×
20.10.2015
216.013.86eb

Результат интеллектуальной деятельности: СПОСОБ ФОРМИРОВАНИЯ БИДОМЕННОЙ СТРУКТУРЫ В ПЛАСТИНАХ МОНОКРИСТАЛЛОВ СЕГНЕТОЭЛЕКТРИКОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области получения монокристаллов сегнетоэлектриков с бидоменной структурой и может быть использовано в нанотехнологии и микромеханике при создании и работе приборов точного позиционирования, в частности зондовых микроскопов, лазерных резонаторов, а также при юстировке оптических систем. Способ заключается в образовании в пластине монокристалла сегнетоэлектрика двух монодоменных областей с противоположным направлением векторов поляризации доменов и бидоменной границей и включает бесконтактное размещение пластины монокристалла сегнетоэлектрика с плоскопараллельными гранями в бескислородной среде рабочего пространства камеры установки фотонного отжига между двумя светопоглощающими экранами, при этом большие грани пластины монокристалла сегнетоэлектрика расположены параллельно продольным осям светопоглощающих экранов. Далее в камере установки фотонного отжига формируют два встречных параллельных световых потока, направленных перпендикулярно большим граням пластины монокристалла сегнетоэлектрика и продольным осям светопоглощающих экранов. При этом мощность каждого светового потока задают из условий обеспечения полного прогрева пластины монокристалла сегнетоэлектрика в диапазоне температур не менее температуры Кюри и не более температуры плавления сегнетоэлектрика. Затем осуществляют дальнейший прогрев пластины монокристалла сегнетоэлектрика при заданных условиях и ее охлаждение. В изобретении достигается технический результат, заключающийся в обеспечении формирования бидоменной структуры толщиной более 0,4 мм с заданным положением и формой границы в пластинах из монокристаллических сегнетоэлектриков, при этом сформированные пластины из монокристаллических сегнетоэлектриков с бидоменной структурой обеспечивают повышение эффективности и стабильности преобразования электрического сигнала в механические упругие деформации, чувствительности, точности за счет отсутствия механического гистерезиса, ползучести и остаточных деформаций в широком интервале рабочих температур при высокой линейности характеристики «электрическое напряжение - механическая деформация». 6 з.п. ф-лы, 3 ил.

Изобретение относится к области получения монокристаллов сегнетоэлектриков с бидоменной структурой и может быть использовано в нанотехнологии и микромеханике при создании и работе приборов точного позиционирования, в частности зондовых микроскопов, лазерных резонаторов, а также при юстировке оптических систем.

Основным конструктивным элементом таких приборов любой модификации является электромеханическое устройство, которое преобразовывает электрическую энергию в управляемое движение, т.е. микроактюатор. К перспективным методам актюации следует отнести использование пьезоэлектрических биморфных элементов на основе бидоменных структур в монокристаллах сегнетоэлектриков.

Известен способ формирования доменной структуры в монокристаллической пластине нелинейно-оптического сегнетоэлектрика, например ниобата лития (RU 2371746, опубл. 27.10.2009), путем воздействия на нее высоким напряжением, приложенным между металлическими электродами, расположенными на противоположных полярных гранях пластины, причем один из них выполнен в виде структуры, состоящей из полос определенной конфигурации (полосовой электрод), для формирования доменной структуры соответствующей конфигурации. В способе на поверхность пластины с полосовым электродом воздействуют импульсным лазерным излучением, обеспечивающим неоднородный нагрев поверхностного слоя пластины и образование под полосовым электродом приповерхностных доменов при последующем охлаждении после окончания импульса лазерного излучения. Высокое напряжение прикладывают между электродами одновременно или после воздействия импульса лазерного излучения, в результате чего формируется доменная структура, состоящая из сквозных доменов в точном соответствии с рисунком полосового электрода.

Недостатком этого способа является невозможность создания бидоменной структуры с противоположно направленными векторами поляризации.

Известен способ формирования доменной структуры в монокристаллической пластине нелинейно-оптического сегнетоэлектрика, например ниобата лития (RU 2439636, опубл. 10.01.2012), путем воздействия на нее высокого напряжения, приложенного между металлическими электродами, расположенными на противоположных полярных гранях пластины. Один из электродов выполнен в виде структуры, состоящей из полос определенной конфигурации (полосовой электрод), для формирования доменной структуры соответствующей конфигурации. Перед нанесением электрода на полярную грань, противоположную полосовому электроду, дополнительно наносят слой диэлектрического покрытия.

Недостатком этого способа является возможность формирования только регулярной доменной структуры, состоящей из чередующихся доменов разных знаков. Такая структура не может быть использована в качестве рабочих элементов электромеханической деформации.

Известен способ формирования доменной структуры в монокристаллической пластине нелинейно-оптического сегнетоэлектрика, например ниобата лития, с помощью приложения электрического поля к полярным поверхностям пластины, на одну из которых нанесен диэлектрический слой, выполненный определенным рисунком (US 5756263, опубл. 26.05.1998). Согласно этому способу, на одной из полярных поверхностей наносят диэлектрический слой, в котором с помощью известных технологий фотолитографии формируется рисунок. К полярным поверхностям пластины прикладывают электроды (например, в виде жидкого электролита) и воздействуют электрическим полем определенной величины и длительности, достаточным для того, чтобы осуществить переключение спонтанной поляризации.

Недостатком этого способа также является возможность формирования только регулярной доменной структуры, состоящей из чередующихся доменов разных знаков. Такая структура не может быть использована в качестве рабочих элементов электромеханической деформации.

Прототипом предложенного изобретения является способ получения монокристаллов ниобата лития с бидоменной структурой (RU 2492283, опубл. 10.09.2013) для устройств нанотехнологии и микромеханики путем наложения электродов на две грани кристалла при нагреве до температуры фазового перехода - температуры Кюри под действием неоднородного электрического поля. Грани кристалла являются плоскопараллельными, кристалл ориентируют под углом z+36° к полярной оси, а электроды выполнены в виде системы параллельных струн. Согласно данному способу, электроды изготавливают из палладиевой пасты и наносят на пластины сапфира.

Недостатком этого способа является обеспечение формирования бидоменной структуры, толщина которой не может превышать 600 мкм. Это происходит вследствие того, что при высоких температурах глубина проникновения электрического поля в объем образца ограничена 200-300 мкм, благодаря возникновению при таких температурах свободных носителей заряда, экранирующих внешнее поле.

В изобретении достигается технический результат, заключающийся в обеспечении формирования бидоменной структуры толщиной более 0,4 мм с заданным положением и формой границы в пластинах из монокристаллических сегнетоэлектриков, при этом сформированные пластины из монокристаллических сегнетоэлектриков с бидоменной структурой обеспечивают повышение эффективности и стабильности преобразования электрического сигнала в механические упругие деформации, чувствительности, точности за счет отсутствия механического гистерезиса, ползучести и остаточных деформаций в широком интервале рабочих температур при высокой линейности характеристики «электрическое напряжение - механическая деформация».

Указанный технический результат достигается следующим образом.

Способ формирования бидоменной структуры в пластинах монокристаллов сегнетоэлектриков, заключающийся в образовании в пластине монокристалла сегнетоэлектрика двух монодоменных областей с противоположным направлением векторов поляризации доменов и бидоменной границей, включает бесконтактное размещение пластины монокристалла сегнетоэлектрика с плоскопараллельными гранями в бескислородной среде рабочего пространства камеры установки фотонного отжига между двумя светопоглощающими экранами. При этом большие грани пластины монокристалла сегнетоэлектрика расположены параллельно продольным осям светопоглощающих экранов.

Далее в камере установки фотонного отжига формируют два встречных параллельных световых потока, направленных перпендикулярно большим граням пластины монокристалла сегнетоэлектрика и продольным осям светопоглощающих экранов. При этом мощность каждого светового потока задают из условий обеспечения полного прогрева пластины монокристалла сегнетоэлектрика в диапазоне температур не менее температуры Кюри и не более температуры плавления сегнетоэлектрика.

Затем происходит дальнейший прогрев пластины монокристалла сегнетоэлектрика при заданных условиях и ее охлаждение.

В частном случае пластину монокристалла сегнетоэлектрика охлаждают с заданным градиентом температуры, меняющейся от минимального значения на противоположных больших гранях пластины монокристалла сегнетоэлектрика до максимального значения в области формирования бидоменной границы, например, с градиентом температуры 10°C/мм.

Также пластину монокристалла сегнетоэлектрика можно охлаждать с заданным градиентом температуры, меняющейся от максимального значения на противоположных больших гранях пластины монокристалла сегнетоэлектрика до минимального значения в области формирования бидоменной границы, например, с градиентом температуры 3°C/мм.

В частном случае пластина монокристалла сегнетоэлектрика выполнена из монокристалла ниобата лития LiNbO3.

Кроме того, бесконтактное размещение пластины монокристалла сегнетоэлектрика обеспечивается путем помещения брусков, выполненных из сапфира.

При этом светопоглощающие экраны выполнены в виде пластин из кристаллического кремния.

Также месторасположение и форма границы бидоменной структуры формируются за счет изменения интенсивности и мощности светового потока.

Изобретение поясняется чертежами, на которых на фиг. 1 изображена схема нагрева пластины монокристалла сегнетоэлектрика, на фиг. 2 и фиг. 3 изображено рабочее пространство камеры установки фотонного отжига (вид спереди и вид слева соответственно).

На фиг. 1 показаны пластина 1 монокристалла сегнетоэлектрика, например ниобата лития LiNO3, светопоглощающие кремниевые экраны 2, сапфировые бруски 3, входящие в кристалл световые потоки 4, тепловые потоки 5, 6, излучаемые кремниевыми экранами, тепловые потоки 7, выходящие из пластины через боковые грани.

Предложенное изобретение осуществляется следующим образом.

Пластину 1, имеющую плоскопараллельные грани, размещают в бескислородной среде рабочего пространства камеры 9 установки фотонного отжига (целиком установка на чертеже не показана) на держателе 8.

Неточности ориентировки пластины 1 относительно центра камеры 9 установки фотонного отжига могут приводить к искажению плоской формы междоменной границы и ухудшению эксплуатационных характеристик бидоменного элемента деформации.

Ориентировка граней пластины относительно полярных осей монокристалла сегнетоэлектрика выбирается из условия обеспечения заданной величины поперечной упругой деформации пластины.

В камеру 9 установки фотонного отжига пластину 1 помещают между двумя светопоглощающими кремниевыми экранами 2, располагая большие грани пластины 1 параллельно продольным осям экранов 2. Контакт между пластиной 1 и экранами 2 предотвращают посредством сапфировых брусков 3.

В камере установки фотонного отжига формируют два встречных параллельных световых потока 4, направленных перпендикулярно большим граням пластины 1 и продольным осям экранов 2.

Большие грани пластины 1 подвергают фотонному нагреву, облучая тепловыми потоками 5, часть энергии при этом переизлучается в направлении от пластины 1 посредством теплового потока 6 и не участвует в формировании бидоменной структуры. Мощность каждого светового потока задают из условий обеспечения полного прогрева пластины 1. Диапазон температур, обеспечивающий полный прогрев пластины 1, ограничивают нижним пределом не менее температуры Кюри и верхним пределом не более температуры плавления сегнетоэлектрика.

За счет создания однородных световых потоков 4 лампами с параболическими отражателями распределение температуры по объему экранов 2 является равномерным. Через торцевые грани пластины 1 отводятся тепловые потоки 7. Экраны 2 создают в объеме пластины 1 неоднородное температурное поле, симметричное относительно центра пластины 1. Тем самым, создаются условия, при которых пластину 1 можно представить в виде двух слоев, в которых градиент температуры направлен от поверхности к центру. Величина градиента температуры меняется по толщине пластины 1 и величина его максимальна на гранях пластины 1 и равна нулю в области формирования бидоменной границы.

Обеспечив полный прогрев пластины 1 при заданных условиях, проводят ее охлаждение. Охлаждение можно осуществлять с заданным градиентом температуры, меняющейся от минимального значения на противоположных больших гранях пластины монокристалла сегнетоэлектрика до максимального значения в области формирования бидоменной границы, например, с градиентом температуры 10°C/мм.

Также охлаждение можно осуществлять с заданным градиентом температуры, меняющейся от максимального значения на противоположных больших гранях пластины монокристалла сегнетоэлектрика до минимального значения в области формирования бидоменной границы, например, с градиентом температуры 3°C/мм.

В обоих случаях при охлаждении пластины 1 от температуры Кюри происходит формирование двух доменов с противоположными направлениями векторов поляризации и плоской междоменной границей. Направление векторов поляризации задаются распределением и ориентацией тепловых полей в пластине 1.

Поляризация монокристалла сегнетоэлектрика происходит благодаря тому, что при температуре фазового перехода коэрцитивная сила в монокристалле сегнетоэлектрика становится близкой к нулю и направления существующих в сегнетоэлектрике элементарных диполей кристаллической решетки выстраиваются в направлении внутреннего электрического поля, индуцированного объемным градиентом температуры. После уменьшения температуры ниже температуры фазового перехода их положение становится фиксированным.

Расположение и форма бидоменной границы в объеме пластины 1 задаются режимами нагрева и охлаждения, в частности, за счет изменения интенсивности и мощности световых потоков 4. Их также можно задавать при изменении положения пластины 1 в рабочем пространстве камеры установки фотонного отжига, толщины и геометрической формы светопоглощающих кремниевых экранов 2 и сапфировых брусков 3.

Конкретные примеры осуществления способа

Для изготовления экранов из пластин кристаллического кремния диаметром 100 мм и толщиной 500 мкм были вырезаны два экрана размерами 75×45 мм, соответствующие размеру держателя.

а. Образец в виде прямоугольной пластины монокристалла ниобата лития с размерами 20 мм (срез Z) на 20 мм (срез X) и толщиной 1,6 мм помещался между кремниевыми экранами через сапфировые бруски. Затем собранная конструкция помещалась в установку фотонного отжига.

В установке пластину монокристалла ниобата лития нагревали до температуры выше точки Кюри ниобата лития конгруэнтного состава - 1150°C в течение 40 минут, пластину выдерживали 5 минут, затем охлаждали до температуры 100-150°C в течение 90 минут.

б. Образец в виде прямоугольной пластины монокристалла танталата лития с размерами 20 мм (срез Z) на 20 мм (срез X) и толщиной 1 мм помещался между кремниевыми экранами через сапфировые бруски. Затем собранная конструкция помещалась в установку фотонного отжига.

В установке пластину монокристалла ниобата лития нагревали до температуры выше точки Кюри танталата лития 700°C в течение 40 минут, пластину выдерживали 5 минут, затем охлаждали до температуры 100-150°C в течение 50 минут.

в. Образец в виде прямоугольной пластины монокристалла ниобата лития с размерами 70 мм (срез Z +36°) на 20 мм (срез X) и толщиной 0,4 мм помещался между кремниевыми экранами через сапфировые бруски. Затем собранная конструкция помещалась в установку фотонного отжига.

В установке пластину монокристалла ниобата лития нагревали до температуры выше точки Кюри ниобата лития конгруэнтного состава - 1150°C в течение 40 минут, пластину выдерживали 5 минут, затем охлаждали до температуры 100-150°C в течение 90 минут.

Во время отжига происходило зарождение доменов у граней монокристалла, прорастание доменных границ по его объему и формирование одной доменной границы в середине пластины.

Исследования морфологии и визуализация полученной доменной структуры в кристаллах ниобата лития и танталата лития методами селективного травления, рентгеновской топографии и сканирующей зондовой микроскопии подтвердили, что в процессе отжига сформировалась устойчивая бидоменная структура.

Эффективность и стабильность преобразования электрического сигнала в механические упругие деформации на экспериментальном макете биморфного элемента, которым является пластина из монокристаллического сегнетоэлектрика (ниобата лития) размерами 70×20×0,4 мм при консольном закреплении характеризуется следующими параметрами: изменение деформации в интервале напряжений ±300 В составила ±300 мкм, остаточная деформация элементов не превышает 0,3%, линейность деформации не хуже 0,01% в диапазоне рабочих температур от комнатной до 850°C.

В предложенном изобретении изгибные деформации полученных бидоменных кристаллических структур характеризуются отсутствием механического гистерезиса, ползучести и остаточных деформаций в широком интервале рабочих температур при высокой линейности величины электрическое напряжение - механическая деформация.


СПОСОБ ФОРМИРОВАНИЯ БИДОМЕННОЙ СТРУКТУРЫ В ПЛАСТИНАХ МОНОКРИСТАЛЛОВ СЕГНЕТОЭЛЕКТРИКОВ
СПОСОБ ФОРМИРОВАНИЯ БИДОМЕННОЙ СТРУКТУРЫ В ПЛАСТИНАХ МОНОКРИСТАЛЛОВ СЕГНЕТОЭЛЕКТРИКОВ
СПОСОБ ФОРМИРОВАНИЯ БИДОМЕННОЙ СТРУКТУРЫ В ПЛАСТИНАХ МОНОКРИСТАЛЛОВ СЕГНЕТОЭЛЕКТРИКОВ
Источник поступления информации: Роспатент

Показаны записи 11-20 из 235.
27.03.2013
№216.012.3138

Способ вакуумного ионно-плазменного нанесения многослойного износостойкого покрытия для режущего инструмента

Изобретение относится к способу получения износостойкого покрытия на режущем инструменте и может быть использовано в металлообработке. Наносят слой сложного нитрида титана-алюминия и слой нитрида хрома при вращении покрываемой подложки относительно распыляемых катодов. Между слоем сложного...
Тип: Изобретение
Номер охранного документа: 0002478138
Дата охранного документа: 27.03.2013
27.04.2013
№216.012.3989

Способ обогащения техногенного минерального сырья цветных металлов

Изобретение относится к области флотационного обогащения техногенного сырья. Способ флотационного обогащения сульфидных руд цветных и благородных металлов включает кондиционирование измельченной руды с раствором дитиофосфата или другими сульфгидрильными собирателями в известковой среде и...
Тип: Изобретение
Номер охранного документа: 0002480290
Дата охранного документа: 27.04.2013
27.04.2013
№216.012.3992

Способ производства холоднокатаной нагартованной листовой стали

Изобретение относится к прокатному производству и может быть использовано для получения холоднокатаной нагартованной полосы из листовой стали с покрытием или без него, для последующей обработки путем гибки или формовки, в частности кровельной металлочерепицы. Способ включает нагрев, горячую...
Тип: Изобретение
Номер охранного документа: 0002480299
Дата охранного документа: 27.04.2013
27.05.2013
№216.012.43c9

Способ производства полос с односторонним чечевичным рифлением

Изобретение относится к прокатному производству и может быть использовано при горячей прокатке рифленых полос на непрерывных широкополосных станах. Способ включает нагрев слябов из углеродистой стали, многопроходную горячую прокатку полос с заключительным проходом при температуре полосы...
Тип: Изобретение
Номер охранного документа: 0002482930
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.43d1

Способ прессования с использованием подъемной силы жидкости и устройство для его осуществления

Изобретение относится к порошковой металлургии, в частности к способу прессования полых микросфер в присутствии жидкости при производстве пористой конструкционной керамики. Полые микросферы смешивают с жидкостью в виде водного раствора хлоридов в камере для разделения микросфер и отделяют целые...
Тип: Изобретение
Номер охранного документа: 0002482938
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.4488

Способ производства нагартованной малоуглеродистой листовой стали

Изобретение относится к прокатному производству и может быть использовано для получения холоднокатаных полос и лент, поставляемых потребителям в нагартованном состоянии, например, для упаковки грузов. Для повышения выхода годного за счет получения заданного предела текучести листовой стали...
Тип: Изобретение
Номер охранного документа: 0002483121
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.448d

Печь электрошлакового переплава металлосодержащих отходов

Изобретение относится к области черной и цветной металлургии, в частности к печам электрошлакового переплава металлосодержащих отходов с применением нерасходуемых электродов. В печи используется нерасходуемый электрод, выполненный с проходящим по всей длине осевым отверстием для образования в...
Тип: Изобретение
Номер охранного документа: 0002483126
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.448e

Способ переработки упорной золотосодержащей пирротин-арсенопиритной руды

Изобретение относится к цветной металлургии и предназначено для извлечения золота из упорной арсенопирит-пирротиновой руды. Способ переработки упорной золотосодержащей пирротин-арсенопиритовой руды включает селективную флотацию, извлечение золота из хвостов флотации, биоокисление концентрата,...
Тип: Изобретение
Номер охранного документа: 0002483127
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.4498

Способ защиты поверхности сляба из низколегированной стали перед его нагревом в методической печи под прокатку

Изобретение относится к области металлургии и может быть использовано для защиты поверхности непрерывнолитых слябов из низколегированной стали перед нагревом их в методической печи под прокатку и последующей прокатки. Напыление алюминиевого газотермического покрытия осуществляют на широкие...
Тип: Изобретение
Номер охранного документа: 0002483137
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.44a0

Электрохимический способ получения покрытий на металлическом изделии

Изобретение относится к электрохимической технологии формирования износостойких, диэлектрических, антикоррозионных и декоративных оксидных или оксидно-керамических покрытий на электропроводящие изделия, в частности для нанесения неорганических покрытий на детали и изделия из алюминиевых,...
Тип: Изобретение
Номер охранного документа: 0002483145
Дата охранного документа: 27.05.2013
Показаны записи 11-20 из 244.
27.03.2013
№216.012.3138

Способ вакуумного ионно-плазменного нанесения многослойного износостойкого покрытия для режущего инструмента

Изобретение относится к способу получения износостойкого покрытия на режущем инструменте и может быть использовано в металлообработке. Наносят слой сложного нитрида титана-алюминия и слой нитрида хрома при вращении покрываемой подложки относительно распыляемых катодов. Между слоем сложного...
Тип: Изобретение
Номер охранного документа: 0002478138
Дата охранного документа: 27.03.2013
27.04.2013
№216.012.3989

Способ обогащения техногенного минерального сырья цветных металлов

Изобретение относится к области флотационного обогащения техногенного сырья. Способ флотационного обогащения сульфидных руд цветных и благородных металлов включает кондиционирование измельченной руды с раствором дитиофосфата или другими сульфгидрильными собирателями в известковой среде и...
Тип: Изобретение
Номер охранного документа: 0002480290
Дата охранного документа: 27.04.2013
27.04.2013
№216.012.3992

Способ производства холоднокатаной нагартованной листовой стали

Изобретение относится к прокатному производству и может быть использовано для получения холоднокатаной нагартованной полосы из листовой стали с покрытием или без него, для последующей обработки путем гибки или формовки, в частности кровельной металлочерепицы. Способ включает нагрев, горячую...
Тип: Изобретение
Номер охранного документа: 0002480299
Дата охранного документа: 27.04.2013
27.05.2013
№216.012.43c9

Способ производства полос с односторонним чечевичным рифлением

Изобретение относится к прокатному производству и может быть использовано при горячей прокатке рифленых полос на непрерывных широкополосных станах. Способ включает нагрев слябов из углеродистой стали, многопроходную горячую прокатку полос с заключительным проходом при температуре полосы...
Тип: Изобретение
Номер охранного документа: 0002482930
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.43cb

Рабочая клеть вакуумного стана винтовой прокатки

Изобретение предназначено для уменьшения габаритов и металлоемкости рабочей клети винтовой прокатки прутков валками, оси которых наклонены к оси прокатки под углом α=45-60° и смещены относительно этой оси на расстоянии ρ=(0,8-1,2)d, где d - диаметр проката. Рабочая клеть включает в себя...
Тип: Изобретение
Номер охранного документа: 0002482932
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.43d1

Способ прессования с использованием подъемной силы жидкости и устройство для его осуществления

Изобретение относится к порошковой металлургии, в частности к способу прессования полых микросфер в присутствии жидкости при производстве пористой конструкционной керамики. Полые микросферы смешивают с жидкостью в виде водного раствора хлоридов в камере для разделения микросфер и отделяют целые...
Тип: Изобретение
Номер охранного документа: 0002482938
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.4488

Способ производства нагартованной малоуглеродистой листовой стали

Изобретение относится к прокатному производству и может быть использовано для получения холоднокатаных полос и лент, поставляемых потребителям в нагартованном состоянии, например, для упаковки грузов. Для повышения выхода годного за счет получения заданного предела текучести листовой стали...
Тип: Изобретение
Номер охранного документа: 0002483121
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.448d

Печь электрошлакового переплава металлосодержащих отходов

Изобретение относится к области черной и цветной металлургии, в частности к печам электрошлакового переплава металлосодержащих отходов с применением нерасходуемых электродов. В печи используется нерасходуемый электрод, выполненный с проходящим по всей длине осевым отверстием для образования в...
Тип: Изобретение
Номер охранного документа: 0002483126
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.448e

Способ переработки упорной золотосодержащей пирротин-арсенопиритной руды

Изобретение относится к цветной металлургии и предназначено для извлечения золота из упорной арсенопирит-пирротиновой руды. Способ переработки упорной золотосодержащей пирротин-арсенопиритовой руды включает селективную флотацию, извлечение золота из хвостов флотации, биоокисление концентрата,...
Тип: Изобретение
Номер охранного документа: 0002483127
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.4498

Способ защиты поверхности сляба из низколегированной стали перед его нагревом в методической печи под прокатку

Изобретение относится к области металлургии и может быть использовано для защиты поверхности непрерывнолитых слябов из низколегированной стали перед нагревом их в методической печи под прокатку и последующей прокатки. Напыление алюминиевого газотермического покрытия осуществляют на широкие...
Тип: Изобретение
Номер охранного документа: 0002483137
Дата охранного документа: 27.05.2013
+ добавить свой РИД