×
27.10.2015
216.013.8a9c

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ СМАЗЫВАЮЩЕЙ СПОСОБНОСТИ МАСЕЛ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии оценки качества смазочных масел, в частности к определению их смазочной способности. Способ определения смазывающей способности масел заключается в том, что эксплуатируют пару трения в присутствии смазки, пропускают через нее электрический ток, измеряют постоянный ток при неподвижной паре трения и при установившемся режиме трения, пробу масла постоянной массы нагревают при определенной температуре в течение постоянного времени. Затем отбирают часть пробы окисленного масла, которую фотометрируют, и определяют коэффициент поглощения светового потока, а другую часть пробы окисленного масла испытывают на машине трения, определяют смазывающую способность по значениям коэффициента влияния тока. При этом пробу окисленного масла испытывают на машине трения при постоянных параметрах трения, пропускают через пару трения постоянный ток от внешнего стабилизированного источника напряжения, записывают диаграмму изменения тока в процессе трения, по которой определяют начало установившегося изнашивания и величину тока. Далее определяют коэффициент электропроводности граничного слоя как отношение тока, протекающего через граничный слой, к заданному току, определяют диаметр пятна износа и отношение коэффициента поглощения светового потока к диаметру пятна износа. Затем определяют падение напряжения U на граничном слое, разделяющем поверхности трения при установившемся изнашивании, по эмпирической формуле: , где К - коэффициент поглощения светового потока; U - диаметр пятна износа, мм; К - коэффициент электропроводности граничного слоя. Строят графическую зависимость падения напряжения на граничном слое от коэффициента поглощения светового потока, по которой определяют смазывающую способность испытуемого масла, причем чем больше значение падения напряжения на граничном слое, тем выше смазывающая способность. Техническим результатом является обоснованный выбор масел для двигателей внутреннего сгорания на основе комплексной оценки смазывающих свойств испытуемого масла по его оптическим свойствам, величине износа и коэффициенту электропроводности фрикционного контакта, отражающему сопротивляемость граничного смазочного слоя. 2 ил.
Основные результаты: Способ определения смазывающей способности масел, заключающийся в том, что эксплуатируют пару трения в присутствии смазки, пропускают через нее электрический ток, измеряют постоянный ток при неподвижной паре трения и при установившемся режиме трения, пробу масла постоянной массы нагревают при определенной температуре в течение постоянного времени, отбирают часть пробы окисленного масла, которую фотометрируют, и определяют коэффициент поглощения светового потока, а другую часть пробы окисленного масла испытывают на машине трения, определяют смазывающую способность по значениям коэффициента влияния тока, отличающийся тем, что пробу окисленного масла испытывают на машине трения при постоянных параметрах трения, пропускают через пару трения постоянный ток от внешнего стабилизированного источника напряжения, записывают диаграмму изменения тока в процессе трения, по которой определяют начало установившегося изнашивания и величину тока, определяют коэффициент электропроводности граничного слоя как отношение тока, протекающего через граничный слой, к заданному току, определяют диаметр пятна износа и отношение коэффициента поглощения светового потока к диаметру пятна износа, определяют падение напряжения U на граничном слое, разделяющем поверхности трения при установившемся изнашивании, по эмпирической формуле: ,гдеК - коэффициент поглощения светового потока;U - диаметр пятна износа, мм;К - коэффициент электропроводности граничного слоя,строят графическую зависимость падения напряжения на граничном слое от коэффициента поглощения светового потока, по которой определяют смазывающую способность испытуемого масла, причем чем больше значение падения напряжения на граничном слое, тем выше смазывающая способность.

Изобретение относится к технологии оценки качества смазочных масел, в частности к определению их смазочной способности.

Известен способ определения смазывающей способности масел, заключающийся в том, что эксплуатируют пару трения в присутствии смазки, пропускают через нее электрический ток, а смазывающую способность оценивают отношением токов, протекающих через неподвижную пару трения и при установившемся режиме трения (авторское свидетельство СССР №1054732, дата приоритета 08.07.1982, опубл. 15.11.1983, авторы Ковальский Б.И. и др., RU).

Недостатком известного способа является отсутствие количественной оценки связи между концентрацией продуктов старения в масле, износом и электропроводностью фрикционного контакта, так как эта связь определяет свойства граничных слоев, разделяющих поверхности трения.

Наиболее близким по технической сущности и достигаемому результату является способ определения смазывающей способности масел, заключающийся в том, что эксплуатируют пару трения в присутствии смазки, пропускают через нее электрический ток, измеряют постоянный ток при неподвижной паре трения и при установившемся режиме трения, пробу масла постоянной массы нагревают с перемешиванием при определенной температуре в зависимости от назначения смазочного масла в течение постоянного времени, отбирают часть пробы окисленного масла, фотометрированием определяют коэффициент поглощения светового потока, а другую часть пробы окисленного масла испытывают дважды на машине трения при постоянных параметрах трения при пропускании через пару трения постоянного тока от внешнего источника стабилизированного питания и без тока, измеряют параметры износа при пропускании тока через пару трения и без тока, определяют коэффициент влияния тока КВТ на смазывающую способность окисленного масла по формуле: , где UТ - параметр износа при пропускании через пару трения постоянного тока от внешнего стабилизированного источника питания, мм; U - параметр износа при отсутствии тока в паре трения, мм, а смазывающую способность испытуемого масла определяют по значениям коэффициента влияния тока, где отрицательное значение коэффициента влияния тока КВТ означает повышение смазывающей способности окисленного масла, а положительное значение коэффициента влияния тока КВТ показывает понижение смазывающей способности окисленного масла (патент РФ №2408866, дата приоритета 30.11.2009, опубл. 10.01.2011, авторы Ковальский Б.И. и др., RU, прототип).

Недостатком прототипа является недостаточная информативность способа в связи с отсутствием комплексной оценки смазывающих свойств масел, учитывающей сопротивляемость граничного смазочного слоя.

Задачей изобретения является комплексная оценка смазывающих свойств испытуемого масла по его оптическим свойствам, величине износа и коэффициенту электропроводности фрикционного контакта, отражающему сопротивляемость граничного смазочного слоя.

Для решения поставленной задачи и получения технического результата в способе определения смазывающей способности масел, заключающемся в том, что эксплуатируют пару трения в присутствии смазки, пропускают через нее электрический ток, измеряют постоянный ток при неподвижной паре трения и при установившемся режиме трения, пробу масла постоянной массы нагревают при определенной температуре в течение постоянного времени, отбирают часть пробы окисленного масла, которую фотометрируют, и определяют коэффициент поглощения светового потока, а другую часть пробы окисленного масла испытывают на машине трения, определяют смазывающую способность по значениям коэффициента влияния тока, согласно изобретению пробу окисленного масла испытывают на машине трения при постоянных параметрах трения, пропускают через пару трения постоянный ток от внешнего стабилизированного источника напряжения, записывают диаграмму изменения тока в процессе трения, по которой определяют начало установившегося изнашивания и величину тока, определяют коэффициент электропроводности граничного слоя как отношение тока, протекающего через граничный слой, к заданному току, определяют диаметр пятна износа и отношение коэффициента поглощения светового потока к диаметру пятна износа, определяют падение напряжения UГС на граничном слое, разделяющем поверхности трения при установившемся изнашивании, по эмпирической формуле: ,

где

КП - коэффициент поглощения светового потока;

U - диаметр пятна износа, мм;

КЭГС - коэффициент электропроводности граничного слоя,

строят графическую зависимость падения напряжения на граничном слое от коэффициента поглощения светового потока, по которой определяют смазывающую способность испытуемого масла, причем чем больше значение падения напряжения на граничном слое, тем выше смазывающая способность.

На фиг. 1 представлены диаграммы записи тока, протекающего через фрикционный контакт при триботехнических испытаниях окисленных масел Mobil Super Syn 0W-40 SJ/SL/CF (а) и THK Супер 10W-40 SL/CF (б), на фиг. 2 показаны зависимости падения напряжения на граничном слое окисленных масел от коэффициента поглощения светового потока для минеральных масел: Spectrol Super 15W-40 SF/CC (1); Лукойл Стандарт 10W-40 SF/CC (2); частично синтетического THK Супер 10W-40 SL/CF (3) и синтетического Mobil Super Syn 0W-40 SJ/SL/CF New Life (4).

Способ определения смазывающей способности масел осуществляется следующим образом.

Товарное смазочное масло постоянной массы (например, 100±0,1 г) нагревают в стеклянном стакане при атмосферном давлении и перемешивают стеклянной мешалкой при постоянной частоте вращения с помощью электродвигателя при постоянной температуре (например, 180°C). Через равные промежутки времени (например, 8 ч) отбирают часть пробы окисленного масла для прямого фотометрирования и определения коэффициента поглощения светового потока КП. При значениях коэффициента КП, равных 0,1; 0,2; 0,3…0,8 ед., отбирают дополнительную пробу окисленного масла для испытания на машине трения и определения величины износа, после чего стеклянный стакан доливается товарным маслом до первоначальной массы и испытания продолжаются до следующего значения коэффициента КП. Параметры трения выбраны постоянными (например, нагрузка 13 Н, скорость скольжения 0,68 м/с, время испытания 2 часа, температура масла в объеме 80°C). Через пару трения пропускают постоянный ток (например, не более 100 мкА) от внешнего источника стабилизированного напряжения (например, 3 В). Величина тока задается при статическом положении образцов (например, 100 мкА), а в процессе трения записывается через преобразователь на дисплее компьютера в виде диаграммы (фиг. 1).

Величина тока, протекающего через фрикционный контакт, зависит от его сопротивления, поэтому при малом сопротивлении контакта, когда происходит пластическая деформация микронеровностей поверхностей трения, величина тока максимальна и равна заданному (100 мкА). При большом сопротивлении фрикционного контакта, а это возможно когда на поверхностях трения образуются модифицированные граничные слои, как результат химической реакции металлических поверхностей с органическими кислотами, изменяющими электропроводность этих слоев (контакта) и определяющими величину износа. Если условно обозначить сопротивление граничного слоя через символ R, величина тока, протекающего через него, определится по формуле:

где UГС - падение напряжения на граничном слое; I - величина тока, протекающего через граничный слой.

Применяя формулу 1, сопротивление фрикционного контакта R определяется как:

Для удобства применения формулы (2) величину тока предлагается заменить коэффициентом электропроводности граничного слоя КЭГС, определяемого выражением:

где I - величина тока, протекающего через граничный слой, мкА; IЗ - заданная величина тока при статическом положении пары трения, (100 мкА).

Тогда формулу (2) можно записать в виде:

Электропроводность граничного слоя зависит от свойств смазочного масла, которые определяются концентрациями продуктов окисления, температурной и механической деструкцией, и его кислотностью, тогда суммарную концентрацию можно определить фотометрическим методом по коэффициенту поглощения светового потока КП.

Влияние продуктов окисления, образующихся в смазочном масле, определяется их концентрацией в граничном слое, разделяющем поверхности трения, и их электропроводностью, которую предложено оценивать падением напряжения на граничном слое, по эмпирической формуле:

Падение напряжения UГС является комплексным показателем, характеризующим условную концентрацию продуктов окисления смазочного масла на номинальной площади фрикционного контакта ( ) и их электропроводность КЭГС, определяющим свойства граничного слоя и величину износа.

Поэтому по диаграммам записи тока определяют время начала установившегося изнашивания (период стабилизации тока при трении). По формуле (3) определяют коэффициент электропроводности граничного слоя КЭГС, определяют UГС по формуле (5), строят графическую зависимость падения напряжения UГС от коэффициента поглощения светового потока (фиг. 2), по которой определяют изменение смазывающей способности испытуемого масла от общей концентрации продуктов окисления.

Согласно представленным данным (фиг. 2) установлено, что при значениях коэффициента поглощения светового потока КП<0,3 ед. коэффициент падения напряжения UГС приобретает значения меньше единицы для всех исследованных масел, что объясняется плохой смазочной способностью масел в начале процесса окисления. С увеличением коэффициента КП смазывающая способность окисленных масел повышается, и чем больше падение напряжения UГС, тем выше их смазывающая способность за счет образования смолистых продуктов окисления и увеличения кислотности масел, что способствует образованию на поверхностях трения хемосорбционных граничных слоев как химического соединения металлических поверхностей с органическими кислотами.

Более высокими смазывающими свойствами характеризуются минеральное масло Лукойл Стандарт 10W-40 SF/CC (кривая 2) и синтетическое Mobil Super Syn OW-40 SJ/SL/CF New Life (кривая 4).

Применение предлагаемого способа позволяет осуществлять обоснованный выбор масел для двигателей внутреннего сгорания.

Способ определения смазывающей способности масел, заключающийся в том, что эксплуатируют пару трения в присутствии смазки, пропускают через нее электрический ток, измеряют постоянный ток при неподвижной паре трения и при установившемся режиме трения, пробу масла постоянной массы нагревают при определенной температуре в течение постоянного времени, отбирают часть пробы окисленного масла, которую фотометрируют, и определяют коэффициент поглощения светового потока, а другую часть пробы окисленного масла испытывают на машине трения, определяют смазывающую способность по значениям коэффициента влияния тока, отличающийся тем, что пробу окисленного масла испытывают на машине трения при постоянных параметрах трения, пропускают через пару трения постоянный ток от внешнего стабилизированного источника напряжения, записывают диаграмму изменения тока в процессе трения, по которой определяют начало установившегося изнашивания и величину тока, определяют коэффициент электропроводности граничного слоя как отношение тока, протекающего через граничный слой, к заданному току, определяют диаметр пятна износа и отношение коэффициента поглощения светового потока к диаметру пятна износа, определяют падение напряжения U на граничном слое, разделяющем поверхности трения при установившемся изнашивании, по эмпирической формуле: ,гдеК - коэффициент поглощения светового потока;U - диаметр пятна износа, мм;К - коэффициент электропроводности граничного слоя,строят графическую зависимость падения напряжения на граничном слое от коэффициента поглощения светового потока, по которой определяют смазывающую способность испытуемого масла, причем чем больше значение падения напряжения на граничном слое, тем выше смазывающая способность.
СПОСОБ ОПРЕДЕЛЕНИЯ СМАЗЫВАЮЩЕЙ СПОСОБНОСТИ МАСЕЛ
СПОСОБ ОПРЕДЕЛЕНИЯ СМАЗЫВАЮЩЕЙ СПОСОБНОСТИ МАСЕЛ
Источник поступления информации: Роспатент

Показаны записи 241-245 из 245.
19.06.2019
№219.017.8bb7

Способ извлечения золота из бедных малосульфидных руд

Изобретение относится к способу переработки золотосодержащих руд с низким содержанием тяжелой сульфидной составляющей. Способ включает дробление руды, двухстадийное измельчение, классификацию, гравитационное обогащение с получением хвостов и гравитационного концентрата, поступающего на доводку...
Тип: Изобретение
Номер охранного документа: 0002465353
Дата охранного документа: 27.10.2012
19.06.2019
№219.017.8bb8

Установка для определения механических напряжений в конструкционных материалах

Использование: для определения механических напряжений в конструкционных материалах. Сущность: заключается в том, что установка для определения механических напряжений в конструкционных материалах содержит корпус, заполненный иммерсионной жидкостью, акустическое фокусирующее устройство в виде...
Тип: Изобретение
Номер охранного документа: 0002465583
Дата охранного документа: 27.10.2012
19.06.2019
№219.017.8bd4

Способ измерения скорости ультразвука

Использование: для измерения скорости ультразвука. Сущность заключается в том, что пропускают импульсы ультразвуковых колебаний в контролируемом материале, при этом ультразвуковые импульсы пропускают с частотой заполнения ν через образец исследуемого материала первоначально без нагрузки при...
Тип: Изобретение
Номер охранного документа: 0002464556
Дата охранного документа: 20.10.2012
29.06.2019
№219.017.a163

Устройство для бурения скважин

Изобретение относится к горной промышленности и может быть использовано для бурения взрывных скважин на карьерах и шахтах, а также для проходки технологических скважин, в том числе при бурении сложноструктурных пород. Устройство содержит корпус, соосно расположенный статор с витками и...
Тип: Изобретение
Номер охранного документа: 0002469169
Дата охранного документа: 10.12.2012
29.06.2019
№219.017.a169

Состав для очистки отработанных вод

Изобретение может быть использовано для очистки отработанных вод моечных машин, содержащих ионы металлов, нефтепродукты и взвешенные частицы. Состав для очистки отработанных вод включает сорбент, коагулянт на основе хлоридов железа, алюминия, минеральный комплекс на основе щелочных зол и...
Тип: Изобретение
Номер охранного документа: 0002469958
Дата охранного документа: 20.12.2012
Показаны записи 241-242 из 242.
13.02.2020
№220.018.0229

Способ определения работоспособности смазочных масел

Изобретение относится к технологии оценки качества работающих моторных масел, технического состояния двигателей внутреннего сгорания и системы фильтрации. Предложен способ определения работоспособности смазочного масла, заключающийся в том, что отбирают пробы работающего масла из двигателя...
Тип: Изобретение
Номер охранного документа: 0002713920
Дата охранного документа: 11.02.2020
29.05.2020
№220.018.21ad

Способ определения температуры начала изменения показателей термоокислительной стабильности и предельной температуры работоспособности смазочных материалов

Изобретение относится к технологии определения показателей термоокислительной стабильности смазочных материалов. Предложен способ, при котором пробы смазочного материала термостатируют минимум при трех выбранных температурах в присутствии воздуха с перемешиванием постоянной массы в течение...
Тип: Изобретение
Номер охранного документа: 0002722119
Дата охранного документа: 26.05.2020
+ добавить свой РИД