×
20.09.2015
216.013.7bf0

Результат интеллектуальной деятельности: АМПЕРОМЕТРИЧЕСКИЙ СПОСОБ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ ГОРЮЧИХ ГАЗОВ В АЗОТЕ

Вид РИД

Изобретение

Аннотация: Изобретение направлено на возможность измерения горючего газа в смеси с азотом или другим инертным газом. Способ заключается в том, что в поток анализируемого горючего газа помещают электрохимическую ячейку с полостью, образованной герметично соединенными между собой двумя дисками из твердого электролита, на противоположных поверхностях одного из которых расположена пара электродов, к электродам подают напряжение, необходимое для получения предельного тока, протекающего через ячейку, по величине которого определяют концентрацию горючего газа в анализируемой газовой смеси. При этом используют ячейку с полостью, образованной дисками из кислородпроводящего твердого электролита с электродами из каталитического материала, для получения предельного тока к электродам подают напряжение постоянного тока в пределах 300-500 мВ с подачей положительного полюса на электрод, находящийся внутри ячейки, и по величине возникающего при этом предельного тока определяют концентрацию горючего газа в анализируемой газовой смеси. Изобретение обеспечивает возможность достаточно просто и надежно измерить содержание различных горючих газов в смеси с азотом. 1 з.п. ф-лы, 5 ил.

Изобретение относится к аналитической технике и может быть использовано для измерения содержания горючих газов, таких как водород, монооксид углерода и этана, в азоте.

Наибольшее распространение для измерения содержания горючих газов получили способы с применением термокаталитических и полупроводниковых сенсоров, принцип действия которых аналогичен. Действие термокаталитического сенсора основано на том, что при прохождении горючего газа, находящегося в смеси с воздухом, по поверхности каталитического плеча сенсора возникает горение, и выделяющееся тепло повышает температуру катализатора, выполненного в виде пеллистора. Это, в свою очередь, ведет к изменению его сопротивления, которое можно измерить. Изменение сопротивления, находящееся в прямой зависимости от концентрации газа в окружающей среде, отображают на измерительном инструменте или индикаторе.

Действие полупроводниковых сенсоров горючего газа также как и у каталитических сенсоров, основано на свойствах поглощения газа поверхностью нагретого оксида. Это тонкая пленка окиси металла (обычно оксиды переходных или тяжелых металлов, таких как олово) на кремниевой пластине. Поглощение горючего газа поверхностью оксида с последующим каталитическим окислением ведет к изменению электрического сопротивления оксидного материала и может быть соотнесено с концентрацией газа образца (Портативные сенсоры для анализа водорода. Добровольская Ю.А., Леонова Л.С., Укше А.Е., Левченко А.В., Баранов A.M., Васильев А.А. Российский химический журнал (Журнал Российского химического общества им. Д.И. Менделеева), 2006, т. 1, №60) [1].

Использование полупроводниковых сенсоров известно в способе измерения концентрации горючих газов (RU 2239824, публ. 27.11.2003) [2]. Способ заключается в пропускании номинального значения электрического тока через полупроводниковый сенсор, помещение сенсора в чистый воздух, настройку схемы в нулевое положение, помещение сенсора в среду с анализируемым газом и измерение содержания горючего газа в этой среде, при этом перед настройкой через сенсор пропускают постепенно увеличивающийся электрический ток от 0 до 135% номинального тока, указанного в паспорте на прибор, в течение времени, позволяющего свести к минимуму время настройки прибора, после чего автоматически переходят на номинальное значение тока питания сенсора.

Данный способ не позволяет анализировать горючий газ в смеси с инертным газом (азотом, аргоном, гелием). Необходимым условием его работоспособности является наличие окислителя (кислорода) в анализируемом газе. Только в присутствии окислителя горючий газ, сгорая, выделяет тепло и меняет сопротивление сенсора. Кроме того, указанный способ нуждается в сложной и достаточно трудоемкой процедуре настройки, что усложняет эксплуатацию.

Наиболее близким к предлагаемому изобретению является способ определения концентрации водорода в газовых смесях с помощью твердоэлектролитного амперометрического сенсора (RU 2483299, публ. 27.05.2011) [3]. Сенсор представляет собой электрохимическую ячейку, содержащую два электрода, нанесенные на противоположные поверхности одного из герметично соединенных между собой дисков из твердого протонпроводящего электролита состава CaZrO3. Ячейку помещают в поток анализируемого газа, к электродам подают напряжение, не превышающее 1 вольт, в результате водород диффундирует из анализируемого газа во внутреннюю полость ячейки. Водород, который продиффундировал, из полости ячейки откачивают в анализируемый газовый поток. При этом вследствие высокой текучести водород из анализируемого газа непрерывно поступает из окружающей среды внутрь полости ячейки. Ток, протекающий через второй слой из твердого электролита, изменяется, достигая при установлении стационарного состояния постоянного значения, называемого предельным диффузионным током. Измерив величину этого предельного тока, характерную для данной концентрации водорода, по известному уравнению однозначно определяют концентрацию водорода в анализируемой среде.

Таким образом, в известном амперометрическом способе измерения концентрации водорода в газовых смесях используют величину предельного тока, протекающего через ячейку, которую получают подачей напряжения к электродам, величина которого необходима для получения предельного тока. Поскольку известный способ включает применение электрохимической ячейки, содержащей электроды из твердого протонпроводящего электролита состава CaZrO3, получаемый предельный ток будет обусловлен только наличием водорода в анализируемом газе. Другие горючие газы генерировать ток, в том числе и предельный, не могут. Кроме того, технология производства протонпроводящих электролитов довольно сложна и трудоемка.

Задача настоящего изобретения заключается в создании способа, позволяющего достаточно просто и надежно измерять содержание разных горючих газов в смеси с азотом.

Для решения поставленной задачи амперометрический способ измерения концентрации горючих газов в азоте, также как известный, заключается в том, что в поток анализируемого горючего газа помещают электрохимическую ячейку с полостью, образованной герметично соединенными между собой двумя дисками из твердого электролита, на противоположных поверхностях одного из которых расположена пара электродов, к электродам подают напряжение для получения предельного тока, протекающего через ячейку, по величине которого определяют концентрацию горючего газа в анализируемой газовой смеси. Способ отличается тем, что используют ячейку с полостью, образованной дисками из кислородпроводящего твердого электролита с электродами из каталитического материала, для получения предельного тока к электродам подают напряжение постоянного тока в пределах 300-500 мВ с подачей положительного полюса на электрод, находящийся внутри ячейки, и по величине возникающего при этом предельного тока определяют концентрацию горючего газа в анализируемой газовой смеси.

В качестве каталитического материала электродов можно использовать платину.

При подаче на электроды электрохимической ячейки напряжения постоянного тока, при условии, что плюс от источника подается на внутренний электрод, в цепи возникает ток и происходит накачка кислорода из анализируемого газа, омывающего ячейку в полость ячейки. Кислород в незначительных количествах всегда присутствует в азоте или в другом инертном газе. В полости ячейки накаченный кислород взаимодействует с горючим газом, поступившим туда в смеси с азотом по капилляру из анализируемой среды. При этом на поверхности внутреннего электрода ячейки, выполненного из платины или другого каталитического материала, будет интенсивно идти процесс взаимодействия горючего газа с кислородом в соответствии с реакциями (1-4):

При достижении напряжения постоянного тока величины 300-500 мВ ток стабилизируется и перестает расти с ростом напряжения. Полученный ток является предельным током, а его величина обусловлена газообменом между анализируемой средой и газом в полости ячейки. При этом в полости ячейки находится смесь анализируемого газа и продуктов взаимодействия по одной из реакций (1-4). Величина предельного тока сенсора лимитируется диффузионным барьером - капилляром сенсора и связана с концентрацией горючего газа уравнением (5) (Иванов-Шиц, И. Мурин. Ионика твердого тела, том 2, С.-Петербург (2010) СС. 964-965) [4]:

где: I - величина предельного тока, А;

F - константа Фарадея, Кл/г·экв;

D - коэффициент диффузии горючего газа в азоте, см2/с;

S - площадь сечения капилляра, мм2;

P - общее давление газовой смеси, Па;

R - универсальная газовая постоянная, Дж/мол·К;

T - температура анализа, К;

L - длина капилляра, мм.

X (горючий газ) - мольная доля горючего газа в смеси с азотом;

При малых значениях X(горючий газ) уравнение (5) приобретает вид:

В соответствии с уравнением (6) достаточно легко рассчитать содержание горючего газа по измеренному значению предельного тока (IL(горючий газ-азот)). При этом может быть измерено содержание любого горючего газа, который взаимодействует с кислородом на катализаторе, то есть электроде из каталитического материала при температурах 400-700°C.

Новый технический результат, достигаемый заявленным способом, заключается в возможности измерения горючего газа в смеси с азотом или другим инертным газом и упрощении измерительного устройства, изготовленного из простого и хорошо изученного кислородпроводящего твердого электролита.

Изобретение иллюстрируется рисунками, где на фиг. 1 изображена электрохимическая ячейка для реализации способа; на фиг. 2 - вольтамперная характеристика при анализе водорода в смеси водород+азот при 500°C; на фиг. 3 - вольтамперная характеристика при анализе монооксида углерода в смеси монооксид углерода+азот при 500°C; фиг. 4 - вольтамперная характеристика при анализе этана в смеси этан+азот при 500°C; фиг. 5 - зависимость предельного тока от концентрации горючих газов при 500°C. Ячейка состоит из двух дисков 1, выполненных из кислородпроводящего твердого электролита - оксида циркония, стабилизированного оксидом иттрия. Диски соединены между собой газоплотным герметиком 2 с образованием внутренней полости 3. На противоположных поверхностях одного из дисков 1 расположены два электрода 4. Между дисками находится капилляр 5. Подача напряжения на электроды 4 осуществляется от источника напряжения постоянного тока (ИН). Ток, возникающий в цепи ячейки, измеряется амперметром (А). Электрохимическая ячейка помещена в поток анализируемого газа, который омывает ее наружную поверхность и по капилляру 5 поступает во внутреннюю полость ячейки 3. Под действием напряжения постоянного тока, приложенного от источника (ИН) к электродам 4, причем на внутренний электрод приложен плюс, через твердый кислородпроводящий электролит происходит накачка кислорода из анализируемого газа во внутреннюю полость 3 устройства. В полости 3 поступивший кислород взаимодействует с горючим газом. Образовавшиеся продукты взаимодействия в соответствии с уравнениями (1-4) обмениваются через капилляр 5 с анализируемым газом. При этом капилляр 5 является диффузионным барьером, лимитирующим этот газовый поток обмена. Этому потоку обмена будет соответствовать и ток ячейки. При достижении приложенного напряжения величины в пределах 300-500 мВ, газообмен между полостью ячейки и анализируемой средой стабилизируется и в цепи устанавливается предельный диффузионный ток - IL(горючий газ-азот), который измеряют с помощью амперметра (А). Посредством уравнения (5) по величине измеренного IL(горючий газ-азот) можно определить величину X(горючий газ), т.е. концентрацию горючего газа в азоте.

Таким образом, заявленный способ позволяет измерить содержание горючего газа в смеси с азотом или другим инертным газом посредством амперометрической ячейки с кислородпроводящим твердым электролитом.


АМПЕРОМЕТРИЧЕСКИЙ СПОСОБ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ ГОРЮЧИХ ГАЗОВ В АЗОТЕ
АМПЕРОМЕТРИЧЕСКИЙ СПОСОБ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ ГОРЮЧИХ ГАЗОВ В АЗОТЕ
АМПЕРОМЕТРИЧЕСКИЙ СПОСОБ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ ГОРЮЧИХ ГАЗОВ В АЗОТЕ
АМПЕРОМЕТРИЧЕСКИЙ СПОСОБ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ ГОРЮЧИХ ГАЗОВ В АЗОТЕ
АМПЕРОМЕТРИЧЕСКИЙ СПОСОБ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ ГОРЮЧИХ ГАЗОВ В АЗОТЕ
Источник поступления информации: Роспатент

Показаны записи 61-70 из 106.
26.08.2017
№217.015.e765

Амперометрический способ измерения концентрации закиси азота в газовых смесях

Изобретение направлено на возможность амперометрически измерять концентрацию закиси азота в газовой смеси с помощью простого в изготовлении и эксплуатации измерительного устройства, созданного на основе кислородопроводящего твердого электролита состава 0,9 ZrO + 0,1YO. Способ заключается в том,...
Тип: Изобретение
Номер охранного документа: 0002627174
Дата охранного документа: 03.08.2017
26.08.2017
№217.015.e7d6

Способ исследования кинетики межфазного обмена в системе "газ-электрохимическая ячейка" с использованием изотопного обмена в условиях поляризации электродов

Изобретение относится к электрохимии твердых кислород - ионных электролитов. Способ согласно изобретению заключается в том, что исследуемый образец при комнатной температуре и давлении помещают в кварцевый реактор, через который осуществляют циркуляцию газа по газовому контуру, сообщающемуся с...
Тип: Изобретение
Номер охранного документа: 0002627145
Дата охранного документа: 03.08.2017
19.01.2018
№218.015.ff2d

Способ непрерывного получения алюминиевой лигатуры с 2 мас. % скандия

Изобретение относится к способу получения алюминиевой лигатуры с 2 мас.% скандия. Способ включает электролиз расплава, содержащего фториды калия, натрия, алюминия, загрузку в расплав оксида скандия и проведение электролиза расплавленной смеси с оксидом скандия в электролизере при температуре...
Тип: Изобретение
Номер охранного документа: 0002629418
Дата охранного документа: 29.08.2017
19.01.2018
№218.016.00d9

Способ утилизации углеродсодержащих отходов

Способ утилизации углеродсодержащих отходов включает отбор углеродсодержащей компоненты из отходов, охлаждение углеродсодержащей компоненты, каталитический синтез метанола из углеродсодержащей компоненты. В качестве отходов используют отработавшие газы из газотурбинных установок...
Тип: Изобретение
Номер охранного документа: 0002629666
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.0ad7

Пневматический ручной ударный инструмент для граверных работ

Изобретение относится к пневматическому ручному ударному инструменту для граверных работ. Инструмент содержит цилиндрический корпус с кольцевой перемычкой на внутренней поверхности корпуса и сквозными отверстиями для прохода воздуха. В корпусе расположен двухступенчатый поршень с продольным и...
Тип: Изобретение
Номер охранного документа: 0002632307
Дата охранного документа: 03.10.2017
20.01.2018
№218.016.134a

Способ изготовления анодного материала для топливного элемента с расплавленным карбонатным электролитом

Изобретение относится к области электрохимической энергетики, а именно к высокотемпературным топливным элементам с расплавленным карбонатным электролитом. Способ включает обработку порошка металлического никеля или никельсодержащего сплава алюминийсодержащим прекурсором. В качестве...
Тип: Изобретение
Номер охранного документа: 0002634475
Дата охранного документа: 31.10.2017
13.02.2018
№218.016.296f

Способ изготовления газодиффузионного электрода

Изобретение относится к области электротехники и может быть использовано для изготовления источников тока (топливных элементов), систем жизнеобеспечения, для регенерации газов в замкнутых объемных, электролизеров для водородной энергетики, кислородных насосов, датчиков для метрологии и т.д....
Тип: Изобретение
Номер охранного документа: 0001840851
Дата охранного документа: 20.01.2013
17.02.2018
№218.016.2bda

Способ получения пленочного твердого электролита

Изобретение относится к получению тонкопленочного твердого электролита в виде газоплотной пленки оксида. На подложку из материала электрода наносят суспензию, приготовленную из раствора 1-8 мас.% оксидообразующих солей в этаноле и порошка–прекурсора, который получают путем термообработки...
Тип: Изобретение
Номер охранного документа: 0002643152
Дата охранного документа: 31.01.2018
10.05.2018
№218.016.39a3

Способ регенерации хлоридного электролита при электрохимической переработке отработавшего ядерного топлива

Изобретение может быть использовано при электрохимической переработке отработавшего ядерного топлива (ОЯТ) реакторов на быстрых нейтронах. Способ характеризуется тем, что в расплавленный электролит на основе эвтектической смеси хлоридов лития и калия после выделения из него актинидов,...
Тип: Изобретение
Номер охранного документа: 0002647125
Дата охранного документа: 14.03.2018
10.05.2018
№218.016.4853

Способ синтеза наноразмерного порошкообразного материала на основе скандата лантана

Изобретение может быть использовано при изготовлении электрохимических устройств, таких как твердооксидные топливные элементы, электролизеры. Для синтеза наноразмерного порошкообразного материала на основе скандата лантана смесь решеткообразующих компонентов и допанта нагревают в присутствии...
Тип: Изобретение
Номер охранного документа: 0002651009
Дата охранного документа: 18.04.2018
Показаны записи 61-70 из 75.
26.08.2017
№217.015.e7d6

Способ исследования кинетики межфазного обмена в системе "газ-электрохимическая ячейка" с использованием изотопного обмена в условиях поляризации электродов

Изобретение относится к электрохимии твердых кислород - ионных электролитов. Способ согласно изобретению заключается в том, что исследуемый образец при комнатной температуре и давлении помещают в кварцевый реактор, через который осуществляют циркуляцию газа по газовому контуру, сообщающемуся с...
Тип: Изобретение
Номер охранного документа: 0002627145
Дата охранного документа: 03.08.2017
19.01.2018
№218.015.ff2d

Способ непрерывного получения алюминиевой лигатуры с 2 мас. % скандия

Изобретение относится к способу получения алюминиевой лигатуры с 2 мас.% скандия. Способ включает электролиз расплава, содержащего фториды калия, натрия, алюминия, загрузку в расплав оксида скандия и проведение электролиза расплавленной смеси с оксидом скандия в электролизере при температуре...
Тип: Изобретение
Номер охранного документа: 0002629418
Дата охранного документа: 29.08.2017
19.01.2018
№218.016.00d9

Способ утилизации углеродсодержащих отходов

Способ утилизации углеродсодержащих отходов включает отбор углеродсодержащей компоненты из отходов, охлаждение углеродсодержащей компоненты, каталитический синтез метанола из углеродсодержащей компоненты. В качестве отходов используют отработавшие газы из газотурбинных установок...
Тип: Изобретение
Номер охранного документа: 0002629666
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.0ad7

Пневматический ручной ударный инструмент для граверных работ

Изобретение относится к пневматическому ручному ударному инструменту для граверных работ. Инструмент содержит цилиндрический корпус с кольцевой перемычкой на внутренней поверхности корпуса и сквозными отверстиями для прохода воздуха. В корпусе расположен двухступенчатый поршень с продольным и...
Тип: Изобретение
Номер охранного документа: 0002632307
Дата охранного документа: 03.10.2017
20.01.2018
№218.016.134a

Способ изготовления анодного материала для топливного элемента с расплавленным карбонатным электролитом

Изобретение относится к области электрохимической энергетики, а именно к высокотемпературным топливным элементам с расплавленным карбонатным электролитом. Способ включает обработку порошка металлического никеля или никельсодержащего сплава алюминийсодержащим прекурсором. В качестве...
Тип: Изобретение
Номер охранного документа: 0002634475
Дата охранного документа: 31.10.2017
17.02.2018
№218.016.2bda

Способ получения пленочного твердого электролита

Изобретение относится к получению тонкопленочного твердого электролита в виде газоплотной пленки оксида. На подложку из материала электрода наносят суспензию, приготовленную из раствора 1-8 мас.% оксидообразующих солей в этаноле и порошка–прекурсора, который получают путем термообработки...
Тип: Изобретение
Номер охранного документа: 0002643152
Дата охранного документа: 31.01.2018
29.05.2018
№218.016.5521

Амперометрический способ измерения концентрации кислорода в газовых смесях

Изобретение относится к области газового анализа и может быть использовано для регистрации и измерения содержания кислорода в газовых смесях, в частности в азоте, с помощью электрохимической ячейки на основе протонпроводящего твердого электролита. Амперометрический способ измерения концентрации...
Тип: Изобретение
Номер охранного документа: 0002654389
Дата охранного документа: 17.05.2018
29.03.2019
№219.016.ed71

Твердоэлектролитный потенциометрический датчик для анализа влажности воздуха и малых концентраций водорода

Изобретение относится к аналитической технике и может быть использовано для измерения влажности воздуха и малых концентраций водорода в газовых смесях. Датчик содержит три диска из протонпроводящего твердого электролита, герметично соединенные между собой с образованием двух полостей между...
Тип: Изобретение
Номер охранного документа: 0002683134
Дата охранного документа: 26.03.2019
29.04.2019
№219.017.42a9

Пневматический перфоратор (варианты)

Изобретение относится к пневматическим машинам, используемым в горной и строительной промышленности. Перфоратор содержит, по крайней мере, два стяжных болта, объединяющих в неподвижное соединение последовательно расположенные воздушный кран, клапанное воздухораспределительное устройство, корпус...
Тип: Изобретение
Номер охранного документа: 0002307912
Дата охранного документа: 10.10.2007
10.07.2019
№219.017.ad71

Гипоциклоидный вращатель

Изобретение относится к пневматическим и гидравлическим машинам вращательного и ударно-вращательного действия для бурения горных пород и в строительстве. Гипоциклоидный вращатель содержит статор с зубьями внутреннего зацепления, торцовые крышки и установленный с эксцентриситетом ротор,...
Тип: Изобретение
Номер охранного документа: 0002355859
Дата охранного документа: 20.05.2009
+ добавить свой РИД