×
27.09.2015
216.013.7fde

Результат интеллектуальной деятельности: СМЕСИТЕЛЬНОЕ УСТРОЙСТВО ДЛЯ СМЕШИВАНИЯ АГЛОМЕРИРУЮЩЕГО ПОРОШКА В СУСПЕНЗИЮ

Вид РИД

Изобретение

№ охранного документа
0002564331
Дата охранного документа
27.09.2015
Аннотация: Изобретение касается смесительного устройства для смешивания агломерирующего порошка в суспензию. Смесительное устройство включает форсунку для создания струи суспензии, загрузочное устройство для ввода порошка в струю суспензии, смесительную камеру, которая устроена, чтобы смешивать частицы с порошком так, чтобы порошок налипал на частицы, и диффузор для успокоения суспензии таким образом, чтобы захваченные порошком частицы образовывали в суспензии агломераты, при этом смесительная камера в области, в которой поперечное сечение в направлении потока сужается, имеет диафрагму и/или направляющий профиль, с помощью которых может осуществляться завихрение струи суспензии с порошком. Техническим результатом изобретения является возможность равномерного поступления энергии перемешивания в суспензию для более интенсивного контактирования порошка с частицами. 7 з.п. ф-лы, 1 ил.

Изобретение касается смесительного устройства для смешивания агломерирующего порошка в суспензию.

Культивирование микроорганизмов в промышленном масштабе в последние годы нашло многостороннее применение. Так, микроорганизмы выращиваются для создания биомассы для выработки электроэнергии тока или для производства биодизеля. В ходе усилий по снижению выброса двуокиси углерода во всем мире, кроме того, применяются фотосинтетически активные микроорганизмы для фиксации двуокиси углерода из отработавших газов.

Для культивирования микроорганизмов, таких как, например, водоросли или цианобактерии, применяются как биореакторы, так и установки с псевдоожиженным слоем (аквакультуры). Микроорганизмы культивируются в надлежащем питательном растворе, который содержит воду, источник углерода, а также при необходимости источник энергии и дополнительные вещества, такие как минералы или микроэлементы. Состав ориентируется при этом на требования микроорганизмов.

Так как микроорганизмы переносят только очень небольшие плотности клеток, при сборе урожая образуются большие количества жидкой среды, из которой должны выделяться микроорганизмы, чтобы подвергать их дальнейшей переработке. Современные процессы применяют для этого энергосберегающие способы магнитной сепарации, при которых микроорганизмы заряжаются частичками магнетита и затем направляются через магнитное поле. При этом намагниченные микроорганизмы отделяются от ненамагниченной жидкости. Способ магнитной сепарации описан, например, в DE 10 2009 030 712.

Для достижения эффективного разделения посредством частичек магнетита эти частички должны стабильно связываться с микроорганизмами. Для этого требуется интенсивный контакт между микроорганизмами и частичками магнетита, который приводит к стабильному налипанию частичек магнетита на микроорганизмы и образованию агломератов. Традиционно этот контакт между микроорганизмами и частичками магнетита создается путем введения частичек магнетита в суспензию питательного раствора микроорганизмов. Однако недостаток при этом заключается в том, что поступление энергии перемешивания в суспензию происходит исключительно неравномерно. Из-за этого в целом для перемешивания необходимо больше энергии, чем было бы необходимо, если бы энергия перемешивания могла равномерно поступать в суспензию для достижения достаточно интенсивного контактирования частичек магнетита с микроорганизмами.

Из US 7784999 B1 известно смесительное устройство, у которого текучая среда через сужающуюся форсунку накачивается в смесительную камеру. В смесительной камере может добавляться присадка и смешиваться с текучей средой. В направлении потока после смесительной камеры расположен диффузор для успокоения потока.

Задачей изобретения является создать смесительное устройство для смешивания агломерирующего порошка в суспензии, у которого при смешивании энергия смешивания может равномерно поступать в суспензию и за счет этого достигается хорошее образование агломератов.

Задача решается с помощью признаков п.1 формулы изобретения. Предпочтительные варианты ее осуществления указаны в других пунктах формулы изобретения.

Предлагаемое изобретением смесительное устройство для смешивания агломерирующего порошка в суспензию, образованную текучей средой-носителем и суспендированными в ней частицами, имеет форсунку для создания струи суспензии, загрузочное устройство для ввода порошка в струю суспензии, смесительную камеру, которая устроена, чтобы смешивать частицы с порошком, так чтобы порошок налипал на частицы, и диффузор для успокоения суспензии таким образом, чтобы захваченные порошком частицы образовывали в суспензии агломераты.

Предпочтительно порошок представляет собой порошок магнетита. Кроме того, предпочтительно, чтобы частицы представляли собой водоросли и/или цианобактерии, а текучая среда-носитель - питательный раствор для водорослей и/или цианобактерий.

Форсунка, смесительная камера и диффузор предпочтительно включены в ряд. При этом предпочтительно, чтобы форсунка, смесительная камера и диффузор были соединены в трубу. Загрузочное устройство предпочтительно впадает своим загрузочным отверстием в смесительную камеру, так что при входе струи суспензии в смесительную камеру порошок может вводиться загрузочным устройством через загрузочное отверстие в струю суспензии. При этом предпочтительно, чтобы загрузочное отверстие загрузочного устройства было расположено вне струи суспензии в смесительной камере.

Смесительная камера предпочтительно устроена для завихрения струи суспензии с порошком. Для этого смесительная камера предпочтительно имеет диафрагму и/или направляющий профиль, с помощью которых может осуществляться завихрение струи суспензии с порошком. Кроме того, предпочтительно диффузор имеет такую степень открытия и длину, чтобы суспензия в диффузоре могла успокаиваться без отрыва, благодаря чему в суспензии образуются агломераты.

С помощью предлагаемого изобретением смесительного устройства при смешивании порошка в суспензию становится возможным равномерное поступление энергии смешивания в суспензию, благодаря чему достигнуто интенсивное контактирование порошка с частицами. Благодаря этому частицы вследствие агломерирующего действия порошка могут эффективно образовывать агломераты. Предлагаемое изобретением смесительное устройство функционирует особенно предпочтительно, когда суспензия образована из микроорганизмов и воды, а также порошок представляет собой порошок магнетита. Суспензия с микроорганизмами нагнетается в качестве рабочей среды в смесительное устройство, при этом в форсунке суспензия ускоряется. Благодаря этому форсункой создается рабочая струя, в которую подмешивается порошок магнетита либо в газообразной фазе, либо в жидкой фазе. В смесительной камере микроорганизмы и магнитные частицы гомогенно смешиваются за счет высоких сил сдвига и турбулентностей. В расположенном ниже по потоку от смесительной камеры диффузоре скорость суспензии частично преобразуется в давление. В диффузоре силы сдвига и турбулентности уменьшаются, и в диффузоре может происходить желательное образование агломератов микроорганизмов с магнетитом.

Кроме того, благодаря расположению форсунки, смесительной камеры и диффузора в виде трубы создается как бы многоступенчатый вариант осуществления смесительного устройства, при этом через смесительное устройство может протекать непрерывный поток суспензии. Таким образом, с помощью предлагаемого изобретением смесительного устройства порошок магнетита в непрерывном процессе подмешивается к суспензии микроорганизмов, что способствует образованию агломератов. Предлагаемый изобретением вариант осуществления смесительного устройства, предпочтительно включающего в себя диафрагму и направляющий профиль, обеспечивает возможность хорошего перемешивания суспензии микроорганизмов и частиц магнетита. При этом поступление энергии в суспензию происходит равномерно, благодаря чему требуемая энергия для достижения заранее определенной степени перемешивания суспензии сокращена до минимума. При этом предпочтительным образом по сравнению с традиционными смесительными устройствами, у которых поступление энергии в суспензию является неравномерным, может экономиться энергия. Кроме того, предпочтительно, если смесительное устройство внедрено в установку для производства микроорганизмов, чтобы суспензия со своими образованными в ней агломератами могла производиться непрерывно.

Ниже с помощью прилагаемого схематичного чертежа поясняется один из предпочтительных вариантов осуществления предлагаемого изобретением смесительного устройства. На фигуре 1 показано продольное сечение этого варианта осуществления смесительного устройства.

Как видно из фигуры 1, смесительное устройство 1 выполнено растянутым в длину и в форме трубы, при этом смесительное устройство 1, если смотреть на фигуре, слева имеет входное поперечное сечение 2, а справа выходное поперечное сечение 3. Для смешивания суспензии суспензия должна нагнетаться, например, насосом через входное поперечное сечение 2 в смесительное устройство 1. На входном поперечном сечении 2 смесительное устройство 1 имеет форсунку 4, вход которой совпадает с входным поперечным сечением 2. В направлении потока поперечное сечение потока форсунки 4 сужается до ее выходного поперечного сечения 5, причем при протекании через форсунку 4 поток суспензии ускоряется. Таким образом, длина форсунки 4 представляет собой участок 6 ускорения, длина которого выбрана таким образом, чтобы на выходном поперечном сечении 5 форсунки образовывалась струя суспензии.

Ниже по потоку от форсунки 4 смесительное устройство 1 имеет смесительную камеру 7, которая выполнена в виде трубы и имеет входное поперечное сечение 8 смесительной камеры, которое совпадает с выходным поперечным сечением 5 форсунки, и выходное поперечное сечение 9 смесительной камеры. Между входным поперечным сечением 8 смесительной камеры и выходным поперечным сечением 9 смесительной камеры распространяется участок 10 смешивания, длина которого выбрана таким образом, чтобы могло осуществляться хорошее перемешивание суспензии в смесительной камере 7.

У входного поперечного сечения 8 смесительной камеры выполнена завихрительная камера 11 смесительной камеры 7, причем эта завихрительная камера 11 имеет большее поперечное сечение, чем входное поперечное сечение 8 смесительной камеры. Благодаря этому входящая через выходное поперечное сечение 5 форсунки и входное поперечное сечение 8 смесительной камеры струя 20 суспензии в завихрительной камере 11 представляет собой свободную струю текучей среды.

На завихрительной камере 11 выполнено загрузочное отверстие 12, к которому, в свою очередь, прикреплен загрузочный трубопровод, по которому порошок 21 может нагнетаться в завихрительную камеру 11. Порошок 11 представляет собой порошок магнетита и может нагнетаться с помощью любого возможного нагнетательного устройства в завихрительную камеру 11 через загрузочное отверстие 12. В завихрительной камере 11 частицы порошка 21 попадают в краевые области струи 20 суспензии и захватываются ею. Благодаря этому происходит равномерное распределение порошка 21 в струе 20 суспензии.

Ниже по потоку от загрузочного отверстия 12 смесительная камера 7 имеет диафрагму 14, через которую суспензия течет при сильном завихрении. Кроме того, смесительная камера 7 ниже по потоку от диафрагмы 14 имеет направляющие профили 15, которые рельефно расположены на внутренней стенке смесительной камеры 7 и благодаря этому приводят к дополнительному завихрению потока суспензии. Возможна также смесительная камера 7 без диафрагмы 14 и/или направляющих профилей 15.

Благодаря тому, что завихрительная камера 11 имеет большее поперечное сечение, чем входное поперечное сечение 8 смесительной камеры, область вне входного поперечного сечения 8 смесительной камеры лежит в его аэродинамической тени. В этой области через загрузочное отверстие 12 вводится порошок 21, который захватывается струей 20 суспензии. Последующее протекание через диафрагму 14 и прохождение направляющих профилей 15 приводит к такому сильному дополнительному перемешиванию потока суспензии в смесительной камере 7, что достигается еще более интенсивное контактирование микроорганизмов с порошком магнетита. Благодаря этому в смесительной камере 7 происходит налипание порошка магнетита на микроорганизмы, вследствие чего микроорганизмы, со своей стороны, испытывают склонность к образованию агломератов. При отложении порошка 21 магнетита на микроорганизмах микроорганизмы могут притягиваться магнитным притяжением посредством порошка магнетита. Вызванное этим локальное скопление микроорганизмов приводит к образованию агломератов 22.

Ниже по потоку от смесительной камеры 7 у выходного поперечного сечения 9 смесительной камеры расположен диффузор 16, входное поперечное сечение 17 которого совпадает с выходным поперечным сечением 9 смесительной камеры. Диффузор 16 распространяется в направлении потока до своего выходного поперечного сечения 18, преодолевая участок 19 успокоения, при этом диффузор 16 на участке 19 успокоения расширяется в своем поперечном сечении. Степень открытия диффузора 16 и длина участка 19 успокоения выбраны так, чтобы поток суспензии в диффузоре 16 успокаивался таким образом, чтобы образование агломератов 22 происходило в достаточной мере. У выходного поперечного сечения 18 диффузора, которое совпадает с выходным поперечным сечением 3 смесительного устройства 1, суспензия с агломератами 22 стекает.

Форсунка 4, смесительная камера 7 и диффузор 16 расположены в ряд друг за другом, при этом суспензия протекает прямо через форсунку 4, смесительную камеру 7 и диффузор 16. Таким образом, смесительное устройство 1 выполнено в виде трубы, причем возможно, чтобы форсунка 4, смесительная камера 7 и диффузор 16 были цельно соединены друг с другом. У входного поперечного сечения 2 смесительного устройства 1 суспензия с более или менее тонко распределенными микроорганизмами втекает в смесительное устройство 1, а на выходном поперечном сечении 3 суспензия с агломерированными микроорганизмами стекает.

Сбор урожая микроорганизмов из суспензии особенно предпочтительно может выполняться способом магнитного разделения. Благодаря тому, что микроорганизмы находятся в виде агломератов 22 и к тому же намагничены, микроорганизмы в своих агломератах 22 просто и эффективно могут выделяться из суспензии с помощью магнита. Возможно, чтобы смесительное устройство 1 было встроено в загрузочный узел магнитного разделительного устройства. При этом суспензия через смесительное устройство 1 может подаваться в магнитное разделительное устройство, при этом из суспензии могут получаться агломераты 22 при высоком выходе и низкой затрате энергии. Кроме того, применение смесительного устройства 21 делает возможным непрерывную подачу суспензии в магнитное разделительное устройство, так что магнитное разделительное устройство тоже может эксплуатироваться непрерывно.

Благодаря тому, что смесительное устройство, включающее в себя форсунку 4, смесительную камеру 7 и диффузор 16, выполнено как бы многоступенчатым, в смесительном устройстве 1 происходит хорошее перемешивание суспензии, благодаря чему порошок магнетита находится в интенсивном контакте с микроорганизмами. Поступление энергии при смешивании в суспензию является равномерным, благодаря чему стала возможна высокая степень перемешивания суспензии при низком расходе энергии. При эксплуатации смесительного устройства 1 в качестве единственного потребителя энергии предусмотрен насос для нагнетания суспензии к входному поперечному сечению 2 смесительного устройства 1. Возможные перемешивающие устройства, которые традиционно известны для перемешивания суспензии с порошком и расходуют энергию, у смесительного устройства 1 предусматривать не требуется. В смесительной камере 7 действуют большие градиенты скорости в потоке суспензии, благодаря чему суспензия является сильно завихренной и турбулентной. Таким образом, в суспензии в смесительной камере 7 действуют высокие силы сдвига, которые способствуют интенсивному контакту порошка магнетита с микроорганизмами.

Через загрузочное отверстие 12 может дозироваться массовый поток порошка 21, который вводится в смесительную камеру 7. Массовый поток порошка может настраиваться на долю микроорганизмов в суспензии, так чтобы как можно больше порошка 21 могло приставать к микроорганизмам и как можно меньше порошка 21 текло в суспензии вместе с ней неэффективным образом. Благодаря этому при возможном колебании концентрации микроорганизмов в суспензии обеспечивается возможность соответственно дополнительной юстировки массового потока порошка.

В одном из особенно предпочтительных вариантов осуществления применяется магнетит или сравнимый материал, поверхность которого химически функционализирована таким образом, что частицы магнетита вступают в особенно интенсивную связь с поверхностями клеток водорослей или, соответственно, микроорганизмов.


СМЕСИТЕЛЬНОЕ УСТРОЙСТВО ДЛЯ СМЕШИВАНИЯ АГЛОМЕРИРУЮЩЕГО ПОРОШКА В СУСПЕНЗИЮ
Источник поступления информации: Роспатент

Показаны записи 1 111-1 120 из 1 431.
15.12.2018
№218.016.a7d0

Производственный модуль, система производства и способы эксплуатации производственного модуля

Изобретение относится к системам производства. Производственный модуль для обработки продукта или манипулирования продуктом в системе производства содержит модуль обнаружения продукта; порты передачи продукта на смежные производственные модули; модуль взаимодействия для назначения смежного...
Тип: Изобретение
Номер охранного документа: 0002675100
Дата охранного документа: 14.12.2018
26.12.2018
№218.016.aacc

Способ и устройство для осуществления процесса тестирования рельсового транспортного средства

Изобретение относится к области железнодорожной автоматики и телемеханики. Устройство для осуществления процесса тестирования рельсового транспортного средства со стационарным блоком управления, с блоком моделирования и с интерфейсом данных, которые расположены в стационарном месте, причём...
Тип: Изобретение
Номер охранного документа: 0002675728
Дата охранного документа: 24.12.2018
26.12.2018
№218.016.ab5a

Компонент турбомашины с охлаждающими элементами и способ изготовления и эксплуатации указанного компонента турбомашины

Изобретение относится к компоненту (1) турбомашины, в частности к компоненту камеры сгорания газовой турбины, или компоненту форсунки, содержащему корпус (2) с первой (20), второй (21) и третьей (22) секциями, при этом первая, вторая и третья секции (20, 21, 22) сформированы как единая деталь и...
Тип: Изобретение
Номер охранного документа: 0002675962
Дата охранного документа: 25.12.2018
26.12.2018
№218.016.ab6a

Способ определения режима выбросов

Настоящее изобретение относится к способу определения режима выбросов газотурбинного двигателя (10). Для обеспечения надежной работы газотурбинного двигателя (10) способ определения режима выбросов содержит несколько этапов. Сначала создают (102а) модель (102) системы газотурбинного двигателя...
Тип: Изобретение
Номер охранного документа: 0002675965
Дата охранного документа: 25.12.2018
29.12.2018
№218.016.ad24

Способ и устройство для реализации концепции транзакций в opc ua посредством механизма таймаута

Изобретение относится к области передачи данных. Технический результат заключается в расширении арсенала средств того же назначения. Способ информационного обмена между клиентом (UA-C) и сервером (UA-S1, UA-S2, UA-S3) системы клиент/сервер с применением протокола OPC-UA информационного обмена,...
Тип: Изобретение
Номер охранного документа: 0002676423
Дата охранного документа: 28.12.2018
30.12.2018
№218.016.adc7

Система поворота рабочего колеса

Изобретение относится к системам поворота рабочего колеса для вертикального выставления рабочего колеса, в частности рабочего колеса газовой турбины, для выполнения работ по техническому обслуживанию и/или ремонту, включающей в себя поворотную стойку, имеющую установленное на ней поворотное...
Тип: Изобретение
Номер охранного документа: 0002676498
Дата охранного документа: 29.12.2018
13.01.2019
№219.016.aee7

Осушитель воздуха на основе эффекта пельтье для встраивания в резервуар

Изобретение касается осушительного устройства для осушения воздуха в резервуаре. Оно имеет элемент Пельтье, который выполнен в виде одноступенчатого элемента Пельтье, и он термически соединен с холодной стороной и горячей стороной, при этом холодная сторона выполнена таким образом, что при...
Тип: Изобретение
Номер охранного документа: 0002676787
Дата охранного документа: 11.01.2019
16.01.2019
№219.016.b030

Стратегия восстановления корончатого хвоста лопатки турбины и лопатка турбины

Изобретение относится к способу наплавки материала на поверхность (4, 415) и может найти применение при изготовлении и ремонте корончатого хвостовика лопатки турбины. Создают свободностоящую стенку (13) или открытую вверх полость (6). На поверхности (4, 415) посредством наплавляемых валиков...
Тип: Изобретение
Номер охранного документа: 0002677028
Дата охранного документа: 15.01.2019
16.01.2019
№219.016.b044

Камера сгорания газотурбинного двигателя

Камера (10) сгорания газотурбинного двигателя (1) содержит внутреннюю стенку (22), наружную стенку (25) и пространство (28) между внутренней стенкой (22) и наружной стенкой (25), множество демпфирующих полостей (30) для демпфирования термоакустических вибраций в газообразных продуктах...
Тип: Изобретение
Номер охранного документа: 0002677018
Дата охранного документа: 15.01.2019
18.01.2019
№219.016.b0bb

Улучшенный высоковольтный размыкатель цепи

Изобретение относится к размыкателю цепи. Размыкатель цепи содержит один или более главных контактов и один резисторный контакт. Резисторный контакт соединен параллельно с по меньшей мере одним из упомянутых или более главных контактов. По меньшей мере один корпус размыкателя соединен с одним...
Тип: Изобретение
Номер охранного документа: 0002677270
Дата охранного документа: 16.01.2019
Показаны записи 951-951 из 951.
09.06.2019
№219.017.7f23

Способ и устройство для ввода пылей в металлический расплав в пирометаллургической установке

Изобретение относится к металлургической промышленности. Содержащий частицы пыли газ-носитель подают в зону нагрева безэлектродной плазменной горелки, пропускают его через плазму, образованную в зоне нагрева за счет подачи и перевода плазмообразующего газа посредством индукционного нагрева в...
Тип: Изобретение
Номер охранного документа: 0002447384
Дата охранного документа: 10.04.2012
+ добавить свой РИД