэ=120 с, снимают вольт-амперную кривую электроокисления при скорости развертки 20 мВ/с.

Добавляют аликвотную часть 1-2 мл полученного раствора и снимают вольт-амперную кривую электроокисления при потенциале накопления -1,0 В. Затем вносят добавку стандартного образца рения 0,02 мл из 10 мг/дм3 и регистрируют аналитический сигнал при потенциале накопления -1,0 В. По разнице токов пиков меди вычисляют концентрацию рения в растворе. Пик тока меди регистрируют в диапазоне потенциалов от -0,4 до -0,1 В (нас. х.с.э.).

Таким образом, впервые установлена способность количественного анализа рения по пикам селективного электроокисления меди из интерметаллического соединения RexCuy.

Предложенный способ может быть использован для определения рения в водных растворах.

Способ определения рения (VII) в водных растворах методом инверсионной вольтамперометрии по пику селективного электроокисления меди из интерметаллического соединения ReCu, заключающийся в том, что рений осаждают на поверхности графитового электрода вместе с медью, образуя сплав, накопление ионов рения на графитовом электроде в перемешиваемом растворе в присутствии ионов меди (II) проводят в течение 120-180 секунд при потенциале электролиза минус 1,0 В из фонового электролита 1 М HCl с последующей регистрацией анодных пиков селективного электроокисления меди из сплава с рением при скорости развертки потенциала 10-20 мВ/с, концентрацию ионов рения определяют по току анодного пика селективного электроокисления меди в диапазоне потенциалов от -0,4 до -0,1 В отн. нас. х.с.э., используя метод добавок аттестованных смесей.
СПОСОБ ОПРЕДЕЛЕНИЯ РЕНИЯ (VII) В ВОДНЫХ РАСТВОРАХ МЕТОДОМ ИНВЕРСИОННОЙ ВОЛЬТАМПЕРОМЕТРИИ ПО ПИКУ СЕЛЕКТИВНОГО ЭЛЕКТРООКИСЛЕНИЯ МЕДИ ИЗ ИНТЕРМЕТАЛЛИЧЕСКОГО СОЕДИНЕНИЯ ReCu
СПОСОБ ОПРЕДЕЛЕНИЯ РЕНИЯ (VII) В ВОДНЫХ РАСТВОРАХ МЕТОДОМ ИНВЕРСИОННОЙ ВОЛЬТАМПЕРОМЕТРИИ ПО ПИКУ СЕЛЕКТИВНОГО ЭЛЕКТРООКИСЛЕНИЯ МЕДИ ИЗ ИНТЕРМЕТАЛЛИЧЕСКОГО СОЕДИНЕНИЯ ReCu
Источник поступления информации: Роспатент

Показаны записи 81-90 из 150.
27.02.2015
№216.013.2dc5

Способ очистки сточных вод от фенолов и нефтепродуктов

Способ очистки сточных вод от фенолов и нефтепродуктов может найти применение для очистки различных вод, в том числе сточных вод нефтехимических и нефтеперерабатывающих производств. Основными операциями способа являются введение в исходную очищаемую воду коагулянта, флотация, создание...
Тип: Изобретение
Номер охранного документа: 0002543185
Дата охранного документа: 27.02.2015
27.02.2015
№216.013.2e01

Секция механизированной крепи

Изобретение относится к горной промышленности, в частности к секции горной крепи, предназначенной для механизации очистных работ при разработке пластов угля, калийной соли и рудных залежей. Техническим результатом является трансформация энергии обрушающихся пород в электроэнергию, что позволяет...
Тип: Изобретение
Номер охранного документа: 0002543245
Дата охранного документа: 27.02.2015
10.03.2015
№216.013.2f9a

Способ получения меченного технецием-99m наноколлоида

Изобретение относится к способу получения меченного технецием-99m наноколлоида для радионуклидной диагностики. Заявленный способ включает приготовление исходной суспензии наноколлоида в 0,1% растворе додецилбензол сульфата натрия и пропускание ее через фильтр с диаметром пор 100 нм, введение в...
Тип: Изобретение
Номер охранного документа: 0002543654
Дата охранного документа: 10.03.2015
10.03.2015
№216.013.2fba

Микромеханический акселерометр

Изобретение относится к устройствам для измерения линейных ускорений и может быть использовано для одновременного измерения ускорений вдоль трех взаимно перпендикулярных осей. Сущность: акселерометр содержит инерционную массу (1), которая закреплена во внутренней раме (2) с помощью...
Тип: Изобретение
Номер охранного документа: 0002543686
Дата охранного документа: 10.03.2015
20.03.2015
№216.013.3223

Способ компенсации погрешности измерения ультразвукового локатора

Использование: для компенсации погрешности измерения ультразвукового локатора. Сущность изобретения заключается в том, что выполняют излучение ультразвукового сигнала, прием ответного сигнала, измерение временного интервала между излученным и принятым сигналами и определение расстояния до...
Тип: Изобретение
Номер охранного документа: 0002544310
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3224

Устройство компенсации погрешности измерения ультразвукового скважинного глубиномера

Использование: для компенсации погрешности измерения ультразвукового скважинного глубиномера. Сущность изобретения заключается в том, что устройство компенсации погрешности измерения ультразвукового локатора содержит генератор ультразвуковых импульсов, подключенный к излучателю, и...
Тип: Изобретение
Номер охранного документа: 0002544311
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3225

Устройство для определения характеристик материалов

Устройство относится к области измерительной техники и может быть использовано для теплового контроля материалов. Устройство содержит источник импульсного нагрева, четыре термопары, четыре усилителя, дифференциатор, семь интеграторов, пять компараторов, шесть масштабных усилителей, датчик...
Тип: Изобретение
Номер охранного документа: 0002544312
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3264

Состав антиоксидантной композиции для улучшения качества питьевой воды

Изобретение относится к пищевой промышленности, в частности к улучшению качества питьевой воды. Состав для улучшения качества воды придает воде антиоксидантные свойства и представляет собой смесь дигидрокверцетина и глюкозы, взятых в соотношении 1:1 в концентрации по 1 мг/мл. Предлагаемое...
Тип: Изобретение
Номер охранного документа: 0002544375
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.343a

Сильноточный наносекундный ускоритель электронных пучков

Изобретение относится к ускорительной технике наносекундного диапазона и предназначено для генерации мощных электронных пучков, используемых в СВЧ приборах, радиационных технологиях и научных исследованиях. Сильноточный наносекундный ускоритель электронных пучков содержит размещенные в одном...
Тип: Изобретение
Номер охранного документа: 0002544845
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3455

Сверхпроводящий быстродействующий размыкатель

Изобретение относится к измерительной технике, представляет собой сверхпроводящий быстродействующий размыкатель и может быть использовано для ввода и вывода энергии сверхпроводящих магнитных систем, в системах защиты сверхпроводящих обмоток электрических машин, сверхпроводящих кабелей и линий...
Тип: Изобретение
Номер охранного документа: 0002544872
Дата охранного документа: 20.03.2015
Показаны записи 81-90 из 239.
10.02.2014
№216.012.9eaf

Способ получения вольфрамата аммония

Изобретение относится к переработке вольфрамсодержащего сырья. Вольфрамсодержащий карбонатный раствор подвергают сгущению с помощью флоулянта ВПК-402 для удаления из раствора таких примесей, как ВО , РО , AsO  и SiO . Далее раствор подвергают первой стадии ионного обмена на анионите АВ-17-8 в...
Тип: Изобретение
Номер охранного документа: 0002506331
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.9fa7

Способ определения глутатиона в модельных водных растворах методом циклической вольтамперометрии на графитовом электроде, модифицированном коллоидными частицами золота

Изобретение относится к электроаналитической химии. В способе определения глутатиона в модельных водных растворах методом циклической вольтамперометрии на графитовом электроде согласно изобретению проводят модифицирование графитовых электродов коллоидными частицами золота из золя золота в...
Тип: Изобретение
Номер охранного документа: 0002506579
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.9fa8

Способ определения рения кинетическим инверсионно-вольтамперометрическим методом в породах и рудах

Изобретение направлено на определение рения в породах и рудах кинетическим инверсионно-вольтамперометрическим методом и может быть использовано в различных производственных отраслях для определения содержания в растворах концентраций различных ионов металлов. Способ согласно изобретению...
Тип: Изобретение
Номер охранного документа: 0002506580
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a117

Способ приготовления реагента для получения меченого технецием-99м норфлоксацина

Изобретение относится к способу приготовления реагента для получения меченого технецием-99м норфлоксацина. Указанный способ включает приготовление солянокислого раствора олова (II) хлорида дигидрата, его смешивание с порошком норфлоксацина гидрохлорида, замораживание полученной смеси при...
Тип: Изобретение
Номер охранного документа: 0002506954
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a164

Способ синтеза ферритов

Изобретение относится к порошковой металлургии, в частности к получению ферритов. Может использоваться в электронной и радио промышленностях. Исходные компоненты смешивают, подвергают помолу и проводят механическую активацию смеси в энергонапряженном аппарате в течение не менее 10 минут....
Тип: Изобретение
Номер охранного документа: 0002507031
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a1dd

Способ получения фуллеренов

Изобретение может быть использовано при электрохимической очистке сточных вод, имеющих сложный состав органического происхождения и ряд неорганических компонентов. Проводят электрохимическую обработку сточных вод, содержащих органические примеси, в анодной камере двухкамерного электролизера под...
Тип: Изобретение
Номер охранного документа: 0002507152
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a281

Кальций-фосфатное биологически активное покрытие на имплантате

Изобретение относится к области медицинской техники, в частности к биологически совместимым покрытиям на имплантате, обладающим свойствами остеоинтеграции, и может быть использовано в стоматологии, травматологии и ортопедии при изготовлении высоконагруженных костных имплантатов из...
Тип: Изобретение
Номер охранного документа: 0002507316
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a34b

Способ прогнозирования течения ишемической болезни сердца

Изобретение относится к области медицины и может быть использовано в кардиологии и терапии. Способ прогнозирования течения ишемической болезни сердца заключается в том, что до и после лечения исследуют модифицированные ЛП(а) путем обработки 0,5 мл сыворотки крови 0,2 мл 0,1% раствора Тритона...
Тип: Изобретение
Номер охранного документа: 0002507518
Дата охранного документа: 20.02.2014
27.02.2014
№216.012.a747

Способ вольтамперометрического определения наночастиц feo на угольно-пастовом электроде

Изобретение относится к области аналитической химии. Способ вольтамперометрического определения наночастиц FeOна угольно-пастовом электроде согласно изобретению включает электрохимическое превращение наночастиц FeO на угольно-пастовом электроде в фоновом электролите - 0,02 моль/дм раствор...
Тип: Изобретение
Номер охранного документа: 0002508538
Дата охранного документа: 27.02.2014
27.02.2014
№216.012.a758

Способ определения места обрыва одной фазы воздушной линии электропередачи

Изобретение относится к электротехнике, а именно к средствам обработки информации в электротехнике, и может бить использовано для определения места короткого замыкания на воздушной линии электропередачи. Способ основан на мониторинге электрической сети, отличающийся тем, что измеряют массивы...
Тип: Изобретение
Номер охранного документа: 0002508555
Дата охранного документа: 27.02.2014
+ добавить свой РИД