×
20.09.2015
216.013.7ccb

Результат интеллектуальной деятельности: ПОЛУПРОВОДНИКОВАЯ ГЕТЕРОСТРУКТУРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к электронной технике. Полупроводниковая гетероструктура для мощного полевого транзистора СВЧ содержит на монокристаллической полуизолирующей подложке арсенида галлия последовательность полупроводниковых слоев каждый с заданными функциональными свойствами и техническими характеристиками - толщиной слоев, составом - качественным и количественным, концентрацией легирующей примеси. Полупроводниковая гетероструктура выполнена в виде прямой последовательности следующих упомянутых полупроводниковых слоев: буферный слой - GaAs, толщиной (150-400) нм, донорный слой - GaAs, толщиной (2-3) нм, легированный кремнием с концентрацией (6-8)×10 см, спейсерный слой - GaAs, толщиной (2-5) нм, канальный слой - InGaAs, толщиной (8-12) нм, с содержанием химических элементов при у, равном (0,21-0,28), спейсерный слой - AlGaAs, толщиной (2-5) нм, с содержанием химических элементов при х, равном (0,20-0,24), донорный слой - AlGaAs, толщиной (3-6) нм, легированный кремнием с концентрацией (5-8)×10 см, с содержанием химических элементов при х, равном (0,20-0,24), барьерный слой - AlGaAs, толщиной (10-30) нм, с содержанием химических элементов при х, равном (0,20-0,24), стоп-слой - InGaP, толщиной (2-4) нм, с содержанием химических элементов при y, равном (0,48-0,51), барьерный слой - AlGaAs, толщиной 10-20 нм, с содержанием химических элементов при х, равном (0,20-0,24), градиентный слой AlGaAs, толщиной (8-12) нм, легированный кремнием с концентрацией (3-5)×10 см, толщиной (8-12) нм, легированный кремнием с концентрацией (3-5)×10 см, с содержанием химических элементов при х, равном (0,20-0,24), с линейным изменением х до ноля по толщине слоя со стороны полуизолирующей подложки арсенида галлия, контактный слой - GaAs из двух частей - нижней, толщиной (30-50) нм, легированной кремнием с концентрацией (3-5)×10 см, верхней, толщиной (10-20) нм, легированной кремнием с концентрацией (8-10)×10 см, причем количественный состав упомянутых полупроводниковых слоев выражен в мольных долях. Технический результат - снижение плотности дефектов и повышение выхода годных полупроводниковых гетероструктур, повышение выходной мощности и верхней границы частотного диапазона и соответственно расширение диапазона рабочих частот полевого транзистора СВЧ и его выхода годных. 1 з.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к электронной технике СВЧ, в частности к полупроводниковым гетероструктурам для электронной техники, прежде всего для мощных полевых транзисторов СВЧ.

Как известно, полупроводниковые структуры арсенида галлия (GaAs) до недавнего времени являлись основными полупроводниковыми структурами для полевых транзисторов СВЧ.

Быстродействие таких полевых транзисторов с субмикронными длинами канала составляет 10-12 ГГц.

Существенный прогресс в части повышения быстродействия обеспечило изобретение так называемых транзисторов с высокой электронной подвижностью (НЕМТ - High Electron Mobility Transistor), активная область которых состоит из легированного широкозонного и нелегированного узкозонного слоев полупроводниковой гетероструктуры.

Это обеспечивает существенное увеличение быстродействия таких полевых транзисторов (до 100 ГГц и более).

Известен полевой транзистор СВЧ (полевой транзистор) на полупроводниковой гетероструктуре, содержащий высокоомную подложку и, по меньшей мере, один слой широкозонного и один слой узкозонного полупроводниковых материалов с согласованными или несогласованными кристаллическими решетками, а также электроды истока, затвора и стока, расположенные на наружной поверхности полупроводникового материала, в котором с целью улучшения линейности характеристик полевого транзистора и уменьшения влияния флуктуации концентрации и подвижности носителей тока в канале полевого транзистора на параметры его эквивалентной схемы, а также снижения модуляционных шумов СВЧ-устройств на упомянутых транзисторах часть слоя полупроводникового материала, расположенная на расстоянии от электрода затвора, превышающем 30 нм, выполнена с концентрацией легирующей примеси, большей 3×1017 см-3, и поверхностной плотностью этой примеси, большей 1012 см-2, а средняя концентрация легирующей примеси между упомянутой частью слоя полупроводникового материала и электродом затвора не превышает 3×1017 см-3 [1].

Известна полупроводниковая наногетероструктура InAlAs/InGaAs с метаморфным буферным слоем, включающая монокристаллическую полуизолирующую подложку GaAs, сверхрешетку AlGaAs/GaAs, буферный слой GaAs, метаморфный буферный слой InxAl1-xAs, инверсный слой InxAl1-xAs, залечивающий слой с однородным составом Inx4′Al1-x4′As, активную область InAlAs/InGaAs с высоким содержанием InAs (более 70%), согласованную по параметру решетки с залечивающим слоем, в которой с целью уменьшения плотности дислокаций (дефектов), проникающих в активную область, содержание InAs x по толщине в инверсном слое InxAl1-xAs плавно уменьшается от x4 до x4′, где x44′=0,03÷0,08, содержание InAs x по толщине в метаморфном буферном слое увеличивается линейно от x1 до x4, где x1~0, x4≥0,75, внутрь метаморфного буферного слоя на равных расстояниях друг от друга и от его границ вводятся два инверсных слоя InxAl1-xAs с плавным уменьшением содержания InAs x по толщине на Δх=0,03÷0,06, за каждым из которых следует залечивающий слой с составом, совпадающим с финальным составом инверсного слоя, толщина метаморфного буферного слоя 1,0÷1,5 мкм [2].

Недостатком полевого транзистора СВЧ на полупроводниковой гетероструктуре как первого, так и второго аналогов является большой разброс электрических параметров полевых транзисторов по площади полупроводниковой гетероструктуры из-за неоднородности по толщине полупроводниковой гетероструктуры в области электрода затвора, неизбежно возникающей в процессе операции ее утонения в этой области.

Известна полупроводниковая гетероструктура, которая содержит на монокристаллической полуизолирующей подложке арсенида галлия следующую прямую последовательность слоев:

буферный слой - сверхрешетка GaAs/AlGaAs,

канальный слой - InGaAs,

спейсерный слой - AlGaAs,

стоп-слой - n-InGaP,

донорный слой - n-AlGaAs, легированный

стоп-слой - AlAs,

донорный слой - n-GaAs,

стоп-слой - AlAs,

контактный слой - n-GaAs [3, прототип].

Наличие в полупроводниковой гетероструктуре прототипа стоп-слоев из n-InGaP и AlAs позволяет устранить недостаток аналогов и обеспечивает в процессе изготовления полевого транзистора относительно однородное утонение толщины полупроводниковой гетероструктуры в области электрода затвора полевого транзистора и, как следствие, увеличение выхода годных.

Однако данная полупроводниковая гетероструктура в силу несовершенства структуры и характеристик ее слоев не обеспечивает получение мощных полевых транзисторов СВЧ.

Техническим результатом изобретения является повышение выхода годных полупроводниковых гетероструктур путем снижения плотности дефектов, повышение выходной мощности и выхода годных полевых транзисторов СВЧ, расширение диапазона рабочих частот.

Указанный технический результат достигается заявленной полупроводниковой гетероструктурой для мощного полевого транзистора СВЧ, содержащей на монокристаллической полуизолирующей подложке арсенида галлия заданную последовательность слоев каждый с заданными функциональными свойствами и характеристиками.

Полупроводниковая гетероструктура выполнена в виде прямой последовательности следующих слоев:

буферный слой - GaAs, толщиной (150-400) нм,

донорный слой - GaAs, толщиной (2-3) нм, легированный кремнием с концентрацией (6-8)×1018 см-3,

спейсерный слой - GaAs, толщиной (2-5) нм,

канальный слой - InyGa1-yAs, толщиной (8-12) нм, с содержанием химических элементов при у, равном (0,21-0,28),

спейсерный слой - AlxGa1-xAs, толщиной (2-5) нм, с содержанием химических элементов при x, равном (0,20-0,24),

донорный слой - AlxGa1-xAs, толщиной (3-6) нм, легированный кремнием с концентрацией (5-8)×1018 см-3, с содержанием химических элементов при х, равном (0,20-0,24),

барьерный слой - AlxGa1-xAs, толщиной (10-30) нм, с содержанием химических элементов при x, равном (0,20-0,24),

стоп-слой - InyGa1-yP, толщиной (2-4) нм, с содержанием химических элементов при у, равном (0,48-0,51),

барьерный слой - AlxGa1-xAs, толщиной 10-20 нм, с содержанием химических элементов при x, равном (0,20-0,24),

градиентный слой AlxGa1-xAs, толщиной (8-12) нм, легированный кремнием с концентрацией (3-5)×1018 см-3, с содержанием химических элементов при х, равном (0,20-0,24), с линейным изменением х до ноля по толщине слоя со стороны полуизолирующей подложки арсенида галлия,

контактный слой - GaAs из двух частей - нижней, толщиной (30-50) нм, легированной кремнием с концентрацией (3-5)×1018 см-3, верхней, толщиной (10-20) нм, легированной кремнием с концентрацией (8-10)×1018 см-3, причем количественный состав упомянутых полупроводниковых слоев выражен в мольных долях.

Заданными характеристиками слоев полупроводниковой структуры являются последовательность расположения слоев, толщина, состав - качественный и количественный, концентрация легирующей примеси.

Раскрытие сущности изобретения

Совокупность существенных признаков заявленной полупроводниковой гетероструктуры, а именно:

совокупность заявленных функциональных слоев и последовательность их расположения в полупроводниковой гетероструктуре, равно как

совокупность характеристик каждого из слоев полупроводниковой гетероструктуры (толщины слоя, состава - качественного и количественного, концентрации легирующей примеси) обеспечит, а именно:

Наличие буферного слоя GaAs является барьером для проникновения примесей из подложки в полупроводниковую гетероструктуру и тем самым обеспечит:

во-первых, снижение плотности дефектов,

во-вторых, снижение токов утечки в полевом транзисторе и, как следствие, повышение его выходной мощности.

Выполнение канального слоя InyGa1-yAs в совокупности с другими слоями полупроводниковой гетероструктуры, которые выполнены из одного материала с полупроводниковой подложкой из арсенида галлия (GaAs), обеспечивает высокую работоспособность и максимальное снижение механических напряжений полупроводниковой гетероструктуры и тем самым снижение плотности дефектов и, как следствие, повышение выхода годных полупроводниковых гетероструктур.

Расположение двух донорных широкозонных слоев GaAs, легированных кремнием (Si), по обе стороны канального узкозонного слоя - InyGa1-yAs, и при этом разнесение их посредством нелегированных широкозонных спейсерных слоев GaAs и AlxGa1-xAs обеспечивает разделение в пространстве основных носителей (электронов) и легирующей примеси кремния и тем самым обеспечивает:

во-первых, максимально высокую концентрацию электронов в канале полевого транзистора и

во-вторых, максимально возможную скорость их пролета и тем самым минимально достижимое время переключения полевого транзистора и, как следствие, повышение верхней границы частотного диапазона и соответственно расширение диапазона рабочих частот полевого транзистора СВЧ.

Наличие в полупроводниковой гетероструктуре двух барьерных слоев обеспечивает, а именно:

барьерного слоя AlxGa1-xAs толщиной (10-30) нм в совокупности со стоп-слоем InyGa1-yP - формирование диэлектрического слоя в области электрода затвора с оптимальными значениями толщины и пробивного напряжения и тем самым заданный диапазон рабочих напряжений на электроде затвора полевого транзистора и

барьерного слоя AlxGa1-xAs толщиной (10-20) нм - исключение проникновения легирующей примеси атомов кремния в упомянутые барьерный слой и стоп-слой и тем самым уменьшение токов утечки электрода затвора полевого транзистора.

И, как следствие того и другого, повышение выходной мощности полевого транзистора СВЧ.

Более того, наличие стоп-слоя InyGa1-yP обеспечивает:

во-первых, практически полное согласование его кристаллической решетки со всеми слоями, имеющими состав AlxGa1-xAs, и тем самым значительное снижение механических напряжений в полупроводниковой гетероструктуре и, как следствие, снижение плотности дефектов в ней,

во-вторых, максимально точное заданное значение толщины полупроводниковой гетероструктуры и снижение ее разброса в области электрода затвора полевого транзистора и, как следствие, повышение его выходной мощности.

И, как следствие первого и второго, повышение выхода годных полевых транзисторов СВЧ.

Наличие градиентного слоя AlxGa1-xAs обеспечивает минимизацию механических напряжений и тем самым снижение плотности дефектов в полупроводниковой гетероструктуре и, как следствие, повышение выхода годных.

Наличие контактного слоя GaAs из двух частей обеспечивает низкое контактное сопротивление с металлизационным покрытием электродов истока и стока полевого транзистора и, как следствие, повышение его выходной мощности.

Выполнение буферного слоя GaAs толщиной как менее 150 нм, так и более 400 нм нежелательно, в первом случае из-за повышения уровня фонового легирования выше расположенных слоев полупроводниковой гетероструктуры, что приводит к повышению токов утечки электрода затвора полевого транзистора и соответственно снижению выходной мощности, во-втором - из-за повышения плотности дефектов полупроводниковой гетероструктуры.

Выполнение донорного слоя GaAs:

а) толщиной менее 2 нм недопустимо из-за диффузионного размытия профиля распределения легирующей примеси кремния и соответственно невозможности получения заданной концентрации легирования, а более 3 нм из-за увеличения плотности дефектов полупроводниковой гетероструктуры и соответственно снижения выхода годных,

б) легированного кремнием с концентрацией как менее 6×1018 см-3, так и более 8×1018 см-3 не желательно, в первом случае из-за снижения концентрации электронов в канале полевого транзистора и соответственно снижения выходной мощности, во втором - из-за увеличения плотности дефектов полупроводниковой гетероструктуры и соответственно снижения выхода годных.

Выполнение спейсерного слоя GaAs толщиной как менее 2 нм, так и более 5 нм не желательно, в первом случае из-за снижения подвижности электронов в канале полевого транзистора и соответственно снижения верхней границы частотного диапазона и сужения диапазона рабочих частот полевого транзистора, во втором - из-за снижения концентрации электронов в канале полевого транзистора и соответственно снижения выходной мощности.

Выполнение канального слоя InyGa1-yAs:

а) толщиной менее 8 нм и более 12 нм, равно как и

б) с содержанием химических элементов при у как менее 0,21, так и более 0,28 не желательно, в первых случаях (а, б) из-за снижения подвижности электронов в канале полевого транзистора и соответственно снижения верхней границы частотного диапазона и сужения диапазона рабочих частот полевого транзистора, во вторых - из-за возникновения значительных механических напряжений в полупроводниковой гетероструктуре и соответственно роста плотности дефектов и соответственно снижения выхода годных.

Выполнение спейсерного слоя AlxGa1-xAs:

а) толщиной как менее 2 нм, так и более 5 нм не желательно, в первом случае из-за снижения подвижности электронов в канале полевого транзистора и соответственно снижения верхней границы частотного диапазона и сужения диапазона рабочих частот полевого транзистора, во втором - из-за увеличения плотности дефектов полупроводниковой гетероструктуры и снижения концентрации электронов в канале полевого транзистора и соответственно снижения выхода годных полупроводниковых гетероструктур и снижения выходной мощности полевого транзистора СВЧ,

б) с содержанием химических элементов при x как менее 0,20, так и более 0,24 не желательно, в первом случае из-за снижения концентрации электронов в канале полевого транзистора и соответственно снижения выходной мощности, во втором - из-за возникновения значительных механических напряжений в полупроводниковой гетероструктуре и соответственно роста плотности дефектов и соответственно снижения выхода годных.

Выполнение донорного слоя AlxGa1-xAs:

а) толщиной как менее 3 нм, так и более 6 нм недопустимо, в первом случае из-за диффузионного размытия профиля распределения легирующей примеси кремния и соответственно невозможности воспроизводимого управления легированием донорного слоя, во втором - из-за увеличения толщины области под электродом затвора полевого транзистора и соответственно снижения выходной мощности,

б) легированного кремнием с концентрацией как менее 5×1018 см-3, так и более 8×1018 см-3 не желательно, в первом случае из-за снижения концентрации электронов в канале полевого транзистора и соответственно снижения выходной мощности, во втором - из-за увеличения плотности дефектов полупроводниковой гетероструктуры и соответственно снижения выхода годных,

в) с содержанием химических элементов при x как мене 0,20, так и более 0,24 не желательно, в первом случае из-за снижения концентрации электронов в канале полевого транзистора и соответственно снижения выходной мощности, во втором - из-за возникновения значительных механических напряжений в полупроводниковой гетероструктуре и соответственно роста плотности дефектов и соответственно снижения выхода годных.

Выполнение барьерного слоя AlxGa1-xAs:

а) толщиной как менее 10 нм, так и более 30 нм, недопустимо, в первом случае из-за вероятности короткого замыкания электрод затвора - канал полевого транзистора, во втором - из-за увеличения толщины области под электродом затвора и соответственно снижения его выходной мощности,

б) с содержанием химических элементов при x как менее 0,20, так и более 0,24 не желательно из-за возникновения значительных механических напряжений в полупроводниковой гетероструктуре и соответственно роста плотности дефектов и соответственно снижения выхода годных.

Выполнение стоп-слоя InyGa1-yP:

а) толщиной как менее 2 нм, так и более 4 нм недопустимо, в первом случае из-за его функциональной неэффективности, во втором - из-за увеличения плотности дефектов в полупроводниковой гетероструктуре и увеличения толщины области под электродом затвора полевого транзистора и соответственно снижения выхода годных и выходной мощности,

б) с содержанием химических элементов при у как менее 0,48, так и более 0,51, не желательно из-за возникновения значительных механических напряжений в полупроводниковой гетероструктуре и соответственно роста плотности дефектов и соответственно снижения выхода годных.

Выполнение барьерного слоя AlxGa1-xAs:

а) толщиной как менее 10 нм, так и более 20 нм недопустимо, в первом случае из-за его функциональной неэффективности, во втором - из-за увеличения плотности дефектов полупроводниковой гетероструктуры и соответственно снижения выхода годных,

б) с содержанием химических элементов при x как менее 0,20, так и более 0,24 не желательно из-за возникновения значительных механических напряжений в полупроводниковой гетероструктуре и соответственно роста плотности дефектов и соответственно снижения выхода годных.

Выполнение градиентного слоя AlxGa1-xAs,

а) толщиной как менее 8 нм, так и более 12 нм недопустимо из-за резкого увеличения плотности дефектов полупроводниковой гетеростркутуры и соответственно снижения выхода годных,

б) легированного кремнием с концентрацией как менее 3×1018 см-3, так и более 5×1018 см-3, равно как и нижней части контактного слоя недопустимо, в первом случае из-за увеличения паразитных сопротивлений и снижения выходной мощности, во втором - из-за увеличения плотности дефектов полупроводниковой гетероструктуры и соответственно снижения выхода годных,

в) с содержанием химических элементов при x как менее 0,20, так и более 0,24 не желательно из-за возникновения значительных механических напряжений в полупроводниковой гетероструктуре и соответственно роста плотности дефектов и соответственно снижения выхода годных.

Выполнение контактного слоя GaAs из двух частей -

нижней - толщиной менее 30 нм, недопустимо из-за функциональной неэффективности, а более 50 нм - из-за увеличения плотности дефектов полупроводниковой гетероструктуры и соответственно снижения выхода годных,

верхней - толщиной менее 10 нм и концентрацией кремния менее 8×1018 см-3, равно как толщиной более 20 нм и концентрацией более 10×1018 см-3, недопустимо, в первом случае из-за увеличения контактного сопротивления с металлизационным контактным покрытием полевого транзистора и соответственно увеличения его паразитных сопротивлений и соответственно снижения выходной мощности, во втором - из-за увеличения плотности дефектов полупроводниковой гетероструктуры и соответственно снижения выхода годных.

Итак, совокупность существенных признаков заявленной полупроводниковой гетероструктуры для мощного полевого транзистора СВЧ в полной мере обеспечит указанный технический результат - повышение выхода годных полупроводниковой гетероструктуры путем снижения плотности дефектов, повышение выходной мощности, расширение диапазона рабочих частот полевого транзистора СВЧ и повышение его выхода годных.

Изобретение поясняется чертежом.

На фиг. 1 дана топология структуры заявленной полупроводниковой гетероструктуры для мощного полевого транзистора СВЧ, где:

монокристаллическая полуизолирующая подложка арсенида галлия - 1,

буферный слой GaAs - 2,

донорный слой GaAs - 3,

спейсерный слой GaAs - 4,

канальный слой InyGa1-yAs - 5,

спейсерный слой AlxGa1-xAs - 6,

донорный слой AlxGa1-xAs - 7,

барьерный слой AlxGa1-xAs - 8,

стоп-слой InyGa1-yP - 9,

барьерный слой AlxGa1-xAs - 10

градиентный слой AlxGa1-xAs - 11,

контактный слой GaAs - 12 из двух частей.

Примеры конкретного выполнения заявленной полупроводниковой гетероструктуры для мощного полевого транзистора СВЧ

Пример 1

На монокристаллической полуизолирующей подложке арсенида галлия 1 GaAs-S-INS-EPD1000-T62(76,2)M/LE-AV-LM Hitachi Gable толщиной 650 мкм посредством газофазной эпитаксии на установке (AIX 2400 G3) в едином технологическом цикле выращивают прямую последовательность слоев заявленной полупроводниковой гетероструктуры:

буферный слой GaAs, толщиной 275 нм,

донорный слой GaAs, толщиной 2,5 нм, легированный кремнием, с концентрацией 7×1018 см-3,

спейсерный слой GaAs, толщиной 3,5 нм,

канальный слой InyGa1-yAs, толщиной 10 нм, с содержанием химических элементов при y, равном 0,245,

спейсерный слой AlxGa1-xAs, толщиной 3,5 нм, с содержанием химических элементов при x, равном 0,22,

донорный слой AlxGa1-xAs, толщиной 4,5 нм, легированный кремнием с концентрацией 6,5×1018 см-3, с содержанием химических элементов при x, равном 0,22,

барьерный слой AlxGa1-xAs, толщиной 20 нм, с содержанием химических элементов при x, равном 0,22,

стоп-слой InyGa1-yP, толщиной 3 нм, с содержанием химических элементов при y, равном 0,495,

барьерный слой AlxGa1-xAs, толщиной 15 нм, с содержанием химических элементов при x, равном 0,22,

градиентный слой AlxGa1-xAs, толщиной 10 нм, легированный кремнием с концентрацией 4×1018 см-3, с содержанием химических элементов при x, равном 0,22,

контактный слой GaAs из двух частей, нижней - толщиной 40 нм, легированной кремнием с концентрацией 4×1018 см-3, верхней - толщиной 15 нм, легированной кремнием с концентрацией 9×1018 см-3.

Примеры 2-5

Изготовлены образцы заявленной полупроводниковой гетероструктуры аналогично примеру 1, но при других характеристиках слоев (количественном составе, толщине и концентрации легирования кремнием), как согласно формуле изобретения (примеры 2-3), так и за ее пределами (примеры 4-5).

Пример 6 соответствует образцу прототипа.

На изготовленных образцах полупроводниковой гетероструктуры была измерена плотность дефектов с размером 0,2-1,6 мкм и 1,6-63,0 мкм на установке Surfscan 6220 согласно технологической карте КРПГ.57802.00046.

Изготовленные образцы полупроводниковой гетероструктуры были использованы для изготовления мощных полевых транзисторов СВЧ.

На изготовленных образцах мощных полевых транзисторов СВЧ была измерена выходная мощность на рабочей частоте 10 ГГц.

Данные сведены в таблицу.

Как видно из таблицы:

1. Образцы полупроводниковой гетероструктуры, изготовленные согласно заявленной формуле изобретения, имеют плотность дефектов от 1,51 см-2 до 5,58 см-2 размером дефектов (0,2-1,6) мкм и от 1,07 см-2 до 6,44 см-2 размером дефектов (1,6-63,0) мкм (примеры 1-3)

в отличие от образцов, изготовленных за пределами, указанными в формуле изобретения, плотность дефектов которых составляет от 95,6 см-2 до 577,0 см-2 размером дефектов (0,2-1,6) мкм и от 116,0 см-2 до 992,0 см-2 размером дефектов (1,6-63,0) мкм (примеры 4-5),

плотность дефектов образца прототипа - 35,5 см-2 размером дефектов (0,2-1,6) мкм и 46,7 см-2 размером дефектов (1,6-63,0) мкм.

2. Мощные полевые транзисторы СВЧ на полупроводниковой гетероструктуре, изготовленной согласно заявленной формуле изобретения, имеют выходную мощность порядка 1,2 Вт/мм (примеры 1-3) в отличие от образцов - за пределами, указанными в формуле изобретения, выходная мощность которых порядка 0,8 и 0,3 Вт/мм (примеры 4-5 соответственно).

Данные относительно выходной мощности прототипа отсутствуют.

Таким образом, заявленная полупроводниковая гетероструктура для полевых транзисторов СВЧ обеспечит по сравнению с прототипом

во-первых, повышение выхода годных полупроводниковых гетероструктур путем снижения плотности дефектов примерно в (6-23) и (7-43) раза в обеих группах размеров дефектов соответственно,

во-вторых, повышение выходной мощности полевых транзисторов СВЧ примерно до 1,2 Вт/мм, что на сегодня является хорошим результатом.

Источники информации

1. Патент РФ №2093924, МПК H01L 29/772, приоритет 10.03.1993 г., опубл. 20.10.1997 г.

2. Патент РФ №2474924, МПК H01L 29/737, В82В 1/00, приоритет 08.08.2011 г., опубл. 10.02.2013 г.

3. Патент США 2005/0263789 А1, МПК H01L 31/0328, кл. 257/194, опубл. 01.12.2005 г., - прототип.


ПОЛУПРОВОДНИКОВАЯ ГЕТЕРОСТРУКТУРА
Источник поступления информации: Роспатент

Показаны записи 41-50 из 66.
26.08.2017
№217.015.e03c

Способ изготовления композиционного материала для изделий электронной техники свч

Изобретение относится к изготовлению композиционного материала для изделий электронной техники СВЧ на основе металлической матрицы в виде алюминиевого сплава и неметаллического наполнителя в виде карбида кремния. Способ включает уплотнение в разъемной пресс-форме шликерным литьем смеси фракций...
Тип: Изобретение
Номер охранного документа: 0002625377
Дата охранного документа: 13.07.2017
26.08.2017
№217.015.e931

Способ получения прессованного металлосплавного палладий-бариевого катода

Изобретение относится к электронной технике и может быть использовано для изготовления эффективных термо- и вторично-эмиссионных катодов. Путем плавки получают интерметаллид РdВа, размалывают в атмосфере инертного газа или СО с получением порошка, полученный порошок смешивают с порошком...
Тип: Изобретение
Номер охранного документа: 0002627707
Дата охранного документа: 10.08.2017
26.08.2017
№217.015.e93a

Способ получения катодного сплава на основе металла платиновой группы и бария

Изобретение относится к изготовлению металлосплавных катодов для приборов СВЧ-электроники. Способ получения катодного сплава на основе металла платиновой группы и бария включает прессование навески порошка металла платиновой группы, очистку поверхности бария от оксидов, совместную дуговую...
Тип: Изобретение
Номер охранного документа: 0002627709
Дата охранного документа: 10.08.2017
29.12.2017
№217.015.f86d

Способ изготовления композитного катодного материала

Изобретение относится к электронной технике, в частности к катодам, работающим в режиме автотермоэлектронной эмиссии. Cпособ изготовления композитного катодного материала включает подготовку порошка активного компонента и нанопорошка матричного металла, смешивание и перемешивание порошка...
Тип: Изобретение
Номер охранного документа: 0002639719
Дата охранного документа: 22.12.2017
19.01.2018
№218.016.09c2

Сверхвысокочастотное циклотронное защитное устройство

Изобретение относится к области высокочастотной радиоэлектроники, а именно к устройствам защиты от воздействия входной мощности большого уровня в СВЧ-радиоприемных устройствах, в частности в приемниках радиолокационных станций 8-миллиметрового диапазона длин волн. Технический результат -...
Тип: Изобретение
Номер охранного документа: 0002631923
Дата охранного документа: 29.09.2017
19.01.2018
№218.016.0ad2

Переключатель свч мощности

Изобретение относится к технике СВЧ, в частности к переключателям СВЧ мощности, и может быть использовано для переключения СВЧ сигналов между каналами приема (передачи) в СВЧ приемниках (передатчиках). Технический результат заключается в обеспечении согласования по СВЧ входов/выходов...
Тип: Изобретение
Номер охранного документа: 0002632259
Дата охранного документа: 03.10.2017
04.04.2018
№218.016.2ee3

Способ очистки перед пайкой припоя, выполненного в виде фольги или ленты

Изобретение может быть использовано при подготовке поверхности фольги, ленты припоя после прокатки перед низкотемпературной бесфлюсовой пайкой, в частности, при сборке изделий РЭА и СВЧ-техники. В первой ванне ультразвукового комплекса проводят обезжиривание при температуре 180-200°С в течение...
Тип: Изобретение
Номер охранного документа: 0002644486
Дата охранного документа: 12.02.2018
09.05.2018
№218.016.37d3

Способ получения катодного материала на основе металла платиновой группы и бария

Изобретение относится к электронной технике и может быть использовано для изготовления эффективных термо- и вторичноэмиссионных катодов для мощных приборов СВЧ-электроники, в частности ламп бегущей волны, магнетронов и т.п. Способ получения катодного материала на основе металла платиновой...
Тип: Изобретение
Номер охранного документа: 0002646654
Дата охранного документа: 06.03.2018
10.05.2018
№218.016.3af7

Прессованный металлосплавный палладий-бариевый катод и способ его получения

Изобретение относится к электронной технике и может быть использовано для изготовления эффективных термо- и вторичноэмиссионных катодов для мощных приборов СВЧ-электроники. Прессованный металлосплавный палладий-бариевый катод выполнен трехслойным из двух сплошных палладиевых лент и размещенной...
Тип: Изобретение
Номер охранного документа: 0002647388
Дата охранного документа: 15.03.2018
29.05.2018
№218.016.5767

Интегральная схема свч

Заявлена интегральная схема СВЧ, содержащая диэлектрическую подложку из алмаза, на обратной стороне которой выполнено металлизационное покрытие, элементы интегральной схемы - активные и пассивные элементы, линии передачи, выводы, в диэлектрической подложке из алмаза выполнены сквозные...
Тип: Изобретение
Номер охранного документа: 0002654970
Дата охранного документа: 23.05.2018
Показаны записи 41-50 из 53.
26.08.2017
№217.015.e03c

Способ изготовления композиционного материала для изделий электронной техники свч

Изобретение относится к изготовлению композиционного материала для изделий электронной техники СВЧ на основе металлической матрицы в виде алюминиевого сплава и неметаллического наполнителя в виде карбида кремния. Способ включает уплотнение в разъемной пресс-форме шликерным литьем смеси фракций...
Тип: Изобретение
Номер охранного документа: 0002625377
Дата охранного документа: 13.07.2017
26.08.2017
№217.015.e931

Способ получения прессованного металлосплавного палладий-бариевого катода

Изобретение относится к электронной технике и может быть использовано для изготовления эффективных термо- и вторично-эмиссионных катодов. Путем плавки получают интерметаллид РdВа, размалывают в атмосфере инертного газа или СО с получением порошка, полученный порошок смешивают с порошком...
Тип: Изобретение
Номер охранного документа: 0002627707
Дата охранного документа: 10.08.2017
26.08.2017
№217.015.e93a

Способ получения катодного сплава на основе металла платиновой группы и бария

Изобретение относится к изготовлению металлосплавных катодов для приборов СВЧ-электроники. Способ получения катодного сплава на основе металла платиновой группы и бария включает прессование навески порошка металла платиновой группы, очистку поверхности бария от оксидов, совместную дуговую...
Тип: Изобретение
Номер охранного документа: 0002627709
Дата охранного документа: 10.08.2017
29.12.2017
№217.015.f86d

Способ изготовления композитного катодного материала

Изобретение относится к электронной технике, в частности к катодам, работающим в режиме автотермоэлектронной эмиссии. Cпособ изготовления композитного катодного материала включает подготовку порошка активного компонента и нанопорошка матричного металла, смешивание и перемешивание порошка...
Тип: Изобретение
Номер охранного документа: 0002639719
Дата охранного документа: 22.12.2017
19.01.2018
№218.016.09c2

Сверхвысокочастотное циклотронное защитное устройство

Изобретение относится к области высокочастотной радиоэлектроники, а именно к устройствам защиты от воздействия входной мощности большого уровня в СВЧ-радиоприемных устройствах, в частности в приемниках радиолокационных станций 8-миллиметрового диапазона длин волн. Технический результат -...
Тип: Изобретение
Номер охранного документа: 0002631923
Дата охранного документа: 29.09.2017
19.01.2018
№218.016.0ad2

Переключатель свч мощности

Изобретение относится к технике СВЧ, в частности к переключателям СВЧ мощности, и может быть использовано для переключения СВЧ сигналов между каналами приема (передачи) в СВЧ приемниках (передатчиках). Технический результат заключается в обеспечении согласования по СВЧ входов/выходов...
Тип: Изобретение
Номер охранного документа: 0002632259
Дата охранного документа: 03.10.2017
04.04.2018
№218.016.2ee3

Способ очистки перед пайкой припоя, выполненного в виде фольги или ленты

Изобретение может быть использовано при подготовке поверхности фольги, ленты припоя после прокатки перед низкотемпературной бесфлюсовой пайкой, в частности, при сборке изделий РЭА и СВЧ-техники. В первой ванне ультразвукового комплекса проводят обезжиривание при температуре 180-200°С в течение...
Тип: Изобретение
Номер охранного документа: 0002644486
Дата охранного документа: 12.02.2018
10.05.2018
№218.016.3aec

Электронная отпаянная пушка для вывода электронного потока и рентгеновского излучения из вакуумной области в атмосферу

Изобретение относится к электронной технике и рентгенотехнике, а именно к электронным пушкам, предназначенным для инжекции высокоэнергетических электронов и рентгеновского излучения из вакуумной области пушки в атмосферу или иную среду, и может быть использовано в плазмохимии, биологии,...
Тип: Изобретение
Номер охранного документа: 0002647489
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.3b78

Электронная отпаянная пушка для вывода электронного потока из вакуумной области пушки в атмосферу или иную газовую среду

Изобретение относится к электронной технике, а именно к электронным пушкам, предназначенным для вывода электронного потока из вакуумной области пушки наружу: в атмосферу или иную газовую среду, и может быть использовано в полупроводниковой электронике для создания мощных миниатюрных структур, в...
Тип: Изобретение
Номер охранного документа: 0002647487
Дата охранного документа: 16.03.2018
01.03.2019
№219.016.c87d

Электронная отпаянная пушка для вывода электронного потока в атмосферу или иную газовую среду

Изобретение относится к электронной технике, а именно к электронным отпаянным пушкам и ускорителям электронов, предназначенным для вывода электронного потока из вакуумной области пушки и ускорителя в атмосферу или иную газовую среду, и может быть использовано в полупроводниковой электронике для...
Тип: Изобретение
Номер охранного документа: 0002680823
Дата охранного документа: 27.02.2019
+ добавить свой РИД