×
20.10.2015
216.013.84ea

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ КОСМИЧЕСКОГО АППАРАТА

Вид РИД

Изобретение

Аннотация: Способ изготовления космического аппарата относится к космической технике. Способ заключается в том, что производят сборку космического аппарата, проводят электрические испытания на функционирование, испытания на воздействие механических нагрузок, термовакуумные испытания определенным образом. Перед проведением испытаний на воздействие механических нагрузок рассчитывают емкость аккумуляторных батарей, необходимую для проведения работ, заряжают штатные аккумуляторные батареи на суммарную емкость, превышающую расчетную величину. При превышении расчетного значения суммарной емкости батарей делят период работ на части, удовлетворяющие условию расчетной емкости. Контролируют и поддерживают исходное состояние системы электропитания. Обеспечивается функциональная надежность способа изготовления космического аппарата. 2 з.п. ф-лы, 1 ил.

Изобретение относится к космической технике и может быть использовано при изготовлении связных космических аппаратов.

Известен способ изготовления космического аппарата, включающий изготовление комплектующих, сборку космического аппарата, проведение электрических испытаний на функционирование, испытаний на воздействие механических нагрузок, термовакуумных испытаний, а также заключительных испытаний на функционирование космического аппарата (патент №2305058 RU).

Недостатком известного способа является то, что он не регламентирует вопросы, относящиеся к особенностям конфигурации системы электропитания в процессе изготовления космического аппарата, что снижает надежность проводимых работ.

Анализ источников информации по патентной и научно-технической информации показал, что наиболее близким по технической сути, прототипом предлагаемого технического решения, является патент Российской Федерации №2459749: Способ изготовления космического аппарата, включающий изготовление комплектующих, сборку космического аппарата, включающего систему электропитания, имеющую солнечные батареи, аккумуляторные батареи и стабилизированный преобразователь напряжения для согласования работы солнечной и аккумуляторных батарей и обеспечения питанием, стабильным напряжением заданного номинала модулей служебных систем и полезной нагрузки, подготовку источников электроэнергии к работе, проведение электрических испытаний космического аппарата на функционирование, испытаний на воздействие механических нагрузок, термовакуумных испытаний, а также заключительных испытаний, включая контроль стыковки солнечных и аккумуляторных батарей, отличающийся тем, что испытания на воздействие механических нагрузок и контроль стыковки солнечных и аккумуляторных батарей проводят со штатными аккумуляторными и солнечными батареями, причем аккумуляторные батареи перед проведением испытаний на воздействие механических нагрузок заряжают режимом, эквивалентным режиму штатного предстартового заряда, а все остальные испытания проводят с применением технологических функциональных имитаторов солнечных и аккумуляторных батарей, причем имитаторы солнечных батарей подключают к промышленной сети непосредственно, а имитаторы аккумуляторных батарей к промышленной сети комбинировано: по зарядному интерфейсу - непосредственно, а по разрядному интерфейсу - через систему гарантированного электроснабжения, при этом штатные аккумуляторные батареи хранят электрически разобщенными со стабилизированным преобразователем напряжения, в подзаряженном состоянии.

Недостатком известного способа изготовления космического аппарата является недостаточная функциональная надежность при проведении испытаний на воздействие механических нагрузок. Это обусловлено тем, что при проведении данных испытаний, возможна (например) нештатная работа электромеханических коммутаторов (из-за возникновения нерасчетных резонансных явлений в каких-либо узлах космического аппарата). Испытания на воздействие механических нагрузок проводятся (за редким исключением) в выключенном состоянии космического аппарата, то есть - когда бортовые источники (в основном, аккумуляторные батареи) электрически разобщены с автоматикой системы электропитания. Нештатная работа электромеханических коммутаторов может привести к несанкционированному включению системы электропитания и началу разряда аккумуляторных батарей на некоммутируемые нагрузки и собственное потребление автоматики системы электропитания. Так как аккумуляторные батареи перед проведением испытаний на воздействие механических нагрузок заряжают, это событие еще не аварийное, при условии своевременного принятия мер исключающих возможность полного разряда и последующего переразряда аккумуляторных батарей, чреватого выводом их из строя.

Задачей предложенного авторами технического решения является повышение функциональной надежности способа изготовления космического аппарата при проведении испытаний космического аппарата на воздействие механических нагрузок.

Поставленная задача решается тем, что при изготовлении космического аппарата содержащего систему электропитания в составе солнечных батарей, аккумуляторных батарей и стабилизированного преобразователя напряжения для согласования работы солнечных и аккумуляторных батарей и обеспечения питанием стабильным напряжением бортовой нагрузки, включающий сборку космического аппарата, проведение электрических испытаний космического аппарата на функционирование, испытаний на воздействие механических нагрузок, термовакуумных испытаний, причем испытания на воздействие механических нагрузок проводят с заряженными штатными аккумуляторными батареями и штатными солнечными батареями, а испытания космического аппарата на функционирование и термовакуумные испытания проводят с применением технологических функциональных имитаторов солнечных и аккумуляторных батарей, перед проведением испытаний космического аппарата на воздействие механических нагрузок рассчитывают емкость аккумуляторных батарей, необходимую для работы системы электропитания в данной конфигурации в течение периода проведения работ, включающего испытания космического аппарата на воздействие механических нагрузок, и заряжают штатные аккумуляторные батареи на суммарную емкость, превышающую расчетную величину, а в случае превышения расчетной емкостью суммарной емкости аккумуляторных батарей делят указанный период проведения работ на удовлетворяющие условию необходимой расчетной емкости части, кроме того, перед проведением испытаний космического аппарата на воздействие механических нагрузок и после их завершения контролируют исходное состояние системы электропитания и, в случае выявления неисходного состояния, проводят приведение системы электропитания в исходное состояние. При этом рассчитывают емкость аккумуляторных батарей, необходимую для работы системы электропитания в данной конфигурации в течение периода проведения работ, исходя из соотношения:

С>Iн·k·Тпер/η,

где

С - суммарная емкость штатных аккумуляторных батарей, А·ч;

Iн - ток нагрузки системы электропитания в данной конфигурации, А;

k - коэффициент, учитывающий разницу в напряжениях нагрузки и аккумуляторных батарей;

Тпер - период проведения работ, включающий испытания космического аппарата на воздействие механических нагрузок, ч;

η - коэффициент полезного действия системы электропитания в режиме разряда аккумуляторных батарей. Кроме того, исходное состояние системы электропитания контролируют по наличию-отсутствию напряжения на ее выходе, а приведение системы электропитания в исходное состояние проводят автоматически по появлению напряжения на ее выходе путем формирования соответствующей команды с питанием от выходного напряжения системы электропитания.

Действительно, ситуацией критичной (требующей оперативного вмешательства) может стать нештатное включение системы электропитания и появление разряда аккумуляторных батарей. Нежелательные отрицательные последствия этого могут быть парированы тем, что перед проведением испытаний космического аппарата на воздействие механических нагрузок (после штатной стыковки аккумуляторных батарей) и после их завершения контролируют исходное состояние системы электропитания и в случае выявления неисходного состояния проводят приведение системы электропитания в исходное состояние. При этом исходное состояние системы электропитания контролируют по наличию-отсутствию напряжения на ее выходе, а приведение системы электропитания в исходное состояние проводят от наземной аппаратуры или автоматически по появлению напряжения на ее выходе путем формирования соответствующей команды с питанием от выходного напряжения системы электропитания.

Штатно команда на отключение системы электропитания КА формируется только наземным технологическим питанием, так как при эксплуатации КА эта команда не используется. В отличие от нее команда на включение системы электропитания формируется еще и бортовым питанием: по радиокоманде и по контакту отделения «КО» поступающему от разгонного блока на участке выведения КА на орбиту. Однако если вместо наземного технологического питания к цепям прохождения команды на отключение системы электропитания искусственно подключить бортовое питание, существующая схема отключения системы электропитания КА сохранит свою функциональную работоспособность.

Перед проведением испытаний КА на воздействие механических нагрузок рассчитывают емкость аккумуляторных батарей, необходимую для работы системы электропитания в данной конфигурации в течение периода проведения работ, включающего испытания космического аппарата на воздействие механических нагрузок, и заряжают штатные аккумуляторные батареи на суммарную емкость, превышающую расчетную величину, а в случае превышения расчетной емкостью суммарной емкости аккумуляторных батарей делят указанный период проведения работ на удовлетворяющие условию необходимой расчетной емкости части, кроме того, перед проведением испытаний космического аппарата на воздействие механических нагрузок и после их завершения контролируют исходное состояние системы электропитания и, в случае выявления неисходного состояния, проводят приведение системы электропитания в исходное состояние. При этом рассчитывают емкость аккумуляторных батарей, необходимую для работы системы электропитания в данной конфигурации в течение периода проведения работ, исходя из соотношения:

С>Iн·k·Тпер/η,

где

С - суммарная емкость штатных аккумуляторных батарей, А·ч;

Iн - ток нагрузки системы электропитания в данной конфигурации, А;

k - коэффициент, учитывающий разницу в напряжениях нагрузки и аккумуляторных батарей;

Тпер - период проведения работ, включающий испытания космического аппарата на воздействие механических нагрузок, ч;

η - коэффициент полезного действия системы электропитания в режиме разряда аккумуляторных батарей.

На фиг.1 приведена функциональная схема автономной системы электроснабжения КА в связке с наземным устройством защиты от несанкционированного включения системы электропитания КА для реализации заявляемого способа.

Автономная система электроснабжения КА содержит солнечную батарею 1, подключенную к нагрузке 2 через стабилизатор напряжения 3, аккумуляторные батареи 41-4n, подключенные через коммутаторы 41/1-4n/1 (на схеме они изображены в замкнутом состоянии, система электропитания включена - неисходное состояние для этапа испытаний КА на воздействие механических нагрузок), и зарядные устройства 51-5n - к солнечной батарее 1, а через разрядные устройства 61-6n - к входу выходного фильтра стабилизатора напряжения 3.

Параллельно аккумуляторным батареям 41-4n подключены устройства контроля аккумуляторных батарей 71-7n, связанные входом с аккумуляторными батареями 41-4n для контроля напряжения аккумуляторов, а выходом - с нагрузкой 2. В цепи заряда-разряда аккумуляторных батарей установлены измерительные шунты 81-8n.

Зарядные устройства 51-5n состоят из регулирующего ключа 9, управляемого схемой управления 10, вольтодобавочного узла, выполненного на трансформаторе 5-3, транзисторах 5-1 и 5-2 и выпрямителя на диодах 5-4 и 5-5.

Разрядные устройства 61-6n состоят из регулирующего ключа 11, управляемого схемой управления 12.

Стабилизатор напряжения 3 состоит из регулирующего ключа 13, управляемого схемой управления 14, входного фильтра - конденсатор 15 и выходного фильтра на диоде 17, дросселе 18 и конденсаторе 16.

Схемы управления: 10 зарядных устройств 51-5n, 12 разрядных устройств 61-6n, 14 стабилизаторов напряжения 3 выполнены в виде широтно-импульсных модуляторов, входом подключенных к шинам стабилизируемого напряжения. Схемы управления 10 зарядных устройств 51-5n дополнительно связаны с измерительными шунтами 81-8n и нагрузкой 2.

Обобщенная шина «СБ-АБ» 19, используемая для питания наиболее ответственных силовых коммутаторов системы электропитания (в частности, коммутаторов аккумуляторных батарей 41/1-4n/1), связана с солнечной батареей 1 и аккумуляторными батареями 41-4n через диоды 21 и 20, 22 соответственно.

К шине «СБ-АБ» 19 подключен блок команд 23, связанный входом с наземным испытательным комплексом 28 (на этапе проведения электроиспытаний КА), а выходом - с коммутаторами 41/1-4n/1. При проведении испытаний КА на воздействие механических нагрузок связь блока команд 23 с наземным испытательным комплексом 28 отсутствует. Блок команд 23 представляет собой набор силовых исполнительных коммутаторов, запитываемых контактами маломощных реле по соответствующим командам (на схеме не показано). В частности, одно из маломощных реле (на отключение системы электропитания) связано с наземным испытательным комплексом 28.

К выходу системы электропитания подключают наземное устройство защиты 24 от несанкционированного включения системы электропитания КА. В простейшем виде устройство 24 состоит из реле 25, подключенного к нагрузке (выходным шинам) системы электропитания через конденсатор 26 (для ограничения времени протекания тока через реле 25). Замыкающиеся контакты 27 (две пары) указанного реле 25 обеспечат подачу питания на ограниченное время на маломощное реле отключения системы электропитания бортовым напряжением (вместо технологического).

В случае несанкционированного включения системы электропитания (замыкания коммутаторов 41/1-4n/1) появится напряжение на входе устройства защиты 24 с выхода системы электропитания, сработает реле 25 на время заряда конденсатора 26 и произойдет автоматическая выдача команды через контакты 27 на выключение системы электропитания, приводящая систему электропитания в исходное (выключенное) состояние.

Таким образом, заявляемый способ изготовления космического аппарата повышает функциональную надежность способа изготовления космического аппарата при проведении испытаний космического аппарата на воздействие механических нагрузок.


СПОСОБ ИЗГОТОВЛЕНИЯ КОСМИЧЕСКОГО АППАРАТА
Источник поступления информации: Роспатент

Показаны записи 191-200 из 237.
01.09.2019
№219.017.c575

Способ изготовления жидкостного контура системы терморегулирования космического аппарата

Изобретение относится к области космической техники, в частности к изготовлению системы терморегулирования. Способ изготовления жидкостного контура системы терморегулирования космического аппарата включает гидравлическое соединение контура с устройством заправки; заполнение и промывку...
Тип: Изобретение
Номер охранного документа: 0002698503
Дата охранного документа: 28.08.2019
01.09.2019
№219.017.c5a3

Способ испытаний системы терморегулирования космического аппарата

Изобретение относится к космической технике, в частности к наземным испытаниям космических систем. Способ испытания системы терморегулирования космического аппарата включает следующие действия. Заполнение трактов системы жидким теплоносителем. Отстыковка компенсационного устройства. Соединение...
Тип: Изобретение
Номер охранного документа: 0002698573
Дата охранного документа: 28.08.2019
01.09.2019
№219.017.c5db

Электрический жидкостной ракетный двигатель

Изобретение относится к космической технике, а более конкретно к ЖРД. Электротермический жидкостной реактивный двигатель включает электромагнитный топливный клапан, термическое сопротивление, камеру нагревания (КН) с катализатором, электронагревателем-газообразователем (ЭГ), сопло и...
Тип: Изобретение
Номер охранного документа: 0002698641
Дата охранного документа: 28.08.2019
03.09.2019
№219.017.c6b1

Система терморегулирования космического аппарата

Изобретение относится к космической технике, в частности к системам терморегулирования. Система терморегулирования космического аппарата содержит два сдублированных одинаковых жидкостных контура. В каждом жидкостном контуре установлен терморегулятор расхода теплоносителя прямого действия. Он...
Тип: Изобретение
Номер охранного документа: 0002698967
Дата охранного документа: 02.09.2019
05.09.2019
№219.017.c762

Способ эксплуатации литий-ионной аккумуляторной батареи в автономной системе электропитания

Изобретение относится к электротехнической промышленности и может быть использовано при разработке и эксплуатации литий-ионных аккумуляторных батарей автономных систем электропитания искусственного спутника Земли (ИСЗ). Согласно изобретению способ эксплуатации литий-ионной аккумуляторной...
Тип: Изобретение
Номер охранного документа: 0002699051
Дата охранного документа: 03.09.2019
10.09.2019
№219.017.c9c7

Многоканальный преобразователь частоты в код

Изобретение относится к автоматике и вычислительной технике, в частности к устройствам преобразования частот в коды. Технический результат - создание более простой структуры многоканального преобразователя частоты в код, позволяющего осуществлять контроль частоты сигналов в m приемниках в...
Тип: Изобретение
Номер охранного документа: 0002699679
Дата охранного документа: 09.09.2019
11.09.2019
№219.017.c9d4

Способ питания нагрузки постоянным током в автономных системах электропитания космических аппаратов и автономная система электропитания для его реализации

Использование: в области электротехники для электропитания космических аппаратов (КА). Технический результат - повышение эксплуатационной надежности системы электропитания и повышение эффективности использования солнечной батареи. Согласно способу напряжение на нагрузке от первичного источника...
Тип: Изобретение
Номер охранного документа: 0002699764
Дата охранного документа: 10.09.2019
12.09.2019
№219.017.ca0f

Способ установления оптимального значения эквивалентной изотропно излучаемой мощности передающей системы космического аппарата на низкой круговой орбите для связи со спутником-ретранслятором на высокой круговой орбите, оснащенным приемной антенной с узким управляемым лучом

Изобретение относится к космическим системам ретрансляции информации между низкоорбитальными космическими аппаратами и центрами управления и приема сообщений с использованием высокоорбитальных, преимущественно геостационарных спутников-ретрансляторов. Технический результат состоит в разработке...
Тип: Изобретение
Номер охранного документа: 0002699821
Дата охранного документа: 11.09.2019
24.10.2019
№219.017.d98e

Панель солнечной батареи

Изобретение относится к конструкциям панелей солнечной батареи раскрывающегося типа для искусственного спутника Земли - космического аппарата (КА). Панель солнечной батареи содержит раму, выполненную из углепластиковых труб и фитингов, и сетеполотно, выполненное из струн, упруго натянутых в...
Тип: Изобретение
Номер охранного документа: 0002703800
Дата охранного документа: 22.10.2019
24.10.2019
№219.017.da31

Способ автономной коллокации на околостационарной орбите

Изобретение относится к управлению движением группы (двух) космических аппаратов (КА) для удержания их в одной и той же узкой (по долготе) области в окрестности точки стояния. Один из КА работает в режиме автономной (или само-) коллокации (КАСК). Рабочую позицию КАСК выбирают рядом (по долготе)...
Тип: Изобретение
Номер охранного документа: 0002703696
Дата охранного документа: 21.10.2019
Показаны записи 151-154 из 154.
05.09.2019
№219.017.c75a

Система электропитания космического аппарата

Использование: в области электротехники, для электропитания космических аппаратов (КА). Технический результат - повышение функциональной надежности системы электропитания. Система электропитания космического аппарата состоит из солнечной батареи, подключенной своими плюсовой и минусовой...
Тип: Изобретение
Номер охранного документа: 0002699084
Дата охранного документа: 03.09.2019
01.11.2019
№219.017.dcc6

Система электроснабжения космического аппарата с экстремальным регулированием мощности солнечной батареи

Система электроснабжения космического аппарата содержит солнечную батарею (СБ), датчик тока, цифровую систему управления с экстремальным регулятором мощности СБ, регулятор напряжения, выполненный в виде мостового инвертора с входным С-фильтром, трансформатор с первичной и вторичными обмотками,...
Тип: Изобретение
Номер охранного документа: 0002704656
Дата охранного документа: 30.10.2019
10.11.2019
№219.017.e07d

Способ питания нагрузки постоянным током в автономных системах электропитания космических аппаратов для широкого диапазона мощности нагрузки и автономная система электропитания для его реализации

Изобретение относится к области космической техники и может быть использовано при проектировании космических аппаратов. Преобразователи напряжения, зарядные и разрядные устройства выполняют в виде единичных модулей. Модули рассчитывают исходя из наименьшей потребительской потребности...
Тип: Изобретение
Номер охранного документа: 0002705537
Дата охранного документа: 08.11.2019
14.03.2020
№220.018.0bc8

Способ изготовления космического аппарата

Изобретение относится к космической технике, а более конкретно созданию космических аппаратов (КА). Способ изготовления КА, содержащего систему электропитания, имеющую в своем составе солнечные батареи, аккумуляторные батареи и стабилизированный преобразователь напряжения, заключающийся в...
Тип: Изобретение
Номер охранного документа: 0002716471
Дата охранного документа: 11.03.2020
+ добавить свой РИД