×
27.10.2015
216.013.88e3

Результат интеллектуальной деятельности: ЛАБОРАТОРНАЯ УСТАНОВКА ДЛЯ ОПРЕДЕЛЕНИЯ НАГРУЗКИ, ДЕЙСТВУЮЩЕЙ НА БУРОВОЕ ДОЛОТО

Вид РИД

Изобретение

Аннотация: Изобретение относится к буровой технике и предназначено для измерения параметров силового воздействия на буровое долото режуще-скалывающего действия в процессе разрушения им породы. Лабораторная установка для определения нагрузки, действующей на буровое долото, содержит измерительную балку, жестко закрепленную на базовой плите, с установленным на ней долотом. На измерительной балке смонтированы тензометрические датчики, образующие шесть тензометрических мостов для измерения осевой нагрузки R на измерительную балку вдоль ее оси, M - момента, скручивающего измерительную балку относительно ее оси, M, M - моментов соответственно в поперечных сечениях измерительной балки, отстоящих друг от друга на расстоянии a, изгибающих измерительную балку в плоскости, проходящей через ее ось, и ось декартовой системы координат, M, M - моментов соответственно в поперечных сечениях измерительной балки, изгибающих измерительную балку в плоскости, проходящей через ее ось, и ось декартовой системы координат. Техническим результатом изобретения является повышение точности измерений. 8 ил.
Основные результаты: Лабораторная установка для определения нагрузки, действующей на буровое долото, способная работать при бурении с обращенным забоем, характеризуется тем, что содержит измерительную балку, жестко закрепленную на базовой плите, с установленным на ней долотом, при этом на измерительной балке смонтированы тензометрические датчики, образующие шесть тензометрических мостов для измерения осевой нагрузки R на измерительную балку вдоль ее оси, M - момента, скручивающего измерительную балку относительно ее оси, M, M - моментов соответственно в поперечных сечениях измерительной балки, отстоящих друг от друга на расстоянии а, изгибающих измерительную балку в плоскости, проходящей через ее ось, и ось декартовой системы координат, M, M - моментов соответственно в поперечных сечениях измерительной балки, изгибающих измерительную балку в плоскости, проходящей через ее ось, и ось декартовой системы координат, причем схемы размещения и соединения тензодатчиков выполнены таким образом, что каждый из перечисленных параметров измеряется независимо от других воздействий: тензодатчики для измерения M монтируют на теле измерительной балки в ее поперечном сечении, находящемся посредине между сечениями A и B, причем ряд датчиков развернут относительно образующих на угол 45° в направлении против хода часовой стрелки, а ряд датчиков развернут относительно своих образующих на угол 45° в направлении по ходу часовой стрелки; тензодатчики для измерения R монтируют на теле измерительной балки в ее поперечном сечении на образующих, расположенных друг от друга со смещением на 90°, причем ряд датчиков установлен вдоль образующих, а ряд датчиков развернут относительно своих образующих на угол 90°; тензодатчики для измерения M монтируют на теле измерительной балки в ее поперечном сечении A на образующих, расположенных друг от друга со смещением на 180°, причем два датчика установлены вдоль образующих, а два датчика развернуты относительно своих образующих на угол 90°; два тензодатчика моста для измерения M монтируют на теле измерительной балки в ее поперечном сечении A на образующих F и J, расположенных друг от друга со смещением на 180°, два датчика установлены вдоль образующих, соответственно F и J, а два датчика развернуты относительно своих образующих на угол 90°; тензодатчики тензометрического моста для измерения M монтируют на теле измерительной балки в ее поперечном сечении B на образующих D и Н, расположенных друг от друга со смещением на 180°, причем два датчика установлены вдоль образующих, а два датчика развернуты относительно своих образующих на угол 90°; тензодатчики тензометрического моста для измерения M монтируют на теле измерительной балки в ее поперечном сечении на образующих F и J, расположенных друг от друга со смещением на 180°, причем два датчика установлены вдоль образующих, соответственно F и J, а два датчика развернуты относительно своих образующих на угол 90°.

Изобретение относится к буровой технике и предназначено для измерения параметров силового воздействия на буровое долото режуще-скалывающего действия в процессе разрушения им породы.

В лаборатории механики долота ВНИИБТ были разработаны методика и комплекс устройств и средств измерения для экспериментального определения нагрузок, воспринимаемых каждой шарошкой (секцией) во время их работы на забое [Комм Э.Л., Перлов Г.Ф., Мокшин А.С. Исследование нагруженности секций шарошечного долота / Э.Л. Комм, Г.Ф. Перлов, А.С. Мокшин // Тр. ВНИИБТ. - 1976. - №36. - С. 27-36]. Авторы полагали, что плоскость действия главного вектора системы сил, действующих на шарошку со стороны породы, проходит через ось цапфы и совпадает с плоскостью, в которой действует главный момент, то есть система сил имеет равнодействующую. Таким образом, задача упрощается и сводится к нахождению трех составляющих главного вектора и абсолютного значения главного момента. Сделанные авторами при разработке этой методики существенные допущения уменьшают достоверность определяемого силового воздействия на шарошку. Необходимо отметить, что вектор профиля износа, наблюдаемого по окружностям подшипников шарошек, имеет значительный угол раствора, доходящий до 90°. Это может быть объяснено несовпадением плоскости действия главного вектора с плоскостью действия главного момента системы сил, действующих на шарошку со стороны разрушаемой породы, и изменением силового воздействия на шарошку ("игра сил") в процессе ее работы на забое.

Известно автономное забойное устройство [RU 2131974 C1, МПК6 E21B 45, опубл. 1999] для измерения силовых параметров в колонне бурильных труб, в том числе и над долотом, таких как осевая нагрузка, поперечные силы и крутящий момент. Для этого устройство содержит встроенный в колонну бурильных труб упругий элемент, на внутренней поверхности стенки которого расположены датчики измерения деформаций.

Недостатком известного устройства является неполная информация о системе сил, действующих на долото. Определяя осевую нагрузку, поперечные силы и крутящий момент, действующие на долото, авторы изобретения тоже предполагали, что система сил, действующих на долото со стороны разрушаемой породы, может быть приведена к равнодействующей и крутящему моменту.

Наиболее близким техническим решением, принятым за прототип [RU 2190199 C1, МПК7 G01L 1/04, G01L 1/22, опубл. 27.09.2002], является датчик вектора силы, содержащий корпус, помещенный в него цилиндрический упругий элемент диаметром d с размещенными на нем тензорезисторными мостами для измерения осевой и поперечных составляющих вектора силы. Упругий элемент содержит силоопорную и силовоспринимающую части. Два тензорезисторных моста измерения осевой составляющей вектора силы размещены в поперечном сечении упругого элемента со смещением относительно друг друга на 90°. Два тензорезисторных моста измерения поперечной составляющей вектора размещены в этом же сечении также со смещением на угол 90° относительно друг друга. Кроме того, с целью повышения точности измерения осевой составляющей вектора силы и определения точки его приложения, тензорезисторный датчик вектора силы снабжен двумя дополнительными тензорезисторными мостами измерения поперечной составляющей вектора силы, размещенными в дополнительном сечении на расстоянии (0,8-0,9)d от мостов первого сечения в направлении силоопорной поверхности и имеющими топологию наклейки аналогичных тензомостов в первом сечении.

Недостатком известного датчика является измерение только вектора силы и определение точки ее приложения (эксцентриситета) относительно оси датчика, т.е. неполная информация о системе сил, действующих на датчик.

Задачей заявляемого изобретения является разработка лабораторной установки, обеспечивающей высокоточное и надежное определение нагруженности долота с учетом того, что данная пространственная система сил может быть приведена к эквивалентной системе, состоящей из одной силы, приложенной к какой-либо точке долота (центр приведения), и равной главному вектору данной системы сил, и одной пары, момент которой равен главному моменту этих сил относительно выбранного центра приведения.

При осуществлении изобретения поставленная задача решается за счет достижения технического результата, который заключается в повышении достоверности измерений, измерения не только осевой нагрузки и крутящего момента, но и - поперечных сил, а также изгибающих моментов, действующих на долото, т.е. изобретение дает возможность определения относительно выбранного центра приведения главного вектора и главного момента пространственной системы сил, действующих на долото в процессе бурения с обращенным забоем.

Указанный технический результата достигается тем, что лабораторная установка для определения нагрузки, действующей на буровое долото, способная работать при бурении с обращенным забоем, характеризуется тем, что содержит измерительную балку, жестко закрепленную на базовой плите, с установленным на ней долотом, при этом на измерительной балке смонтированы тензометрические датчики, образующие шесть тензометрических мостов для измерения осевой нагрузки Rza на измерительную балку вдоль ее оси, Mza - момента, скручивающего измерительную балку относительно ее оси, Mxa, Mxb - моментов, соответственно, в поперечных сечениях измерительной балки, отстоящих друг от друга на расстоянии а, изгибающих измерительную балку в плоскости, проходящей через ее ось, и ось декартовой системы координат, Mya, Myb - моментов, соответственно, в поперечных сечениях измерительной балки, изгибающих измерительную балку в плоскости, проходящей через ее ось, и ось декартовой системы координат, причем схемы размещения и соединения тензодатчиков выполнены таким образом, что каждый из перечисленных параметров измеряется независимо от других воздействий: тензодатчики для измерения Mza монтируют на теле измерительной балки в ее поперечном сечении, находящемся посредине между сечениями A и B, причем ряд датчиков развернут относительно образующих на угол 45° в направлении против хода часовой стрелки, а ряд датчиков развернут относительно своих образующих на угол 45° в направлении по ходу часовой стрелки; тензодатчики для измерения Rza монтируют на теле измерительной балки в ее поперечном сечении на образующих, расположенных друг от друга со смещением на 90°, причем ряд датчиков установлен вдоль образующих, а ряд датчиков развернут относительно своих образующих на угол 90°; тензодатчики для измерения Mya монтируют на теле измерительной балки в ее поперечном сечении A на образующих, расположенных друг от друга со смещением на 180°, причем два датчика 20 и 21 установлены вдоль образующих, а два датчика 22 и 23 развернуты относительно своих образующих на угол 90°; два тензодатчика моста для измерения Mxa монтируют на теле измерительной балки в ее поперечном сечении A на образующих F и J, расположенных друг от друга со смещением на 180°, два датчика установлены вдоль образующих, соответственно F и J, а два датчика развернуты относительно своих образующих на угол 90°; тензодатчики тензометрического моста для измерения Myb монтируют на теле измерительной балки в ее поперечном сечении B на образующих D и H, расположенных друг от друга со смещением на 180°, причем два датчика установлены вдоль образующих, а два датчика развернуты относительно своих образующих на угол 90°; тензодатчики тензометрического моста для измерения Mxb монтируют на теле измерительной балки в ее поперечном сечении на образующих F и J, расположенных друг от друга со смещением на 180°, причем два датчика установлены вдоль образующих, соответственно F и J, а два датчика развернуты относительно своих образующих на угол 90°.

Именно заявляемое расположение тензометрических датчиков на измерительной балке и схемы расположения датчиков обеспечивают возможность измерения, высокоточное и надежное определение нагруженности долота.

На фиг. 1 представлена схематично лабораторная установка, на фиг. 2 - схемы размещения тензодатчиков, на фиг. 3 - 8 представлены схемы тензометрических мостов для измерения, соответственно, Mza, Rza, Mya, Mxa, Myb и Mxb.

Основу лабораторной установки, способной работать при бурении с обращенным забоем (фиг. 1), составляет измерительная балка 1, жестко закрепленная на базовой плите 2, с установленным на ней долотом 3. На измерительной балке монтируют тензометрические датчики, образующие шесть тензометрических мостов (фиг. 3 - 8) для измерения осевой нагрузки Rza на измерительную балку вдоль оси ОО, Mza - момента, скручивающего измерительную балку относительно оси ОО, Mxa, Mxb - моментов (соответственно в поперечных сечениях измерительной балки A и B, отстоящих друг от друга на расстоянии а), изгибающих измерительную балку в плоскости, проходящей через ее ось ОО, и ось Ya декартовой системы координат XaYaZa, Mya, Myb - моментов (соответственно в поперечных сечениях измерительной балки A и B), изгибающих измерительную балку в плоскости, проходящей через ее ось ОО, и ось Xa декартовой системы координат XaYaZa.

Схемы размещения и соединения тензодатчиков (фиг. 2) выполнены таким образом, что каждый из перечисленных параметров измеряется независимо от других воздействий.

Тензодатчики 4-11 для измерения Mza монтируют на теле измерительной балки 1 в ее поперечном сечении C, находящемся посредине между сечениями A и B, на образующих D, E, F, G, H, I, J, K, расположенных друг от друга со смещением на 45°, причем датчики 4, 5, 8 и 9 развернуты относительно образующих, соответственно D, Н, F и J, на угол 45° в направлении против хода часовой стрелки, а датчики 6, 7, 10 и 11 развернуты относительно своих образующих на угол 45° в направлении по ходу часовой стрелки. Схема тензометрического моста для измерения Mza представлена на фиг. 3, где 10v - опорное напряжение 10 вольт.

Тензодатчики 12-19 для измерения Rza монтируют на теле измерительной балки 1 в ее поперечном сечении B на образующих E, G, I, K, расположенных друг от друга со смещением на 90°, причем датчики 12, 13, 16 и 17 установлены вдоль образующих, соответственно Ε, I, G и K, а датчики 14, 15, 18 и 19 развернуты относительно своих образующих на угол 90°. Схема тензометрического моста для измерения Rza представлена на фиг. 4.

Тензодатчики 20-23 для измерения Mya монтируют на теле измерительной балки 1 в ее поперечном сечении A на образующих D и Н, расположенных друг от друга со смещением на 180°, причем датчики 20 и 21 установлены вдоль образующих, соответственно D и Н, а датчики 22 и 23 развернуты относительно своих образующих на угол 90°. Схема тензометрического моста для измерения Mya представлена на фиг. 5.

Тензодатчики 24-27 для измерения Mxa монтируют на теле измерительной балки 1 в ее поперечном сечении A на образующих F и J, расположенных друг от друга со смещением на 180°, причем датчики 24 и 25 установлены вдоль образующих, соответственно F и J, а датчики 26 и 27 развернуты относительно своих образующих на угол 90°. Схема тензометрического моста для измерения Mxa представлена на фиг. 6.

Тензодатчики 28-31 для измерения Myb монтируют на теле измерительной балки 1 в ее поперечном сечении B на образующих D и H, расположенных друг от друга со смещением на 180°, причем датчики 28 и 29 установлены вдоль образующих, соответственно D и H, а датчики 30 и 31 развернуты относительно своих образующих на угол 90°. Схема тензометрического моста для измерения Myb представлена на фиг. 7.

Тензодатчики 32-35 для измерения Mxb монтируют на теле измерительной балки 1 в ее поперечном сечении B на образующих F и J, расположенных друг от друга со смещением на 180°, причем датчики 32 и 33 установлены вдоль образующих, соответственно F и J, а датчики 34 и 35 развернуты относительно своих образующих на угол 90°. Схема тензометрического моста для измерения Mxb представлена на фиг. 8.

Пространственную систему сил, действующих на долото 3 в процессе бурения с обращенным забоем, определяют относительно выбранного центра приведения точки C (фиг. 1) на оси долота 3 (измерительной балки 1), отстоящей от плоскости A на расстоянии lc, в два раза превышающем расстояние а между плоскостями A и B (фиг. 1), в виде главного вектора и главного момента в проекциях на оси координат декартовой системы XcYcZc:

В формулах (1)…(6) единицы измерения следующие:

Rza - H; Mza, Mya, Mxa, Myb, Mxb, Mzc - H*м; a, lc - м.

Таким образом, выражения (1)…(6) определяют главный вектор и главный момент системы сил, действующих на долото 3 со стороны разрушаемой породы, относительно точки C, выбранной за центр приведения.

Эксперименты по определению нагруженности долота выполнялись на буровом стенде ЗИФ-1200 на различных режимах при разбуривании известняка. В процессе разбуривания известняка долото было углублено в забой не менее чем на 30 мм, что обеспечивало полное формирование скважины, а следовательно, и нормальную работу периферийного и затылочного венцов долота. Вращающийся забой находился над долотом, что обеспечивало очистку забоя без дополнительного воздействия (промывки, продувки). Кроме измеряемых с помощью тензометрических мостов параметров усилий и моментов стенд позволяет определить нагрузку на долото, крутящий момент, частоту вращения забоя, а также - механическую скорость бурения. Эксперименты проводились на следующих режимах: частота вращения забоя - 67 об/мин; нагрузка на долото - 40000 Н. В ходе проведения и обработки результатов эксперимента в один из фиксированных моментов времени были получены следующие значения величин:

Mza=3800 Н*м;

Mya=285 Н*м;

Mxa=276 Н*м;

Myb=356 Н*м;

Mxb=242 Н*м;

Rza=37600 Η.

Конструктивно размеры равны a=0,1 м, b=0,2 м. Тогда по формулам (1)…(6) получается:

;

;

Rzc=Rza=37600 H;

;

;

Mzc=Mza=3800 H*м.

Лабораторная установка для определения нагрузки, действующей на буровое долото, способная работать при бурении с обращенным забоем, характеризуется тем, что содержит измерительную балку, жестко закрепленную на базовой плите, с установленным на ней долотом, при этом на измерительной балке смонтированы тензометрические датчики, образующие шесть тензометрических мостов для измерения осевой нагрузки R на измерительную балку вдоль ее оси, M - момента, скручивающего измерительную балку относительно ее оси, M, M - моментов соответственно в поперечных сечениях измерительной балки, отстоящих друг от друга на расстоянии а, изгибающих измерительную балку в плоскости, проходящей через ее ось, и ось декартовой системы координат, M, M - моментов соответственно в поперечных сечениях измерительной балки, изгибающих измерительную балку в плоскости, проходящей через ее ось, и ось декартовой системы координат, причем схемы размещения и соединения тензодатчиков выполнены таким образом, что каждый из перечисленных параметров измеряется независимо от других воздействий: тензодатчики для измерения M монтируют на теле измерительной балки в ее поперечном сечении, находящемся посредине между сечениями A и B, причем ряд датчиков развернут относительно образующих на угол 45° в направлении против хода часовой стрелки, а ряд датчиков развернут относительно своих образующих на угол 45° в направлении по ходу часовой стрелки; тензодатчики для измерения R монтируют на теле измерительной балки в ее поперечном сечении на образующих, расположенных друг от друга со смещением на 90°, причем ряд датчиков установлен вдоль образующих, а ряд датчиков развернут относительно своих образующих на угол 90°; тензодатчики для измерения M монтируют на теле измерительной балки в ее поперечном сечении A на образующих, расположенных друг от друга со смещением на 180°, причем два датчика установлены вдоль образующих, а два датчика развернуты относительно своих образующих на угол 90°; два тензодатчика моста для измерения M монтируют на теле измерительной балки в ее поперечном сечении A на образующих F и J, расположенных друг от друга со смещением на 180°, два датчика установлены вдоль образующих, соответственно F и J, а два датчика развернуты относительно своих образующих на угол 90°; тензодатчики тензометрического моста для измерения M монтируют на теле измерительной балки в ее поперечном сечении B на образующих D и Н, расположенных друг от друга со смещением на 180°, причем два датчика установлены вдоль образующих, а два датчика развернуты относительно своих образующих на угол 90°; тензодатчики тензометрического моста для измерения M монтируют на теле измерительной балки в ее поперечном сечении на образующих F и J, расположенных друг от друга со смещением на 180°, причем два датчика установлены вдоль образующих, соответственно F и J, а два датчика развернуты относительно своих образующих на угол 90°.
ЛАБОРАТОРНАЯ УСТАНОВКА ДЛЯ ОПРЕДЕЛЕНИЯ НАГРУЗКИ, ДЕЙСТВУЮЩЕЙ НА БУРОВОЕ ДОЛОТО
ЛАБОРАТОРНАЯ УСТАНОВКА ДЛЯ ОПРЕДЕЛЕНИЯ НАГРУЗКИ, ДЕЙСТВУЮЩЕЙ НА БУРОВОЕ ДОЛОТО
ЛАБОРАТОРНАЯ УСТАНОВКА ДЛЯ ОПРЕДЕЛЕНИЯ НАГРУЗКИ, ДЕЙСТВУЮЩЕЙ НА БУРОВОЕ ДОЛОТО
ЛАБОРАТОРНАЯ УСТАНОВКА ДЛЯ ОПРЕДЕЛЕНИЯ НАГРУЗКИ, ДЕЙСТВУЮЩЕЙ НА БУРОВОЕ ДОЛОТО
ЛАБОРАТОРНАЯ УСТАНОВКА ДЛЯ ОПРЕДЕЛЕНИЯ НАГРУЗКИ, ДЕЙСТВУЮЩЕЙ НА БУРОВОЕ ДОЛОТО
ЛАБОРАТОРНАЯ УСТАНОВКА ДЛЯ ОПРЕДЕЛЕНИЯ НАГРУЗКИ, ДЕЙСТВУЮЩЕЙ НА БУРОВОЕ ДОЛОТО
ЛАБОРАТОРНАЯ УСТАНОВКА ДЛЯ ОПРЕДЕЛЕНИЯ НАГРУЗКИ, ДЕЙСТВУЮЩЕЙ НА БУРОВОЕ ДОЛОТО
ЛАБОРАТОРНАЯ УСТАНОВКА ДЛЯ ОПРЕДЕЛЕНИЯ НАГРУЗКИ, ДЕЙСТВУЮЩЕЙ НА БУРОВОЕ ДОЛОТО
Источник поступления информации: Роспатент

Показаны записи 21-28 из 28.
10.05.2016
№216.015.3cc3

Графо-проекционный муаровый способ измерения

Изобретение относится к области проведения измерений деформаций. В графо-проекционном способе проведения измерений объектов на поверхность исследуемого объекта проектором проецируют растр с заданными в установленном на компьютере программном обеспечении параметрами. Далее сканируют это...
Тип: Изобретение
Номер охранного документа: 0002583852
Дата охранного документа: 10.05.2016
13.01.2017
№217.015.8216

Вязкоупругий состав для глушения нефтяных и газовых скважин

Изобретение относится к нефтегазодобывающей промышленности, в частности при глушении нефтяных и газовых скважин. Технический результат изобретения заключается в разработке вязкоупругого состава для глушения нефтяных и газовых скважин, обеспечивающего сохранение фильтрационно-емкостных свойств...
Тип: Изобретение
Номер охранного документа: 0002601708
Дата охранного документа: 10.11.2016
25.08.2017
№217.015.c21e

Устройство для измерения линейной деформации объектов

Изобретение относится к области измерения деформации твердых тел, в частности в условиях повышенных температур. Технический результат заключается в минимизации габаритов устройства и повышении точности измерения деформации твердых тел малых размеров. Устройство содержит нагрузочное устройство,...
Тип: Изобретение
Номер охранного документа: 0002617888
Дата охранного документа: 28.04.2017
25.08.2017
№217.015.c261

Способ измерения непрямолинейности длинномерных деталей

Изобретение относится к измерительной технике, а именно к способам измерения геометрических параметров длинномерных деталей. Способ заключается в том, что длинномерную деталь устанавливают горизонтально на двух опорах с концов детали или консольно, обеспечивают ее неподвижность в процессе...
Тип: Изобретение
Номер охранного документа: 0002617892
Дата охранного документа: 28.04.2017
25.08.2017
№217.015.ce73

Дилатометр

Изобретение относится к области исследования материалов с помощью теплофизических измерений, а именно к устройствам для измерения температурного коэффициента линейного расширения (ТКЛР). Дилатометр содержит камеру нагрева со съемной трубкой, в которой горизонтально установлены исследуемый...
Тип: Изобретение
Номер охранного документа: 0002620787
Дата охранного документа: 29.05.2017
26.08.2017
№217.015.e79e

Способ измерения температурного коэффициента линейного расширения

Изобретение относится к области исследования материалов с помощью теплофизических измерений, а именно к способам измерения температурного коэффициента линейного расширения (ТКЛР). Согласно заявленному способу измерения температурного коэффициента линейного расширения твердых тел изготавливают...
Тип: Изобретение
Номер охранного документа: 0002627180
Дата охранного документа: 03.08.2017
13.02.2018
№218.016.2098

Дилатометр

Изобретение относится к области исследования материалов с помощью теплофизических измерений, а именно к устройствам для измерения температурного коэффициента линейного расширения (ТКЛР). Дилатометр содержит камеру нагрева со съемной трубкой, в которой горизонтально установлены исследуемый...
Тип: Изобретение
Номер охранного документа: 0002641629
Дата охранного документа: 18.01.2018
13.02.2018
№218.016.2419

Дилатометр

Изобретение относится к области исследования материалов с помощью теплофизических измерений, а именно к устройствам для измерения температурного коэффициента линейного расширения (ТКЛР). Дилатометр содержит камеру нагрева со съемной трубкой, в которой горизонтально установлены исследуемый...
Тип: Изобретение
Номер охранного документа: 0002642489
Дата охранного документа: 25.01.2018
Показаны записи 31-33 из 33.
10.05.2018
№218.016.47e0

Устройство для определения упругих постоянных малопластичных металлов и сплавов при повышенной температуре

Изобретение относится к исследованию прочностных свойств материалов оптическими средствами измерения путем приложения к ним сжимающих статических нагрузок. Устройство содержит основание с неподвижной плитой и подвижную плиту. На основании установлены лазер, расположенные по ходу его излучения...
Тип: Изобретение
Номер охранного документа: 0002650741
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.47f7

Устройство для определения упругих постоянных малопластичных металлов и сплавов при повышенной температуре

Изобретение относится к исследованию прочностных свойств материалов оптическими средствами измерения путем приложения к ним сжимающих статических нагрузок. Устройство содержит основание с неподвижной плитой и подвижную плиту. На основании установлены лазер, светоделитель и зеркало, с помощью...
Тип: Изобретение
Номер охранного документа: 0002650742
Дата охранного документа: 17.04.2018
09.06.2018
№218.016.5c7f

Устройство для определения упругих постоянных малопластичных металлов и сплавов при повышенной температуре

Изобретение относится к исследованию прочностных свойств материалов оптическими средствами измерения путем приложения к ним сжимающих статических нагрузок. Устройство содержит основание с неподвижной плитой и подвижную плиту. На основании установлены лазер, светоделитель и зеркало. Луч,...
Тип: Изобретение
Номер охранного документа: 0002655949
Дата охранного документа: 30.05.2018
+ добавить свой РИД