×
20.10.2015
216.013.86eb

Результат интеллектуальной деятельности: СПОСОБ ФОРМИРОВАНИЯ БИДОМЕННОЙ СТРУКТУРЫ В ПЛАСТИНАХ МОНОКРИСТАЛЛОВ СЕГНЕТОЭЛЕКТРИКОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области получения монокристаллов сегнетоэлектриков с бидоменной структурой и может быть использовано в нанотехнологии и микромеханике при создании и работе приборов точного позиционирования, в частности зондовых микроскопов, лазерных резонаторов, а также при юстировке оптических систем. Способ заключается в образовании в пластине монокристалла сегнетоэлектрика двух монодоменных областей с противоположным направлением векторов поляризации доменов и бидоменной границей и включает бесконтактное размещение пластины монокристалла сегнетоэлектрика с плоскопараллельными гранями в бескислородной среде рабочего пространства камеры установки фотонного отжига между двумя светопоглощающими экранами, при этом большие грани пластины монокристалла сегнетоэлектрика расположены параллельно продольным осям светопоглощающих экранов. Далее в камере установки фотонного отжига формируют два встречных параллельных световых потока, направленных перпендикулярно большим граням пластины монокристалла сегнетоэлектрика и продольным осям светопоглощающих экранов. При этом мощность каждого светового потока задают из условий обеспечения полного прогрева пластины монокристалла сегнетоэлектрика в диапазоне температур не менее температуры Кюри и не более температуры плавления сегнетоэлектрика. Затем осуществляют дальнейший прогрев пластины монокристалла сегнетоэлектрика при заданных условиях и ее охлаждение. В изобретении достигается технический результат, заключающийся в обеспечении формирования бидоменной структуры толщиной более 0,4 мм с заданным положением и формой границы в пластинах из монокристаллических сегнетоэлектриков, при этом сформированные пластины из монокристаллических сегнетоэлектриков с бидоменной структурой обеспечивают повышение эффективности и стабильности преобразования электрического сигнала в механические упругие деформации, чувствительности, точности за счет отсутствия механического гистерезиса, ползучести и остаточных деформаций в широком интервале рабочих температур при высокой линейности характеристики «электрическое напряжение - механическая деформация». 6 з.п. ф-лы, 3 ил.

Изобретение относится к области получения монокристаллов сегнетоэлектриков с бидоменной структурой и может быть использовано в нанотехнологии и микромеханике при создании и работе приборов точного позиционирования, в частности зондовых микроскопов, лазерных резонаторов, а также при юстировке оптических систем.

Основным конструктивным элементом таких приборов любой модификации является электромеханическое устройство, которое преобразовывает электрическую энергию в управляемое движение, т.е. микроактюатор. К перспективным методам актюации следует отнести использование пьезоэлектрических биморфных элементов на основе бидоменных структур в монокристаллах сегнетоэлектриков.

Известен способ формирования доменной структуры в монокристаллической пластине нелинейно-оптического сегнетоэлектрика, например ниобата лития (RU 2371746, опубл. 27.10.2009), путем воздействия на нее высоким напряжением, приложенным между металлическими электродами, расположенными на противоположных полярных гранях пластины, причем один из них выполнен в виде структуры, состоящей из полос определенной конфигурации (полосовой электрод), для формирования доменной структуры соответствующей конфигурации. В способе на поверхность пластины с полосовым электродом воздействуют импульсным лазерным излучением, обеспечивающим неоднородный нагрев поверхностного слоя пластины и образование под полосовым электродом приповерхностных доменов при последующем охлаждении после окончания импульса лазерного излучения. Высокое напряжение прикладывают между электродами одновременно или после воздействия импульса лазерного излучения, в результате чего формируется доменная структура, состоящая из сквозных доменов в точном соответствии с рисунком полосового электрода.

Недостатком этого способа является невозможность создания бидоменной структуры с противоположно направленными векторами поляризации.

Известен способ формирования доменной структуры в монокристаллической пластине нелинейно-оптического сегнетоэлектрика, например ниобата лития (RU 2439636, опубл. 10.01.2012), путем воздействия на нее высокого напряжения, приложенного между металлическими электродами, расположенными на противоположных полярных гранях пластины. Один из электродов выполнен в виде структуры, состоящей из полос определенной конфигурации (полосовой электрод), для формирования доменной структуры соответствующей конфигурации. Перед нанесением электрода на полярную грань, противоположную полосовому электроду, дополнительно наносят слой диэлектрического покрытия.

Недостатком этого способа является возможность формирования только регулярной доменной структуры, состоящей из чередующихся доменов разных знаков. Такая структура не может быть использована в качестве рабочих элементов электромеханической деформации.

Известен способ формирования доменной структуры в монокристаллической пластине нелинейно-оптического сегнетоэлектрика, например ниобата лития, с помощью приложения электрического поля к полярным поверхностям пластины, на одну из которых нанесен диэлектрический слой, выполненный определенным рисунком (US 5756263, опубл. 26.05.1998). Согласно этому способу, на одной из полярных поверхностей наносят диэлектрический слой, в котором с помощью известных технологий фотолитографии формируется рисунок. К полярным поверхностям пластины прикладывают электроды (например, в виде жидкого электролита) и воздействуют электрическим полем определенной величины и длительности, достаточным для того, чтобы осуществить переключение спонтанной поляризации.

Недостатком этого способа также является возможность формирования только регулярной доменной структуры, состоящей из чередующихся доменов разных знаков. Такая структура не может быть использована в качестве рабочих элементов электромеханической деформации.

Прототипом предложенного изобретения является способ получения монокристаллов ниобата лития с бидоменной структурой (RU 2492283, опубл. 10.09.2013) для устройств нанотехнологии и микромеханики путем наложения электродов на две грани кристалла при нагреве до температуры фазового перехода - температуры Кюри под действием неоднородного электрического поля. Грани кристалла являются плоскопараллельными, кристалл ориентируют под углом z+36° к полярной оси, а электроды выполнены в виде системы параллельных струн. Согласно данному способу, электроды изготавливают из палладиевой пасты и наносят на пластины сапфира.

Недостатком этого способа является обеспечение формирования бидоменной структуры, толщина которой не может превышать 600 мкм. Это происходит вследствие того, что при высоких температурах глубина проникновения электрического поля в объем образца ограничена 200-300 мкм, благодаря возникновению при таких температурах свободных носителей заряда, экранирующих внешнее поле.

В изобретении достигается технический результат, заключающийся в обеспечении формирования бидоменной структуры толщиной более 0,4 мм с заданным положением и формой границы в пластинах из монокристаллических сегнетоэлектриков, при этом сформированные пластины из монокристаллических сегнетоэлектриков с бидоменной структурой обеспечивают повышение эффективности и стабильности преобразования электрического сигнала в механические упругие деформации, чувствительности, точности за счет отсутствия механического гистерезиса, ползучести и остаточных деформаций в широком интервале рабочих температур при высокой линейности характеристики «электрическое напряжение - механическая деформация».

Указанный технический результат достигается следующим образом.

Способ формирования бидоменной структуры в пластинах монокристаллов сегнетоэлектриков, заключающийся в образовании в пластине монокристалла сегнетоэлектрика двух монодоменных областей с противоположным направлением векторов поляризации доменов и бидоменной границей, включает бесконтактное размещение пластины монокристалла сегнетоэлектрика с плоскопараллельными гранями в бескислородной среде рабочего пространства камеры установки фотонного отжига между двумя светопоглощающими экранами. При этом большие грани пластины монокристалла сегнетоэлектрика расположены параллельно продольным осям светопоглощающих экранов.

Далее в камере установки фотонного отжига формируют два встречных параллельных световых потока, направленных перпендикулярно большим граням пластины монокристалла сегнетоэлектрика и продольным осям светопоглощающих экранов. При этом мощность каждого светового потока задают из условий обеспечения полного прогрева пластины монокристалла сегнетоэлектрика в диапазоне температур не менее температуры Кюри и не более температуры плавления сегнетоэлектрика.

Затем происходит дальнейший прогрев пластины монокристалла сегнетоэлектрика при заданных условиях и ее охлаждение.

В частном случае пластину монокристалла сегнетоэлектрика охлаждают с заданным градиентом температуры, меняющейся от минимального значения на противоположных больших гранях пластины монокристалла сегнетоэлектрика до максимального значения в области формирования бидоменной границы, например, с градиентом температуры 10°C/мм.

Также пластину монокристалла сегнетоэлектрика можно охлаждать с заданным градиентом температуры, меняющейся от максимального значения на противоположных больших гранях пластины монокристалла сегнетоэлектрика до минимального значения в области формирования бидоменной границы, например, с градиентом температуры 3°C/мм.

В частном случае пластина монокристалла сегнетоэлектрика выполнена из монокристалла ниобата лития LiNbO3.

Кроме того, бесконтактное размещение пластины монокристалла сегнетоэлектрика обеспечивается путем помещения брусков, выполненных из сапфира.

При этом светопоглощающие экраны выполнены в виде пластин из кристаллического кремния.

Также месторасположение и форма границы бидоменной структуры формируются за счет изменения интенсивности и мощности светового потока.

Изобретение поясняется чертежами, на которых на фиг. 1 изображена схема нагрева пластины монокристалла сегнетоэлектрика, на фиг. 2 и фиг. 3 изображено рабочее пространство камеры установки фотонного отжига (вид спереди и вид слева соответственно).

На фиг. 1 показаны пластина 1 монокристалла сегнетоэлектрика, например ниобата лития LiNO3, светопоглощающие кремниевые экраны 2, сапфировые бруски 3, входящие в кристалл световые потоки 4, тепловые потоки 5, 6, излучаемые кремниевыми экранами, тепловые потоки 7, выходящие из пластины через боковые грани.

Предложенное изобретение осуществляется следующим образом.

Пластину 1, имеющую плоскопараллельные грани, размещают в бескислородной среде рабочего пространства камеры 9 установки фотонного отжига (целиком установка на чертеже не показана) на держателе 8.

Неточности ориентировки пластины 1 относительно центра камеры 9 установки фотонного отжига могут приводить к искажению плоской формы междоменной границы и ухудшению эксплуатационных характеристик бидоменного элемента деформации.

Ориентировка граней пластины относительно полярных осей монокристалла сегнетоэлектрика выбирается из условия обеспечения заданной величины поперечной упругой деформации пластины.

В камеру 9 установки фотонного отжига пластину 1 помещают между двумя светопоглощающими кремниевыми экранами 2, располагая большие грани пластины 1 параллельно продольным осям экранов 2. Контакт между пластиной 1 и экранами 2 предотвращают посредством сапфировых брусков 3.

В камере установки фотонного отжига формируют два встречных параллельных световых потока 4, направленных перпендикулярно большим граням пластины 1 и продольным осям экранов 2.

Большие грани пластины 1 подвергают фотонному нагреву, облучая тепловыми потоками 5, часть энергии при этом переизлучается в направлении от пластины 1 посредством теплового потока 6 и не участвует в формировании бидоменной структуры. Мощность каждого светового потока задают из условий обеспечения полного прогрева пластины 1. Диапазон температур, обеспечивающий полный прогрев пластины 1, ограничивают нижним пределом не менее температуры Кюри и верхним пределом не более температуры плавления сегнетоэлектрика.

За счет создания однородных световых потоков 4 лампами с параболическими отражателями распределение температуры по объему экранов 2 является равномерным. Через торцевые грани пластины 1 отводятся тепловые потоки 7. Экраны 2 создают в объеме пластины 1 неоднородное температурное поле, симметричное относительно центра пластины 1. Тем самым, создаются условия, при которых пластину 1 можно представить в виде двух слоев, в которых градиент температуры направлен от поверхности к центру. Величина градиента температуры меняется по толщине пластины 1 и величина его максимальна на гранях пластины 1 и равна нулю в области формирования бидоменной границы.

Обеспечив полный прогрев пластины 1 при заданных условиях, проводят ее охлаждение. Охлаждение можно осуществлять с заданным градиентом температуры, меняющейся от минимального значения на противоположных больших гранях пластины монокристалла сегнетоэлектрика до максимального значения в области формирования бидоменной границы, например, с градиентом температуры 10°C/мм.

Также охлаждение можно осуществлять с заданным градиентом температуры, меняющейся от максимального значения на противоположных больших гранях пластины монокристалла сегнетоэлектрика до минимального значения в области формирования бидоменной границы, например, с градиентом температуры 3°C/мм.

В обоих случаях при охлаждении пластины 1 от температуры Кюри происходит формирование двух доменов с противоположными направлениями векторов поляризации и плоской междоменной границей. Направление векторов поляризации задаются распределением и ориентацией тепловых полей в пластине 1.

Поляризация монокристалла сегнетоэлектрика происходит благодаря тому, что при температуре фазового перехода коэрцитивная сила в монокристалле сегнетоэлектрика становится близкой к нулю и направления существующих в сегнетоэлектрике элементарных диполей кристаллической решетки выстраиваются в направлении внутреннего электрического поля, индуцированного объемным градиентом температуры. После уменьшения температуры ниже температуры фазового перехода их положение становится фиксированным.

Расположение и форма бидоменной границы в объеме пластины 1 задаются режимами нагрева и охлаждения, в частности, за счет изменения интенсивности и мощности световых потоков 4. Их также можно задавать при изменении положения пластины 1 в рабочем пространстве камеры установки фотонного отжига, толщины и геометрической формы светопоглощающих кремниевых экранов 2 и сапфировых брусков 3.

Конкретные примеры осуществления способа

Для изготовления экранов из пластин кристаллического кремния диаметром 100 мм и толщиной 500 мкм были вырезаны два экрана размерами 75×45 мм, соответствующие размеру держателя.

а. Образец в виде прямоугольной пластины монокристалла ниобата лития с размерами 20 мм (срез Z) на 20 мм (срез X) и толщиной 1,6 мм помещался между кремниевыми экранами через сапфировые бруски. Затем собранная конструкция помещалась в установку фотонного отжига.

В установке пластину монокристалла ниобата лития нагревали до температуры выше точки Кюри ниобата лития конгруэнтного состава - 1150°C в течение 40 минут, пластину выдерживали 5 минут, затем охлаждали до температуры 100-150°C в течение 90 минут.

б. Образец в виде прямоугольной пластины монокристалла танталата лития с размерами 20 мм (срез Z) на 20 мм (срез X) и толщиной 1 мм помещался между кремниевыми экранами через сапфировые бруски. Затем собранная конструкция помещалась в установку фотонного отжига.

В установке пластину монокристалла ниобата лития нагревали до температуры выше точки Кюри танталата лития 700°C в течение 40 минут, пластину выдерживали 5 минут, затем охлаждали до температуры 100-150°C в течение 50 минут.

в. Образец в виде прямоугольной пластины монокристалла ниобата лития с размерами 70 мм (срез Z +36°) на 20 мм (срез X) и толщиной 0,4 мм помещался между кремниевыми экранами через сапфировые бруски. Затем собранная конструкция помещалась в установку фотонного отжига.

В установке пластину монокристалла ниобата лития нагревали до температуры выше точки Кюри ниобата лития конгруэнтного состава - 1150°C в течение 40 минут, пластину выдерживали 5 минут, затем охлаждали до температуры 100-150°C в течение 90 минут.

Во время отжига происходило зарождение доменов у граней монокристалла, прорастание доменных границ по его объему и формирование одной доменной границы в середине пластины.

Исследования морфологии и визуализация полученной доменной структуры в кристаллах ниобата лития и танталата лития методами селективного травления, рентгеновской топографии и сканирующей зондовой микроскопии подтвердили, что в процессе отжига сформировалась устойчивая бидоменная структура.

Эффективность и стабильность преобразования электрического сигнала в механические упругие деформации на экспериментальном макете биморфного элемента, которым является пластина из монокристаллического сегнетоэлектрика (ниобата лития) размерами 70×20×0,4 мм при консольном закреплении характеризуется следующими параметрами: изменение деформации в интервале напряжений ±300 В составила ±300 мкм, остаточная деформация элементов не превышает 0,3%, линейность деформации не хуже 0,01% в диапазоне рабочих температур от комнатной до 850°C.

В предложенном изобретении изгибные деформации полученных бидоменных кристаллических структур характеризуются отсутствием механического гистерезиса, ползучести и остаточных деформаций в широком интервале рабочих температур при высокой линейности величины электрическое напряжение - механическая деформация.


СПОСОБ ФОРМИРОВАНИЯ БИДОМЕННОЙ СТРУКТУРЫ В ПЛАСТИНАХ МОНОКРИСТАЛЛОВ СЕГНЕТОЭЛЕКТРИКОВ
СПОСОБ ФОРМИРОВАНИЯ БИДОМЕННОЙ СТРУКТУРЫ В ПЛАСТИНАХ МОНОКРИСТАЛЛОВ СЕГНЕТОЭЛЕКТРИКОВ
СПОСОБ ФОРМИРОВАНИЯ БИДОМЕННОЙ СТРУКТУРЫ В ПЛАСТИНАХ МОНОКРИСТАЛЛОВ СЕГНЕТОЭЛЕКТРИКОВ
Источник поступления информации: Роспатент

Показаны записи 101-110 из 235.
27.07.2014
№216.012.e5f0

Многокомпонентное биоактивное нанокомпозиционное покрытие с антибактериальным эффектом

Изобретение относится к медицинской технике, а именно к биосовместимым износостойким нанокомпозиционным тонкопленочным материалам, используемым в качестве покрытий при изготовлении имплантатов, предназначенных для замены поврежденных участков костной ткани. Покрытие выполнено на основе...
Тип: Изобретение
Номер охранного документа: 0002524654
Дата охранного документа: 27.07.2014
10.08.2014
№216.012.e70c

Способ формирования высококачественных моп структур с поликремниевым затвором

Изобретение относится к области микроэлектроники и может быть использовано для создания высококачественных мощных ДМОП транзисторов, КМОП интегральных схем, ПЗС-приборов. Способ включает операцию термического отжига МОП структур в температурном диапазоне от 600-850°С в электрическом поле...
Тип: Изобретение
Номер охранного документа: 0002524941
Дата охранного документа: 10.08.2014
20.08.2014
№216.012.eb01

Способ выплавки и внепечной обработки высококачественной рельсовой стали

Изобретение относится к черной металлургии, в частности к способу производства рельсовой стали. Способ включает продувку расплава кислородом, выпуск расплава в ковш, наводку покровного шлак в ковше, обработку расплава в вакууматоре. За 1-3 минуты до окончания продувки замеряют температуру...
Тип: Изобретение
Номер охранного документа: 0002525969
Дата охранного документа: 20.08.2014
20.08.2014
№216.012.eb21

Рабочее колесо дымососа

Изобретение относится к области промышленного оборудования. Рабочее колесо дымососа состоит из центрального диска, двух покрышек, лопаток ступицы и приводного вала. Новым является то, что на боковых сторонах покрышек закреплены пустотелые кольца различного внешнего и внутреннего диаметров, а в...
Тип: Изобретение
Номер охранного документа: 0002526001
Дата охранного документа: 20.08.2014
10.09.2014
№216.012.f0f6

Способ выплавки и внепечной обработки высококачественной стали для железнодорожных рельсов

Изобретение относится к черной металлургии, в частности к способу производства рельсовой стали в кислородном конвертере. Способ включает загрузку в конвертер твердых шихтовых материалов, заливку жидкого чугуна, продувку расплава кислородом через фурму. При этом на днище конвертера оставляют...
Тип: Изобретение
Номер охранного документа: 0002527508
Дата охранного документа: 10.09.2014
10.09.2014
№216.012.f3f9

Способ получения термоэлектрического материала

Изобретение относится к области получения термоэлектрических материалов, применяемых для изготовления термостатирующих и охлаждающих устройств, систем кондиционирования и в других областях техники. Сущность: способ включает механоактивационную обработку в планетарной шаровой мельнице твердых...
Тип: Изобретение
Номер охранного документа: 0002528280
Дата охранного документа: 10.09.2014
10.09.2014
№216.012.f433

Наноструктурный термоэлектрический материал

Изобретение относится к наноструктурному термоэлектрическому материалу. Материал содержит теллурид сурьмы в виде тройного твердого раствора состава ВiSbТе, где х имеет значения от 0,4 до 0,5, и дисперсный наполнитель, выполненый из ультрадисперсного алмаза со средним размером частиц от 3 до 5...
Тип: Изобретение
Номер охранного документа: 0002528338
Дата охранного документа: 10.09.2014
20.09.2014
№216.012.f61e

Способ получения наноразмерных порошков титаната лития

Изобретение может быть использовано при получении материалов для электронной промышленности, в частности для литий-ионных аккумуляторов. Способ получения титаната лития включает получение смеси, содержащей соединения титана и лития, и термообработку полученной смеси с последующим обжигом...
Тип: Изобретение
Номер охранного документа: 0002528839
Дата охранного документа: 20.09.2014
20.10.2014
№216.012.fff4

Электропривод

Изобретение относится к электротехнике и может быть использовано в электроприводе шахтных подъемных машин (ШПМ). Технический результат заключается в снижении пути, проходимого подъемным сосудом в период аварийной остановки ШПМ, повышении межремонтного срока тормозных колодок, а следовательно, и...
Тип: Изобретение
Номер охранного документа: 0002531380
Дата охранного документа: 20.10.2014
20.10.2014
№216.013.002e

Измельчитель-классификатор

Изобретение относится к области измельчения и разделения твердого полезного ископаемого и может быть использовано, например, при обогащении разного вида минерального сырья. Измельчитель-классификатор содержит вращающийся перфорированный барабан 2, установленный на приводных 4 и поддерживающих 5...
Тип: Изобретение
Номер охранного документа: 0002531438
Дата охранного документа: 20.10.2014
Показаны записи 101-110 из 244.
20.07.2014
№216.012.dfaf

Способ получения отливок сплавов на основе гамма алюминида титана

Изобретение относится к области металлургии, в частности к способам получения отливок сплавов на основе гамма алюминида титана, и может быть использовано при получении изделий ответственного назначения, работающих при температурах до 700°C, в частности лопаток газотурбинных двигателей. Способ...
Тип: Изобретение
Номер охранного документа: 0002523049
Дата охранного документа: 20.07.2014
27.07.2014
№216.012.e489

Способ изготовления алмазного инструмента на гальванической связке

Изобретение относится к области абразивной обработки и может быть использовано при изготовлении алмазного инструмента на гальванической связке, преимущественно для обработки хрупких неметаллических материалов. На корпусе инструмента закрепляют крупные алмазные зерна первым слоем связки...
Тип: Изобретение
Номер охранного документа: 0002524295
Дата охранного документа: 27.07.2014
27.07.2014
№216.012.e5f0

Многокомпонентное биоактивное нанокомпозиционное покрытие с антибактериальным эффектом

Изобретение относится к медицинской технике, а именно к биосовместимым износостойким нанокомпозиционным тонкопленочным материалам, используемым в качестве покрытий при изготовлении имплантатов, предназначенных для замены поврежденных участков костной ткани. Покрытие выполнено на основе...
Тип: Изобретение
Номер охранного документа: 0002524654
Дата охранного документа: 27.07.2014
10.08.2014
№216.012.e70c

Способ формирования высококачественных моп структур с поликремниевым затвором

Изобретение относится к области микроэлектроники и может быть использовано для создания высококачественных мощных ДМОП транзисторов, КМОП интегральных схем, ПЗС-приборов. Способ включает операцию термического отжига МОП структур в температурном диапазоне от 600-850°С в электрическом поле...
Тип: Изобретение
Номер охранного документа: 0002524941
Дата охранного документа: 10.08.2014
20.08.2014
№216.012.eb01

Способ выплавки и внепечной обработки высококачественной рельсовой стали

Изобретение относится к черной металлургии, в частности к способу производства рельсовой стали. Способ включает продувку расплава кислородом, выпуск расплава в ковш, наводку покровного шлак в ковше, обработку расплава в вакууматоре. За 1-3 минуты до окончания продувки замеряют температуру...
Тип: Изобретение
Номер охранного документа: 0002525969
Дата охранного документа: 20.08.2014
20.08.2014
№216.012.eb21

Рабочее колесо дымососа

Изобретение относится к области промышленного оборудования. Рабочее колесо дымососа состоит из центрального диска, двух покрышек, лопаток ступицы и приводного вала. Новым является то, что на боковых сторонах покрышек закреплены пустотелые кольца различного внешнего и внутреннего диаметров, а в...
Тип: Изобретение
Номер охранного документа: 0002526001
Дата охранного документа: 20.08.2014
10.09.2014
№216.012.f0f6

Способ выплавки и внепечной обработки высококачественной стали для железнодорожных рельсов

Изобретение относится к черной металлургии, в частности к способу производства рельсовой стали в кислородном конвертере. Способ включает загрузку в конвертер твердых шихтовых материалов, заливку жидкого чугуна, продувку расплава кислородом через фурму. При этом на днище конвертера оставляют...
Тип: Изобретение
Номер охранного документа: 0002527508
Дата охранного документа: 10.09.2014
10.09.2014
№216.012.f3f9

Способ получения термоэлектрического материала

Изобретение относится к области получения термоэлектрических материалов, применяемых для изготовления термостатирующих и охлаждающих устройств, систем кондиционирования и в других областях техники. Сущность: способ включает механоактивационную обработку в планетарной шаровой мельнице твердых...
Тип: Изобретение
Номер охранного документа: 0002528280
Дата охранного документа: 10.09.2014
10.09.2014
№216.012.f433

Наноструктурный термоэлектрический материал

Изобретение относится к наноструктурному термоэлектрическому материалу. Материал содержит теллурид сурьмы в виде тройного твердого раствора состава ВiSbТе, где х имеет значения от 0,4 до 0,5, и дисперсный наполнитель, выполненый из ультрадисперсного алмаза со средним размером частиц от 3 до 5...
Тип: Изобретение
Номер охранного документа: 0002528338
Дата охранного документа: 10.09.2014
20.09.2014
№216.012.f61e

Способ получения наноразмерных порошков титаната лития

Изобретение может быть использовано при получении материалов для электронной промышленности, в частности для литий-ионных аккумуляторов. Способ получения титаната лития включает получение смеси, содержащей соединения титана и лития, и термообработку полученной смеси с последующим обжигом...
Тип: Изобретение
Номер охранного документа: 0002528839
Дата охранного документа: 20.09.2014
+ добавить свой РИД