×
27.09.2015
216.013.7e24

Результат интеллектуальной деятельности: ЦИФРОВОЙ ОБНАРУЖИТЕЛЬ РАДИОСИГНАЛОВ В УСЛОВИЯХ ШУМА НЕИЗВЕСТНОЙ ИНТЕНСИВНОСТИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к радиотехнике и может быть использовано в панорамных приемниках станций радиопомех, радиопеленгаторах, средствах радиомониторинга и аналогичных устройствах для обнаружения источников радиоизлучения (ИРИ) в условиях шума неизвестной интенсивности. Техническим результатом изобретения является обеспечение постоянного значения вероятности ложной тревоги на выходе обнаружителя независимо от изменения помехово-сигнальной обстановки на входе приемника за счет реализации дополнительного канала когерентной обработки сигналов, обеспечивающего измерение средней дисперсии совокупных помех в канале обнаружения независимо от наличия в нем сигнала, что повышает достоверность результатов обнаружения. Устройство содержит процессор БПФ (1); схему косинусного преобразования (2); схему синусного преобразования (3); ЦЛЗ (4); первый, второй, третий и четвертый перемножители (5, 10, 17 и 18); первый и второй квадраторы (6, 7); накопитель (8); сумматор (9); регистр хранения коэффициента усреднения 1/H (11); схему вычитания (12); схему выбора максимума (СВМ) (13); накопитель (14), имеющий M входов; электронный ключ (15); схему сравнения (16); регистр хранения коэффициента усреднения 1/M (19); регистр хранения значения функции, определяющей уровень порога обнаружения (20). 1 ил.
Основные результаты: Цифровой обнаружитель радиосигналов в условиях шума неизвестной интенсивности, содержащий процессор БПФ, имеющий M выходов, M каналов квадратурной обработки, каждый из которых состоит из схем косинусного и синусного преобразования, первого и второго квадратора, сумматора, при этом входы схем косинусного и синусного преобразования объединены и соединены с соответствующими выходами процессора БПФ, схему выбора максимума (СВМ), имеющую M входов, при этом вход и выход m-го канала квадратурной обработки, где , соединены соответственно с соответствующими выходами процессора БПФ и входами СВМ, последовательно соединенные регистр хранения коэффициента усреднения 1/М, четвертый перемножитель, третий перемножитель, схема сравнения и электронный ключ, а также накопитель, имеющий M входов, выход которого соединен с вторым входом четвертого перемножителя, регистр хранения значения функции, определяющей уровень порога обнаружения, выход которого соединен со вторым входом третьего перемножителя, вторые входы электронного ключа и схемы сравнения соединены соответственно с первым и вторым выходом СВМ, а выходы электронного ключа и схемы сравнения являются выходами устройства, отличающейся тем, что дополнительно введены M каналов когерентной обработки сигнала, каждый из которых содержит последовательно соединенные цифровую линию задержки (ЦЛЗ), первый перемножитель, накопитель, второй перемножитель и схему вычитания, а также регистр хранения коэффициента усреднения 1/Н, выход которого соединен со вторым входом второго перемножителя, второй вход схемы вычитания m-го канала когерентной обработки соединен с выходом сумматора соответствующего канала квадратурной обработки, а выход - с соответствующим входом накопителя, имеющего M входов, при этом вход ЦЛЗ m-го канала когерентной обработки объединен со вторым входом первого перемножителя и соединен с выходом схемы косинусного преобразования соответствующего канала квадратурной обработки.

Изобретение относится к радиотехнике и может быть использовано в панорамных приемниках станций радиопомех, радиопеленгаторах, средствах радиомониторинга и аналогичных устройствах для обнаружения источников радиоизлучения (ИРИ) в условиях шума неизвестной интенсивности.

Известен оптимальный обнаружитель, содержащий последовательно соединенные приемную антенну, линейный тракт приемника, согласованный фильтр, пороговое устройство [см. Мартынов В.А., Селихов Ю.И. Панорамные приемники и анализаторы спектра / Под ред. Г.Д. Заварина. - 2-e изд., перераб. и доп. - М.: Советское радио, 1980. - 352 с., ил., рис. 2.6., с. 46].

Недостатком обнаружителя является то, что при увеличении интенсивности шума на входе приемника за счет постоянного уровня порога обнаружения при отсутствии сигнала произойдет увеличение уровня ложных тревог или уменьшение отношения сигнал/шум при его наличии.

Известен обнаружитель [Борисов В.И. и др. Пространственные и вероятностно-временные характеристики эффективности станций ответных помех при подавлении систем радиосвязи / Под ред. В.И. Борисова. - М.: Радио-Софт, 2008. - рис. 2.9.3, с. 131.] сигналов со случайной амплитудой и начальной фазой в шумах неизвестной интенсивности с поддержанием постоянного уровня ложных тревог (ПУЛТ) и принятием решения по критерию Неймана-Пирсона, содержащий основной канал обнаружения, включающий первый и второй квадратурные фазовые детекторы, косинусно-синусный генератор (КСГ), первый и второй интеграторы, первый и второй квадратичные детекторы, сумматор и пороговое устройство, при этом объединенные первые входы первого и второго квадратурных фазовых детекторов являются входом устройства, вторые входы первого и второго квадратурных фазовых детекторов соединены соответственно с выходами квадратурных составляющих (синусной и косинусной) опорной частоты КСГ, выходы первого и второго квадратурных фазовых детекторов соединены с входами первого и второго интеграторов соответственно, выходы первого и второго интеграторов соединены соответственно с входами первого и второго квадратичных детекторов, выходы которых подключены к первому и второму входам сумматора соответственно, выход которого соединен с объединенными первыми входами блока вычитания и порогового устройств соответственно, выход которого является выходом обнаружителя, дополнительный канал обнаружения, состоящий из последовательно соединенных третьего квадратичного детектора и интегратора, при этом вход дополнительного канала подключен к входу устройства, а выход соединен со вторым входом блока вычитания, выход которого подключен ко второму входу порогового устройства.

Недостатком рассмотренного обнаружителя сигналов со случайной амплитудой и начальной фазой является то, что дисперсия шума оценивается при условии отсутствия сигнала в канале обнаружения. Кроме того, для решения задачи обнаружения должна быть известна форма сигнала и время его прихода.

Наиболее близким по технической сущности к заявляемому решению является обнаружитель [Борисов В.И. и др. Пространственные и вероятностно-временные характеристики эффективности станций ответных помех при подавлении систем радиосвязи / Под ред. В.И. Борисова. - М.: РадиоСофт, 2008. - рис. 2.6.1, с. 87] сигналов в шумах неизвестной интенсивности с поддержанием постоянного уровня ложных тревог (ПУЛТ) и принятием решения по критерию Неймана-Пирсона, содержащий процессор быстрого преобразования Фурье (БПФ), M параллельных каналов некогерентной обработки, каждый из которых включает параллельно соединенные схемы косинусного и синусного преобразования (квадратурного преобразования сигнала), первый и второй квадратор и сумматор, при этом входы схем косинусного и синусного преобразования объединены и являются входом канала некогерентной обработки, при этом выход схемы косинусного преобразования соединен с входом первого квадратора, а выход схемы синусного преобразования соединен с входом второго квадратора, при этом выходы первого и второго квадратора соединены с первым и вторым входами сумматора соответственно, выход которого является выходом канала обработки, при этом выход каждого из M каналов является соответствующим входом М-канальной схемы выбора максимума (СВМ) и М-канального накопителя, выход которого соединен с первым входом второго перемножителя, второй вход которого соединен с выходом регистра хранения коэффициента усреднения 1/М, а выход второго перемножителя соединен с первым входом первого перемножителя, второй вход которого соединен с выходом регистра хранения значения функции, определяющей уровень порога обнаружения в соответствии с требуемым значением вероятности ложной тревоги и измеренным значением средней дисперсии шума, при этом выход первого перемножителя соединен со вторым входом схемы сравнения, первый вход которой соединен со вторым выходом СВМ, первый выход которой соединен с первым входом электронного ключа, второй вход которого соединен с первым выходом схемы сравнения, который является выходом обнаружителя.

Недостатком такого обнаружителя является то, что ПУЛТ обеспечивается только за счет измерения дисперсии внутреннего шума приемника и обнаружителя. Это означает, что в случае изменения интенсивности шума (помех) на входе приемника заданный уровень порога обнаружения не будет соответствовать реально сложившейся помехово-сигнальной обстановке и не будет обеспечивать требуемые значения вероятностей обнаружения и ложной тревоги.

Задачей, на решение которой направлено заявляемое изобретение, является обеспечение адаптивного изменения уровня порога обнаружения в соответствии с реально сложившейся сигнально-помеховой обстановкой и заданными значениями вероятностей ложной тревоги и обнаружения, что позволяет обеспечить постоянный уровень ложных тревог на выходе обнаружителя.

Техническим результатом изобретения является обеспечение постоянного значения вероятности ложной тревоги на выходе обнаружителя независимо от изменения помехово-сигнальной обстановки на входе приемника за счет реализации дополнительного канала когерентной обработки сигналов, обеспечивающего измерение средней дисперсии совокупных помех в канале обнаружения независимо от наличия в нем сигнала, что повышает достоверность результатов обнаружения.

Технический результат достигается тем, что в известном цифровом обнаружителе радиосигналов в условиях шума неизвестной интенсивности, содержащем процессор БПФ, имеющий M выходов, M каналов квадратурной обработки, каждый из которых состоит из схем косинусного и синусного преобразования, первого и второго квадратора, сумматора, при этом входы схем косинусного и синусного преобразования объединены и соединены с соответствующими выходами процессора БПФ, схему выбора максимума (СВМ), имеющую M входов, при этом вход и выход m-го канала квадратурной обработки, где , соединены соответственно с соответствующими выходами процессора БПФ и входами СВМ, последовательно соединенные регистр хранения коэффициента усреднения 1/M, четвертый перемножитель, третий перемножитель, схема сравнения и электронный ключ, а также накопитель, имеющий M входов, выход которого соединен с вторым входом четвертого перемножителя, регистр хранения значения функции, определяющей уровень порога обнаружения, выход которого соединен с вторым входом третьего перемножителя, вторые входы электронного ключа и схемы сравнения соединены соответственно с первым и вторым выходом СВМ, а выходы электронного ключа и схемы сравнения являются выходами устройства, дополнительно введены M каналов когерентной обработки сигнала, каждый из которых содержит последовательно соединенные цифровую линию задержки (ЦЛЗ), первый перемножитель, накопитель, второй перемножитель и схему вычитания, а также регистр хранения коэффициента усреднения 1/H, выход которого соединен с вторым входом второго перемножителя, второй вход схемы вычитания m-го канала когерентной обработки соединен с выходом сумматора соответствующего канала квадратурной обработки, а выход - с соответствующим входом накопителя, имеющего M входов, при этом вход ЦЛЗ m-го канала когерентной обработки объединен с вторым входом первого перемножителя и соединен с выходом схемы косинусного преобразования соответствующего канала квадратурной обработки.

Сущность изобретения заключается в том, что дополнительно введенный в каждый частотный канал обнаружителя канал когерентной обработки сигналов позволяет производить в масштабе времени, близком к реальному, одновременное раздельное измерение средней дисперсии совокупных помех в канале обнаружения независимо от наличия в нем сигнала и средней мощности сигнала. Это позволяет осуществлять адаптивное изменение уровня порога обнаружения в соответствии с реально сложившейся сигнально-помеховой обстановкой и заданными по критерию Неймана-Пирсона значениями вероятностей ложной тревоги и обнаружения и тем самым обеспечить постоянный уровень ложных тревог на выходе обнаружителя.

На фиг. 1 представлена функциональная схема цифрового обнаружителя радиосигналов в условиях шума неизвестной интенсивности, где введены следующие обозначения:

1 - процессор БПФ;

2 - схема косинусного преобразования;

3 - схема синусного преобразования;

4 - ЦЛЗ;

5 - первый перемножитель;

6 - первый квадратор;

7 - второй квадратор;

8 - накопитель;

9 - сумматор;

10 - второй перемножитель;

11 - регистр хранения коэффициента усреднения 1/H;

12 - схема вычитания;

13 - СВМ;

14 - накопитель, имеющий M входов;

15 - электронный ключ;

16 - схема сравнения;

17 - третий перемножитель;

18 - четвертый перемножитель;

19 - регистр хранения коэффициента усреднения 1/M;

20 - регистр хранения значения функции, определяющей уровень порога обнаружения.

Заявляемое устройство содержит процессор БПФ 1, имеющий M выходов, M каналов квадратурной обработки, каждый из которых состоит из схем косинусного 2 и синусного 3 преобразования, первого 6 и второго 7 квадратора, сумматора 9, при этом входы схем косинусного 2 и синусного 3 преобразования объединены и соединены с соответствующими выходами процессора БПФ 1, СВМ 13, имеющую M входов, при этом вход и выход m-го канала квадратурной обработки, где , соединены соответственно с соответствующими выходами процессора БПФ 1 и входами СВМ 13, последовательно соединенные регистр хранения коэффициента усреднения 1/M 19, четвертый перемножитель 18, третий перемножитель 17, схема сравнения 16 и электронный ключ 15, а также накопитель 14, имеющий M входов, выход которого соединен со вторым входом четвертого перемножителя 18, регистр хранения значения функции, определяющей уровень порога обнаружения 20, выход которого соединен со вторым входом третьего перемножителя 17, вторые входы электронного ключа 15 и схемы сравнения 16 соединены соответственно с первым и вторым выходом СВМ 13, а выходы электронного ключа 15 и схемы сравнения 16 являются выходами устройства, M каналов когерентной обработки сигнала, каждый из которых содержит последовательно соединенные цифровую линию задержки (ЦЛЗ) 4, первый перемножитель 5, накопитель 8, второй перемножитель 10 и схему вычитания 12, а также регистр хранения коэффициента усреднения 1/H 11, выход которого соединен со вторым входом второго перемножителя 10, второй вход схемы вычитания 12 m-го канала когерентной обработки соединен с выходом сумматора 9 соответствующего канала квадратурной обработки, а выход - с соответствующим входом накопителя 14, имеющего M входов, при этом вход ЦЛЗ 4 m-го канала когерентной обработки объединен со вторым входом первого перемножителя 5 и соединен с выходом схемы косинусного преобразования 2 соответствующего канала квадратурной обработки.

ЦЛЗ 4 предназначена для временной задержки в каждом из M каналов действительной части X1(k)=ReX(k) совокупности отсчетов аддитивной смеси сигнала s(t) и шума (помех) n(t) с выхода схемы косинусного преобразования 2 на длительность, большую времени корреляции шумовой составляющей.

Первый перемножитель 5 предназначен для перемножения действительной части X1(k)=ReX(k) совокупности спектральных отсчетов со своей копией X1(k+i)=ReX(k+i), сдвинутой во времени.

Накопитель 8 предназначен для накопления значений произведения X3(k)=X1(k)X1(k+i).

Второй перемножитель 10 предназначен для умножения накопленной в накопителе 8 суммы произведений X3(k)=X1(k)X1(k+i) с коэффициентом усреднения

Регистр хранения 11 предназначен для хранения коэффициента усреднения

Схема вычитания 12 предназначена для вычитания из оценок мощности аддитивной смеси сигнала s(t) и шума (помех) n(t) оценки мощности одной сигнальной составляющей s(t) на частоте ωk.

Заявляемое устройство работает следующим образом.

На вход процессора БПФ 1 поступает совокупность L временных отсчетов Xi(t) аддитивной смеси сигнала s(t) и шума (помехи) n(t). В процессоре БПФ 1 осуществляется преобразование совокупности L временных отсчетов Xi(t) аддитивной смеси сигнала и шума по алгоритму БПФ. Таким образом, на выходе каждого из M частотных каналов процессора БПФ 1 формируется совокупность отсчетов где аргументы в спектральной 2πkΔf и временной mΔt областях обозначаются через k и m. После этого с каждого из M выходов процессора БПФ 1 совокупность отсчетов поступает на входы M параллельных каналов некогерентной обработки, где осуществляется их косинусное и синусное преобразование в соответствующих схемах 2 и 3. Результаты косинусного и синусного преобразования, представляющие собой действительную X1(k)=ReX(k) и мнимую X2(k)=ImX(k) части совокупности отсчетов аддитивной смеси сигнала s(t) и шума (помех) n(t), с выходов соответствующих схем косинусного 2 и синусного 3 преобразования поступают на первый 6 и второй 7 квадраторы. С выходов первого 6 и второго 7 квадраторов квадраты действительной и мнимой части совокупности отсчетов аддитивной смеси сигнала s(t) и шума (помех) n(t) поступают на сумматор 9, на выходе которого формируется отсчет с уровнем, равным оценке мощности аддитивной смеси сигнала s(t) и шума (помех) на частоте ωk.

С выхода схемы косинусного преобразования 2 в каждом из M каналов некогерентной обработки действительная часть X1(k)=ReX(k) совокупности отсчетов аддитивной смеси сигнала s(t) и шума (помех) n(t) поступает на вход каждого из M дополнительных каналов когерентной обработки на первый и второй входы первого перемножителя 5, причем на его второй вход через ЦЛЗ 4 с временем задержки, большим времени корреляции шумовой составляющей, определяемым следующей формулой:

где fd=2Δfc - частота дискретизации входного сигнала, определяемая в соответствии с теоремой Котельникова шириной спектра сигнала 2Δfc.

Таким образом, в первом перемножителе 5 осуществляется перемножение действительной части X1(k)=ReX(k) совокупности спектральных отсчетов со своей копией X1(k+i)=ReX(k+i), сдвинутой во времени X3(k)=X1(k)X1(k+i). С выхода перемножителя 5 произведение X3(k)=X1(k)X1(k+i) поступает на вход накопителя 8, где осуществляется накопление значений произведения X3(k)=X1(k)X1(k+i) в течение времени накопления где td - время дискретизации. С выхода накопителя 8 значение суммы поступает на вход перемножителя 10, где осуществляется ее перемножение с коэффициентом усреднения поступающего с выхода регистра хранения коэффициента усреднения 1/H 11.

Таким образом, на выходе каждого дополнительного канала когерентной обработки (выход перемножителя 10) формируется оценка мощности сигнальной составляющей аддитивной смеси сигнала s(t) и шума (помех) n(t) на частоте ωk:

С выхода каждого из M каналов некогерентной (выход сумматора 9) и когерентной обработки (выход перемножителя 10) значения оценок мощности аддитивной смеси сигнала s(f) и шума (помех) n(t) и мощности одной сигнальной составляющей аддитивной смеси сигнала s(t) и шума (помех) на частоте ωk поступают на первый и второй входы схемы вычитания 12, где осуществляется оценка средней мощности шумовой (помеховой) составляющей аддитивной смеси сигнала s(t) и шума (помех) n(t) независимо от наличия сигнала на данной частоте:

С выхода каждого из M каналов некогерентной обработки сигнала (выход сумматора 9) значение оценки мощности аддитивной смеси сигнала s(t) и шума (помех) n(t) на частоте ωk поступает на вход СВМ 13, где осуществляется выбор максимального значения суммарной мощности аддитивной смеси сигнала и шума (помех) и номера соответствующего канала обработки, определяющего частоту сигнала. С выхода каждой из M схем вычитания 12 значения оценок средней мощности шумовой (помеховой) составляющей поступают на соответствующие входы накопителя 14, имеющего M входов, где осуществляется их суммирование по всем анализируемым частотным каналам С выхода M-канального накопителя 14 значение суммы поступает на вход четвертого перемножителя 18, где осуществляется перемножение с коэффициентом усреднения поступающего с выхода регистра хранения коэффициента усреднения 1/М 19:

С выхода четвертого перемножителя 18 значение средней по анализируемой полосе частот мощности шумовой (помеховой) составляющей поступает на вход третьего перемножителя 17, где осуществляется ее перемножение со значением функции, определяющей уровень порога обнаружения в соответствии с заданной по критерию Неймана-Пирсона вероятностью ложной тревоги PЛТ с выхода регистра хранения 20.

Таким образом, с выхода третьего перемножителя 17 значение уровня порога обнаружения, определяемого заданной по критерию Неймана-Пирсона вероятностью ложной тревоги PЛТ и измеренным значением средней по анализируемой полосе частот мощности шумовой (помеховой) составляющей , поступает на второй вход схемы сравнения 16 в качестве порогового напряжения. При этом в схеме сравнения 16 осуществляется сравнение максимального значения суммарной мощности аддитивной смеси сигнала и шума (помех) поступающего со второго выхода СВМ на первый вход схемы сравнения 16 с пороговым напряжением на ее втором входе. При превышении порогового напряжения в схеме сравнения 16 значением суммарной мощности аддитивной смеси сигнала и шума (помех) принимается решение о наличии сигнала, а в противном случае о его отсутствии. При этом на выходе схемы сравнения 16 формируется сигнальный отсчет единичного или нулевого уровня соответственно, а сам сигнальный отсчет поступает в качестве управляющего сигнала на электронный ключ 15 для считывания номера соответствующего канала обработки, где установлен факт наличия сигнала. При этом выход схемы сравнения 16 и электронного ключа 15 являются первым и вторым выходами заявляемого устройства.

Регистр 11 хранения коэффициента усреднения 1/H, регистр 19 хранения коэффициента усреднения 1/M, регистр 20 хранения значения функции, определяющей уровень порога обнаружения, могут быть реализованы на базе микроконтроллера типа ATMEGA 8515 компании ATMEL.

Электронный ключ 15 может быть выполнен на основе известных практических схем электронных ключей (приведенных, например, в кн. Применение прецизионных аналоговых микросхем / А.Г. Алексеенко, Е.А. Коломбет, Г.И. Стародуб. - Второе изд., перераб. и доп. - М.: Радио и связь, 1985, с. 205-208).

Заявляемое устройство позволяет обеспечить постоянство заданного значения вероятности ложной тревоги PЛТ независимо от изменения спектральной плотности шума на входе обнаружителя за счет введения в каждом канале дополнительного канала когерентной обработки, позволяющего реализовать измерение средней мощности шумовой составляющей в каждом канале независимо от наличия в нем сигнала.

Таким образом, совокупность введенных блоков и связей между ними позволяет обеспечить постоянство заданного значения вероятности ложной тревоги PЛТ и вероятности обнаружения сигнала разведываемого источника радиоизлучения, за счет адаптивного изменения уровня порога обнаружения на основе одновременного измерения средней суммарной мощности аддитивной смеси сигнала и шума (помехи), и средней мощности шума и/или помехи в каждом частотном канале обработки; измерение при наличии прицельной помехи мощности совокупных помех в каждом частотном канале обработки независимо от наличия сигнала, что отсутствовало в прототипе.

Цифровой обнаружитель радиосигналов в условиях шума неизвестной интенсивности, содержащий процессор БПФ, имеющий M выходов, M каналов квадратурной обработки, каждый из которых состоит из схем косинусного и синусного преобразования, первого и второго квадратора, сумматора, при этом входы схем косинусного и синусного преобразования объединены и соединены с соответствующими выходами процессора БПФ, схему выбора максимума (СВМ), имеющую M входов, при этом вход и выход m-го канала квадратурной обработки, где , соединены соответственно с соответствующими выходами процессора БПФ и входами СВМ, последовательно соединенные регистр хранения коэффициента усреднения 1/М, четвертый перемножитель, третий перемножитель, схема сравнения и электронный ключ, а также накопитель, имеющий M входов, выход которого соединен с вторым входом четвертого перемножителя, регистр хранения значения функции, определяющей уровень порога обнаружения, выход которого соединен со вторым входом третьего перемножителя, вторые входы электронного ключа и схемы сравнения соединены соответственно с первым и вторым выходом СВМ, а выходы электронного ключа и схемы сравнения являются выходами устройства, отличающейся тем, что дополнительно введены M каналов когерентной обработки сигнала, каждый из которых содержит последовательно соединенные цифровую линию задержки (ЦЛЗ), первый перемножитель, накопитель, второй перемножитель и схему вычитания, а также регистр хранения коэффициента усреднения 1/Н, выход которого соединен со вторым входом второго перемножителя, второй вход схемы вычитания m-го канала когерентной обработки соединен с выходом сумматора соответствующего канала квадратурной обработки, а выход - с соответствующим входом накопителя, имеющего M входов, при этом вход ЦЛЗ m-го канала когерентной обработки объединен со вторым входом первого перемножителя и соединен с выходом схемы косинусного преобразования соответствующего канала квадратурной обработки.
ЦИФРОВОЙ ОБНАРУЖИТЕЛЬ РАДИОСИГНАЛОВ В УСЛОВИЯХ ШУМА НЕИЗВЕСТНОЙ ИНТЕНСИВНОСТИ
ЦИФРОВОЙ ОБНАРУЖИТЕЛЬ РАДИОСИГНАЛОВ В УСЛОВИЯХ ШУМА НЕИЗВЕСТНОЙ ИНТЕНСИВНОСТИ
Источник поступления информации: Роспатент

Показаны записи 631-640 из 776.
27.06.2019
№219.017.9866

Система бесперебойного питания

Использование: в области электротехники. Технический результат - повышение бесперебойности электроснабжения потребителей, не допускающих перерывов питания, а также создание режима эксплуатации источников электрической энергии, обеспечивающих сохранение нормируемого значения емкости, что...
Тип: Изобретение
Номер охранного документа: 0002692468
Дата охранного документа: 25.06.2019
29.06.2019
№219.017.a193

Способ стабилизации объемного разряда в hf/df импульсно-периодическом химическом лазере

Способ включает подачу импульсного напряжения на барьерные электроды, связанные с металлическими электродами. Импульсное напряжение подают при плотности тока объемной фазы разряда не менее 1 кА/см на барьерные электроды, обладающие полупроводниковыми свойствами, сочетающими активное и емкостное...
Тип: Изобретение
Номер охранного документа: 0002465697
Дата охранного документа: 27.10.2012
10.07.2019
№219.017.ad0d

Узел соединения раструба сопла

Изобретение относится к ракетной технике, а именно к конструкции неохлаждаемых сверхзвуковых реактивных сопел из композиционных материалов. Узел соединения раструба сопла включает облицовку из эрозионностойкого материала, например углепластика, и насадок из углерод-углеродных композиционных...
Тип: Изобретение
Номер охранного документа: 0002384725
Дата охранного документа: 20.03.2010
10.07.2019
№219.017.ada7

Регулятор расхода горячего газа

Изобретение относится к ракетной технике и предназначено для использования в качестве регулятора расхода горячего газа, работающего на продуктах сгорания твердых топлив с высокой температурой и давлением при управлении полетом ракеты по плоскостям стабилизации. Регулятор расхода горячего газа...
Тип: Изобретение
Номер охранного документа: 0002376518
Дата охранного документа: 20.12.2009
10.07.2019
№219.017.af50

Клапан для регулирования горячего газа

Изобретение относится к области машиностроения и используемых для создания тяги и управления вектором тяги летательных аппаратов. Клапан для регулирования расхода горячего газа состоит из корпуса, седла, заслонки и вала, который установлен через подшипники в корпус и загерметизирован...
Тип: Изобретение
Номер охранного документа: 0002423636
Дата охранного документа: 10.07.2011
10.07.2019
№219.017.b1b7

Способ компоновки аппаратно-программных средств

Изобретение относится к способу компоновки аппаратно-программных средств. Технический результат заключается в увеличении быстродействия технических средств. Коммуникатор Switch волоконно-оптического интерфейса и контроллер сопряжения и управления твердотельным накопителем SSD по сети Ethernet...
Тип: Изобретение
Номер охранного документа: 0002460115
Дата охранного документа: 27.08.2012
17.07.2019
№219.017.b4fe

Кассетная головная часть реактивного снаряда

Изобретение относится к ракетной технике и может быть использовано при разработке разделяющихся реактивных снарядов залпового огня с крупногабаритными боевыми элементами. Технический результат - повышение надежности функционирования головной части при разделении на траектории полета реактивного...
Тип: Изобретение
Номер охранного документа: 0002694457
Дата охранного документа: 15.07.2019
17.07.2019
№219.017.b587

Электролит для электрохимикомеханического упрочнения сталей

Изобретение относится к области гальванотехники и может быть использовано в машиностроении, нефте- и газодобывающей, нефтехимической и химической отраслях промышленности. Электролит включает гидроксид калия, натриевое жидкое стекло, пероксид водорода и воду, при этом он дополнительно содержит...
Тип: Изобретение
Номер охранного документа: 0002694683
Дата охранного документа: 16.07.2019
19.07.2019
№219.017.b61b

Способ повышения скорости передвижения военной гусеничной машины на плаву

Изобретение относится к области военной техники, в частности к способу повышения скорости передвижения военной гусеничной машины на плаву. Дополнительно используют крутящий момент с ведомого колеса машины, который передают через маховик с валом посредством ременной передачи на маховик редуктора...
Тип: Изобретение
Номер охранного документа: 0002694879
Дата охранного документа: 17.07.2019
23.07.2019
№219.017.b6cd

Мобильная антенная установка

Изобретение относится к антенной технике, в частности к мобильным антенным установкам с фазированными антенными решетками (ФАР), и может быть использовано в мобильных радиолокационных станциях (РЛС) дальнего обнаружения и точного сопровождения воздушных целей. Мобильная антенная установка...
Тип: Изобретение
Номер охранного документа: 0002695040
Дата охранного документа: 18.07.2019
Показаны записи 501-501 из 501.
05.06.2023
№223.018.779f

Устройство определения вида модуляции

Изобретение относится к радиотехнике и может использоваться в средствах радиомониторинга, радиопеленгаторах, а также в средствах и системах, в которых осуществляется определение вида модуляции радиосигналов источников радиоизлучения в интересах их последующей классификации. Технический...
Тип: Изобретение
Номер охранного документа: 0002796588
Дата охранного документа: 26.05.2023
+ добавить свой РИД