×
10.09.2015
216.013.7a53

Результат интеллектуальной деятельности: СПОСОБ УПРАВЛЕНИЯ ОРИЕНТАЦИЕЙ КОСМИЧЕСКОГО АППАРАТА С НЕПОДВИЖНЫМИ ПАНЕЛЯМИ СОЛНЕЧНЫХ БАТАРЕЙ ПРИ ВЫПОЛНЕНИИ ЭКСПЕРИМЕНТОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к космической технике. Способ управления ориентацией космического аппарата (КА) с неподвижными панелями солнечных батарей (СБ) при выполнении экспериментов включает гравитационную ориентацию КА продольной осью вдоль местной вертикали и закрутку вокруг продольной оси, соответствующей минимальному моменту инерции. Дополнительно определяют угол между направлением на Солнце и плоскостью орбиты. Определяют высоту орбиты. КА закручивают вокруг продольной оси с угловой скоростью, направленной в центр Земли или от центра Земли. Выбор направления закрутки зависит от величины угла между направлением на Солнце и плоскостью орбиты. Техническим результатом изобретения является максимизация суммарной освещенности СБ за виток. 3 ил.
Основные результаты: Способ управления ориентацией космического аппарата с неподвижными панелями солнечных батарей при выполнении экспериментов, включающий гравитационную ориентацию космического аппарата продольной осью вдоль местной вертикали и закрутку вокруг его продольной оси, соответствующей минимальному моменту инерции, отличающийся тем, что определяют угол между направлением на Солнце и плоскостью орбиты с положительным направлением отсчета угла по вектору угловой скорости орбитального движения космического аппарата, определяют высоту орбиты, по которой определяют фиксируемое значение угла между направлением на Солнце и плоскостью орбиты β, при значениях угла между направлением на Солнце и плоскостью орбиты в диапазоне (0, β) или менее - β космический аппарат закручивают вокруг продольной оси с угловой скоростью 3·ω, направленной от центра Земли, где ω - угловая скорость орбитального движения космического аппарата, причем в момент прохождения противосолнечной точки витка нормаль к активной поверхности солнечных батарей составляет минимальный угол с вектором угловой скорости орбитального движения космического аппарата, а при значениях угла между направлением на Солнце и плоскостью орбиты в диапазоне (-β, 0) или более β космический аппарат закручивают вокруг продольной оси с угловой скоростью 3·ω, направленной в центр Земли, причем на момент прохождения противосолнечной точки витка нормаль к активной поверхности солнечных батарей составляет максимальный угол с вектором угловой скорости орбитального движения космического аппарата, при этом фиксируемое значение угла между направлением на Солнце и плоскостью орбиты β определяют как минимальное превышающее ноль значение угла между направлением на Солнце и плоскостью орбиты, при котором освещенность активной поверхности солнечных батарей за виток при закрутке космического аппарата с одними вышеописанными параметрами закрутки равна освещенности активной поверхности солнечных батарей за виток при закрутке космического аппарата с другими вышеописанными параметрами закрутки.

Изобретение относится к области космической техники и может быть использовано при управлении ориентацией космических аппаратов (КА) при выполнении экспериментов и исследований.

Известен способ управления ориентацией КА, включающий выставку осей КА и поддержание углового положения с помощью двигателей ориентации (Алексеев К.Б., Бебенин Г.Г. Управление космическими летательными аппаратами. - М.: Машиностроение, 1974).

Однако для использования данного способа необходимо расходовать рабочее тело, что вызывает, кроме того, непрогнозируемые микроускорения на борту КА.

Известен способ ориентации КА, включающий выставку оси КА, соответствующей минимальному моменту инерции, на центр Земли и орбитальное смещение КА (Беляев М.Ю. Научные эксперименты на космических кораблях и орбитальных станциях. - М.: Машиностроение, 1984). Данный способ используется для КА, имеющих вытянутую форму, т.е. когда момент инерции относительно продольной оси значительно (в разы) меньше момента инерции относительно поперечных осей.

Данный способ позволяет поддерживать одноосную гравитационную ориентацию без дополнительного расхода рабочего тела на ее поддержание и тем самым, например, снизить уровень микроперегрузок, действующих на КА, но не обеспечивает учета освещенности солнечных батарей (СБ) для обеспечения требуемого для экспериментов прихода электроэнергии.

Известен способ управления ориентацией КА с неподвижными панелями солнечных батарей при выполнении экспериментов на орбитах с максимальной длительностью теневого участка (Патент РФ №2457158, приоритет от 22.09.2010, МПК (2006.01) B64G 1/24, 1/44 - прототип), включающий гравитационную ориентацию КА и закрутку вокруг его продольной оси, соответствующей минимальному моменту инерции, при нахождении Солнца в плоскости орбиты совмещают плоскость СБ с плоскостью орбиты к моменту прохождения утреннего терминатора, измеряют и отслеживают угол между перпендикуляром к активной поверхности СБ и направлением на Солнце, а закрутку КА вокруг продольной оси в направлении, соответствующем уменьшению измеряемого и отслеживаемого угла между перпендикуляром к активной поверхности СБ и направлением на Солнце, осуществляют в момент прохождения утреннего терминатора с угловой скоростью из диапазона значений ω=360°/T÷720°/T, где T - период обращения КА по орбите.

При управлении КА по способу-прототипу солнечное излучение поступает на СБ с направлений, отстоящих от нормали к рабочей поверхности СБ, вследствие чего генерируемый СБ ток отличается от максимального тока, который способны генерировать СБ. В то же время при выполнении ряда экспериментов, в которых используется энергоемкая аппаратура, желательно обеспечить максимально возможный съем электроэнергии с СБ. Кроме того, предложенный в способе-прототипе диапазон скоростей закрутки КА не охватывает некоторые возможные значения скорости закрутки КА, при которых обеспечивается устойчивость гравитационной ориентации ряда КА.

Задачей, на решение которой направлено настоящее изобретение, является повышение прихода электроэнергии от СБ КА при выполнении экспериментов и исследований в условиях вращательного движения КА.

Технический результат предлагаемого изобретения заключается в максимизации интегральной освещенности рабочей поверхности СБ за виток в режиме закрутки КА при поддержании одноосной гравитационной ориентации КА.

Технический результат достигается тем, что в способе управления ориентацией космического аппарата с неподвижными панелями солнечных батарей при выполнении экспериментов, включающем гравитационную ориентацию космического аппарата продольной осью вдоль местной вертикали и закрутку вокруг его продольной оси, соответствующей минимальному моменту инерции, дополнительно определяют угол между направлением на Солнце и плоскостью орбиты с положительным направлением отсчета угла по вектору угловой скорости орбитального движения космического аппарата, определяют высоту орбиты, по которой определяют фиксируемое значение угла между направлением на Солнце и плоскостью орбиты β*, при значениях угла между направлением на Солнце и плоскостью орбиты в диапазоне (0, β*) или менее -β* космический аппарат закручивают вокруг продольной оси с угловой скоростью 3·ωо, направленной от центра Земли, где ωо - угловая скорость орбитального движения космического аппарата, причем в момент прохождения противосолнечной точки витка нормаль к активной поверхности солнечных батарей составляет минимальный угол с вектором угловой скорости орбитального движения космического аппарата, а при значениях угла между направлением на Солнце и плоскостью орбиты в диапазоне (-β*, 0) или более β* космический аппарат закручивают вокруг продольной оси с угловой скоростью 3·ωо, направленной в центр Земли, причем на момент прохождения противосолнечной точки витка нормаль к активной поверхности солнечных батарей составляет максимальный угол с вектором угловой скорости орбитального движения космического аппарата, при этом фиксируемое значение угла между направлением на Солнце и плоскостью орбиты β* определяют как минимальное превышающее ноль значение угла между направлением на Солнце и плоскостью орбиты, при котором освещенность активной поверхности солнечных батарей за виток при закрутке космического аппарата с одними вышеописанными параметрами закрутки равна освещенности активной поверхности солнечных батарей за виток при закрутке космического аппарата с другими вышеописанными параметрами закрутки.

Суть предлагаемого изобретения поясняется на фиг.1÷3.

На фиг.1 и 2 представлены схемы ориентации СБ КА при поддержании гравитационной ориентации КА продольной осью вдоль местной вертикали с закруткой КА вокруг продольной оси с предлагаемыми параметрами закрутки.

На фиг.3 представлены графики, иллюстрирующие определение фиксируемого значения угла между направлением на Солнце и плоскостью орбиты β*.

На фиг.1 и 2 введены обозначения:

1 - орбита КА;

2 - противосолнечная точка витка орбиты;

3, 4 - точки утреннего и вечернего терминаторов соответственно;

5 - активная поверхность СБ,

V - вектор скорости КА,

N - нормаль к активной поверхности СБ;

W - вектор угловой скорости закрутки КА вокруг продольной оси,

P - проекция солнечного направления на плоскость орбиты;

Поясним предложенные в способе действия.

Определяют угол β между направлением на Солнце и плоскостью орбиты КА с положительным направлением отсчета угла по вектору угловой скорости орбитального движения КА. Направление вектора угловой скорости орбитального движения КА совпадает с направлением нормали к плоскости орбиты.

Определяют высоту орбиты, по которой определяют фиксируемое значение угла между направлением на Солнце и плоскостью орбиты β*.

При значениях угла между направлением на Солнце и плоскостью орбиты в диапазоне (0, β*) или менее -β* выполняют гравитационную ориентацию КА продольной осью вдоль местной вертикали с закруткой КА вокруг продольной оси с угловой скоростью 3·ωо, направленной от центра Земли, где ωо - модуль угловой скорости орбитального движения КА, при этом ориентацию КА в момент закрутки выбирают из условия, что в момент прохождения противосолнечной точки витка нормаль к активной поверхности СБ составляет минимальный угол с вектором угловой скорости орбитального движения КА. Схема ориентации СБ в данной закрутке для случая, когда нормаль к активной поверхности СБ перпендикулярна продольной оси КА, представлена на фиг.1. Данные параметры закрутки КА условно называем «первым» вариантом параметров закрутки.

При значениях угла между направлением на Солнце и плоскостью орбиты в диапазоне (-β*, 0) или более β* выполняют гравитационную ориентацию КА продольной осью вдоль местной вертикали с закруткой КА вокруг продольной оси с угловой скоростью 3·ωо, направленной в центр Земли, при этом ориентацию КА в момент закрутки выбирают из условия, что в момент прохождения противосолнечной точки витка нормаль к активной поверхности СБ составляет максимальный угол с вектором угловой скорости орбитального движения КА. Схема ориентации СБ в данной закрутке для случая, когда нормаль к активной поверхности СБ перпендикулярна продольной оси КА, представлена на фиг.2. Данные параметры закрутки КА условно называем «вторым» вариантом параметров закрутки.

Гравитационную ориентации КА продольной осью вдоль местной вертикали и закрутку КА вокруг продольной оси с описанными параметрами закрутки выполняют, например, следующим образом.

Выполняют построение гравитационной ориентации КА продольной осью вдоль местной вертикали, для чего ориентируют КА продольной осью вдоль местной вертикали и придают КА вращение вокруг оси, направленной по нормали к плоскости орбиты КА с угловой скоростью, равной угловой скорости орбитального движения КА.

На фоне данной гравитационной ориентации КА при β≤-β* или 0≤β≤β* разворачивают КА вокруг его продольной оси до достижения к моменту закрутки (к моменту выдачи импульса закрутки) углом между проекцией нормали к активной поверхности СБ на плоскость местного горизонта и вектором угловой скорости орбитального движения КА значения

и углом между проекцией нормали к активной поверхности СБ на плоскость местного горизонта и вектором скорости КА значения

где Δt - интервал времени от момента прохождения противосолнечной точки витка орбиты до момента закрутки,

и в момент достижения вышеупомянутыми углами задаваемых значений выполняют закрутку КА вокруг продольной оси с угловой скоростью 3·ωо, направленной от центра Земли.

При -β*≤β≤0 или β*≤β разворачивают КА вокруг его продольной оси до достижения к моменту закрутки углом между проекцией нормали к активной поверхности СБ на плоскость местного горизонта и вектором угловой скорости орбитального движения КА значения

и углом между проекцией нормали к активной поверхности СБ на плоскость местного горизонта и вектором скорости КА значения

и в момент достижения вышеупомянутыми углами задаваемых значений выполняют закрутку КА вокруг продольной оси с угловой скоростью 3·ωо, направленной в сторону центра Земли.

Таким образом, первый и второй вышеописанные варианты закрутки КА вокруг продольной оси реализуются путем построения на момент закрутки исходной ориентации КА, задаваемой соответствующими углами (1)-(2) и (3)-(4).

Предложенное значение угловой скорости закрутки КА 3·ωо удовлетворяет условию обеспечения необходимой степени устойчивости поддержания гравитационной ориентации такого типа КА как, например, транспортный грузовой корабль (ТГК) «Прогресс», у которого поперечные главные центральные моменты инерции примерно в 7 раз превышают минимальный главный центральный момент инерции. Необходимая степень устойчивости поддержания гравитационной ориентации КА соответствует такому процессу вращения КА, при котором отклонение продольной оси данного КА от местной вертикали, возникающее за счет компонент угловой скорости вокруг поперечных осей, в необходимой степени компенсируется за счет вращения КА вокруг продольной оси, и вместе с тем вращение КА вокруг продольной оси не приводит к гироскопической устойчивости данной оси КА в инерциальном пространстве.

Фиксируемое значение угла между направлением на Солнце и плоскостью орбиты β* определяется как минимальное положительное ненулевое значение угла между направлением на Солнце и плоскостью орбиты, при котором освещенность активной поверхности СБ за виток при закрутке КА с одними вышеописанными параметрами закрутки равна освещенности активной поверхности СБ за виток при закрутке КА с другими вышеописанными параметрами закрутки.

Параметры выполняемой закрутки КА выбираются из двух вышеописанных вариантов в зависимости от текущего значения угла между направлением на Солнце и плоскостью орбиты β и от определяемого по высоте орбиты КА фиксируемого значения угла между направлением на Солнце и плоскостью орбиты β*.

Значение β* определяется следующим образом. Обозначим:

I1 - суммарная освещенность активной поверхности СБ за виток при закрутке КА вокруг его продольной оси с угловой скоростью 3·ωо, направленной от центра Земли, при которой в момент прохождения противосолнечной точки витка нормаль к активной поверхности СБ составляет минимальный угол с вектором угловой скорости орбитального движения КА («первый» вариант параметров закрутки),

I2 - суммарная освещенность активной поверхности СБ за виток при закрутке КА вокруг его продольной оси с угловой скоростью 3·ωо, направленной в центр Земли, причем на момент прохождения противосолнечной точки витка нормаль к активной поверхности СБ составляет максимальный угол с вектором угловой скорости орбитального движения КА («второй» вариант параметров закрутки).

Освещенность СБ характеризуется косинусом угла между направлением на Солнце и нормалью к активной поверхности СБ.

I1 и I2 являются функциями угла между направлением на Солнце и плоскостью орбиты β и от высоты орбиты КА H. Следовательно, значение β*, определяемое как минимальное положительное ненулевое значение угла между направлением на Солнце и плоскостью орбиты, при котором I1=I2, также зависит от высоты орбиты КА.

Для иллюстрации определения значения β* на фиг.3 представлены графики зависимостей I1(β,H), I2(β,H) от угла β (Ряды 1 и 2, соответственно) для КА, нормаль к активной поверхности СБ которого перпендикулярна продольной оси КА (например, транспортный грузовой корабль (ТГК) «Прогресс») для высоты околокруговой орбиты КА H=350 км. Графики I1(β,H) и I2(β,H) пересекаются в точках I1(β,H)=I2(β,H), достигаемых при β=±β*, β*≈41,5°. Значение β* зависит от высоты орбиты: например, для H=300 км β*≈46,5°, для H=400 км β*≈36,5°. Кроме этого равенство I1(β,H)=I2(β,H) выполняется при любой высоте орбиты КА при расположении Солнца в плоскости орбиты (при β=0) и на солнечных орбитах (при , где Re - радиус Земли).

Представленные графики иллюстрируют следующую зависимость, используемую при выборе параметров закрутки КА:

- при β≤-β* и при 0≤β≤β* I1≥I2, поэтому в этом случае выполняют закрутку КА с первым описанным вариантом параметров закрутки, чем обеспечивают максимальную освещенность СБ КА за виток при данных значениях β;

- при -β*≤β≤0 и при β*≤β I1≤I2, поэтому в этом случае выполняют закрутку КА со вторым описанным вариантом параметров закрутки, чем обеспечивают максимальную освещенность СБ КА за виток при данных значениях β.

За счет выполнения предлагаемых действий суммарно за виток будет обеспечиваться максимальная освещенность СБ и, следовательно, будет достигаться максимально возможный для данного конкретного КА приход электроэнергии за виток. При этом предложенное значение угловой скорости закрутки обеспечивает цикличное повторение ориентации СБ относительно потока солнечного излучения на последующих витках - таким образом достигается постоянство снабжения КА необходимой электроэнергией от СБ на всех последующих витках поддержания закрутки КА.

Для иллюстрации этого на фиг.3 также представлены графики суммарных освещенностей активной поверхности СБ за виток при параметрах закрутки, отличных от предложенных:

Ряд 3 - скорость закрутки направлена к центру Земли, в противосолнечной точке витка нормаль к активной поверхности СБ направлена по вектору угловой скорости орбитального движения КА;

Ряд 4 - скорость закрутки направлена от центра Земли, в противосолнечной точке витка нормаль к активной поверхности СБ направлена против вектора угловой скорости орбитального движения КА;

Ряд 5 - скорость закрутки направлена от центра Земли, в противосолнечной точке витка нормаль к активной поверхности СБ лежит в плоскости орбиты (параллельна вектору скорости КА);

Ряд 6 - скорость закрутки направлена к центру Земли, в противосолнечной точке витка нормаль к активной поверхности СБ лежит в плоскости орбиты (параллельна вектору скорости КА).

Представленные графики иллюстрируют, что предлагаемые действия обеспечивают максимизацию суммарной освещенности активной поверхности СБ за виток в зависимости от высоты орбиты и измеряемого угла между направлением на Солнце и плоскостью орбиты КА.

Опишем технический эффект предлагаемого изобретения.

Предлагаемое изобретение повышает приход электроэнергии от СБ КА при выполнении экспериментов и исследований в условиях вращательного движения КА путем обеспечения максимизации суммарной освещенности активной поверхности СБ за виток в режиме закрутки при одноосной гравитационной ориентации КА.

При этом предложенные параметры закрутки КА, удовлетворяя условию обеспечения необходимой степени устойчивости поддержания гравитационной ориентации КА, обеспечивают такое соотношение значений угловой скорости закрутки и орбитальной угловой скорости движения КА, при котором обеспечивается максимальная суммарная освещенность активной поверхности СБ за виток.

В настоящее время технически все готово для реализации предложенного способа в таком КА, как ТГК «Прогресс».

Для реализации определения угла между направлением на Солнце и плоскостью орбиты, разворотов, закрутки и вычислений могут использоваться штатные средства системы управления ТГК «Прогресс» - система управления движением и навигацией, включая систему автономной навигации, солнечные датчики, датчики угловой скорости, двигатели ориентации, бортовой вычислитель и т.д. Закрутка корабля может производиться на время, необходимое для проведения экспериментов, и достигать десятки витков.

Способ управления ориентацией космического аппарата с неподвижными панелями солнечных батарей при выполнении экспериментов, включающий гравитационную ориентацию космического аппарата продольной осью вдоль местной вертикали и закрутку вокруг его продольной оси, соответствующей минимальному моменту инерции, отличающийся тем, что определяют угол между направлением на Солнце и плоскостью орбиты с положительным направлением отсчета угла по вектору угловой скорости орбитального движения космического аппарата, определяют высоту орбиты, по которой определяют фиксируемое значение угла между направлением на Солнце и плоскостью орбиты β, при значениях угла между направлением на Солнце и плоскостью орбиты в диапазоне (0, β) или менее - β космический аппарат закручивают вокруг продольной оси с угловой скоростью 3·ω, направленной от центра Земли, где ω - угловая скорость орбитального движения космического аппарата, причем в момент прохождения противосолнечной точки витка нормаль к активной поверхности солнечных батарей составляет минимальный угол с вектором угловой скорости орбитального движения космического аппарата, а при значениях угла между направлением на Солнце и плоскостью орбиты в диапазоне (-β, 0) или более β космический аппарат закручивают вокруг продольной оси с угловой скоростью 3·ω, направленной в центр Земли, причем на момент прохождения противосолнечной точки витка нормаль к активной поверхности солнечных батарей составляет максимальный угол с вектором угловой скорости орбитального движения космического аппарата, при этом фиксируемое значение угла между направлением на Солнце и плоскостью орбиты β определяют как минимальное превышающее ноль значение угла между направлением на Солнце и плоскостью орбиты, при котором освещенность активной поверхности солнечных батарей за виток при закрутке космического аппарата с одними вышеописанными параметрами закрутки равна освещенности активной поверхности солнечных батарей за виток при закрутке космического аппарата с другими вышеописанными параметрами закрутки.
СПОСОБ УПРАВЛЕНИЯ ОРИЕНТАЦИЕЙ КОСМИЧЕСКОГО АППАРАТА С НЕПОДВИЖНЫМИ ПАНЕЛЯМИ СОЛНЕЧНЫХ БАТАРЕЙ ПРИ ВЫПОЛНЕНИИ ЭКСПЕРИМЕНТОВ
СПОСОБ УПРАВЛЕНИЯ ОРИЕНТАЦИЕЙ КОСМИЧЕСКОГО АППАРАТА С НЕПОДВИЖНЫМИ ПАНЕЛЯМИ СОЛНЕЧНЫХ БАТАРЕЙ ПРИ ВЫПОЛНЕНИИ ЭКСПЕРИМЕНТОВ
СПОСОБ УПРАВЛЕНИЯ ОРИЕНТАЦИЕЙ КОСМИЧЕСКОГО АППАРАТА С НЕПОДВИЖНЫМИ ПАНЕЛЯМИ СОЛНЕЧНЫХ БАТАРЕЙ ПРИ ВЫПОЛНЕНИИ ЭКСПЕРИМЕНТОВ
Источник поступления информации: Роспатент

Показаны записи 341-350 из 381.
19.04.2019
№219.017.3353

Способ подвода газообразного вещества в полость герметизируемого агрегата с ее герметизацией и фиксирующее устройство герметизируемого агрегата

Изобретения могут быть использованы в агрегатах с жесткими требованиями по герметичности внутренних полостей, например, в авиационной и космической технике. Способ подвода газообразного вещества в полость 7 герметизируемого агрегата с ее герметизацией включает сообщение штуцера 3 с магистралью...
Тип: Изобретение
Номер охранного документа: 0002430272
Дата охранного документа: 27.09.2011
29.04.2019
№219.017.436a

Энергоустановка с электрохимическим генератором на основе водородно-кислородных топливных элементов и способ ее эксплуатации

Изобретение относится к энергоустановкам с электрохимическими генераторами (ЭХГ) на основе водородно-кислородных топливных элементов (ТЭ). Техническим результатом является повышение надежности включения и работоспособности ЭХГ при низких температурах окружающей среды. Согласно изобретению...
Тип: Изобретение
Номер охранного документа: 0002417487
Дата охранного документа: 27.04.2011
29.04.2019
№219.017.438b

Способ термостатирования объектов ракеты-носителя и бортовая система для его реализации

Изобретения относятся к термостатированию объектов (полезного груза, системы управления и др.), размещенных в головном блоке (ГБ) ракеты-носителя в ходе ее предстартовой подготовки. Способ предусматривает вдув термостатирующей среды (ТС) вдоль обтекателя ГБ в его продольной плоскости или в...
Тип: Изобретение
Номер охранного документа: 0002412874
Дата охранного документа: 27.02.2011
29.04.2019
№219.017.438c

Способ управления движением космического аппарата вокруг центра масс при поддержании ориентации

Изобретение относится к управлению движением и положением космического аппарата (КА) и может быть использовано для поддержания его ориентации. Способ включает определение угла рассогласования и угловой скорости и приложение управляющего воздействия вокруг центра масс КА при превышении этими...
Тип: Изобретение
Номер охранного документа: 0002412872
Дата охранного документа: 27.02.2011
29.04.2019
№219.017.43f2

Центробежное рабочее колесо и способ его изготовления

Изобретения могут быть использованы при изготовлении и эксплуатации малорасходных насосов изделий ракетно-космической техники. Центробежное рабочее колесо содержит выполненный заодно со ступицей 1 ведущий диск 2, покрывной диск 3 с центральным входным отверстием 4 и размещенное между дисками 2,...
Тип: Изобретение
Номер охранного документа: 0002427726
Дата охранного документа: 27.08.2011
29.04.2019
№219.017.43ff

Космическая головная часть

Изобретение относится к ракетно-космической технике, а именно к конструкции космической головной части. Космическая головная часть состоит из головного обтекателя, ракетного разгонного блока с приборной стержневой фермой, адаптера, выполненного в виде усеченного конуса, и космического аппарата....
Тип: Изобретение
Номер охранного документа: 0002422335
Дата охранного документа: 27.06.2011
29.04.2019
№219.017.44c6

Способ определения магнитной помехи на космическом аппарате в полете

Изобретение относится к управлению полетом космических аппаратов с использованием данных о магнитном поле Земли (МПЗ). Способ включает измерение векторов напряженности МПЗ и направления на выбранную звезду (в оптическом диапазоне). Последний вектор должен быть отклонен от нормали к плоскости...
Тип: Изобретение
Номер охранного документа: 0002408507
Дата охранного документа: 10.01.2011
29.04.2019
№219.017.44c9

Устройство управления приводом постоянного тока

Изобретение относится к приборостроению, в частности к мостовым схемам управления приводом с двигателем постоянного тока системы стыковки космических аппаратов. Техническим результатом предлагаемого изобретения является повышение надежности устройства управления приводом постоянного тока...
Тип: Изобретение
Номер охранного документа: 0002408132
Дата охранного документа: 27.12.2010
29.04.2019
№219.017.44cf

Способ определения трехосной ориентации космического аппарата

Изобретение относится к управлению ориентацией космического аппарата (КА), оснащенного магнитометром для определения вектора напряженности магнитного поля Земли (МПЗ). Способ включает измерение напряженности МПЗ и параметров орбиты КА. При этом стабилизируют КА в инерциальном пространстве,...
Тип: Изобретение
Номер охранного документа: 0002408508
Дата охранного документа: 10.01.2011
09.05.2019
№219.017.4a78

Способ управления кинетическим моментом космического аппарата с помощью реактивных исполнительных органов

Изобретение относится к области управления угловым движением космических аппаратов (КА). Предлагаемый способ включает измерение суммарного кинетического момента в системе силовых гироскопов (СГ) и прогноз его текущих значений на выполнение каждого из серии динамических режимов КА. При...
Тип: Изобретение
Номер охранного документа: 0002271967
Дата охранного документа: 20.03.2006
Показаны записи 341-350 из 360.
01.08.2019
№219.017.badf

Система ориентирования перемещаемой на борту пилотируемого корабля аппаратуры

Изобретение относится к аэрокосмической технике. Система включает блок определения команд на поворот перемещаемой аппаратуры (ПА), блок воспроизведения команд на поворот ПА, блок определения текущего положения ориентира относительно пилотируемого корабля (ПК), блок определения положения ПА...
Тип: Изобретение
Номер охранного документа: 0002695960
Дата охранного документа: 29.07.2019
22.11.2019
№219.017.e4e4

Способ контроля производительности солнечной батареи космического аппарата с инерционными исполнительными органами

Изобретение относится к области космической техники. Способ контроля производительности солнечной батареи космического аппарата с инерционными исполнительными органами содержит этапы, на которых: - включают ориентацию солнечной батареи нормалью к рабочей поверхности на Солнце; - измеряют ток...
Тип: Изобретение
Номер охранного документа: 0002706643
Дата охранного документа: 19.11.2019
24.12.2019
№219.017.f156

Способ определения орбиты космического аппарата с аппаратурой для съемки подстилающей поверхности

Изобретение относится к аэрокосмической технике. Способ включает измерение исходных значений параметров орбиты и прогнозирование по ним значений времени и координат местоположений КА. В течение заданного интервала времени выполняют съемку с КА подстилающей поверхности при различных значениях...
Тип: Изобретение
Номер охранного документа: 0002709978
Дата охранного документа: 23.12.2019
24.01.2020
№220.017.f8ec

Способ контроля эффективности солнечной батареи космического аппарата

Изобретение относится к эксплуатации солнечных батарей (СБ) космического аппарата (КА). Способ включает измерение тока СБ при задаваемых параметрах орбиты и углового положения СБ и КА и сравнение значений тока СБ, измеренных на текущем и предшествующих этапах полета. К моменту выхода КА на...
Тип: Изобретение
Номер охранного документа: 0002711823
Дата охранного документа: 22.01.2020
24.01.2020
№220.017.f919

Способ определения орбиты космического аппарата с аппаратурой для съёмки подстилающей поверхности

Изобретение относится к способам слежения за полётом космических аппаратов (КА). Способ включает определение по ортотрансформированным снимкам подстилающей поверхности (ПП) географических координат точек областей этой ПП, над которыми находится КА. Снимки делают при последовательно меняющих...
Тип: Изобретение
Номер охранного документа: 0002711834
Дата охранного документа: 22.01.2020
24.01.2020
№220.017.f98f

Способ привязки выполненных с космического аппарата снимков земной поверхности

Изобретение относится, главным образом, к спутникам для наблюдения Земли. Привязка включает измерение параметров орбиты спутника, ортотрансформирование снимка и определение по нему точки, из которой выполнялась съемка. Через заданное время после первого снимка выполняют второй снимок...
Тип: Изобретение
Номер охранного документа: 0002711775
Дата охранного документа: 22.01.2020
31.01.2020
№220.017.fb37

Способ контроля эффективности солнечной батареи космического аппарата

Изобретение относится к эксплуатации солнечной батареи (СБ) космического аппарата (КА). Способ включает измерение тока СБ при задаваемых параметрах орбиты и углового положения СБ и КА и сравнение значений тока СБ, измеренных на текущем и предшествующих этапах полета. На световой части витка...
Тип: Изобретение
Номер охранного документа: 0002712358
Дата охранного документа: 28.01.2020
04.02.2020
№220.017.fd29

Способ привязки выполненных с орбитального космического аппарата снимков подстилающей поверхности

Изобретение относится к аэрокосмической технике. Способ привязки выполненных с орбитального космического аппарата (КА) снимков подстилающей поверхности включает ортотрансформирование снимка и определение по нему точки, из которой выполнялась съемка. Дополнительно в течение заданного интервала...
Тип: Изобретение
Номер охранного документа: 0002712781
Дата охранного документа: 31.01.2020
26.03.2020
№220.018.1039

Способ управления размещенной на космическом корабле переносной аппаратурой наблюдения

Изобретение относится к эксплуатации оборудования космического корабля (КК). Способ включает определение относительного положения объекта наблюдения на подстилающей поверхности, КК и аппаратуры наблюдения (АН). Дополнительно по определяемым параметрам движения и ориентации КК определяют, у...
Тип: Изобретение
Номер охранного документа: 0002717614
Дата охранного документа: 24.03.2020
26.03.2020
№220.018.103d

Устройство управления размещенной на космическом корабле переносной аппаратурой наблюдения

Изобретение относится к оборудованию космического корабля (КК). Устройство управления размещенной на космическом корабле (КК) переносной аппаратурой наблюдения (АН) (1) содержит корпус (4), двухстепенной подвес с датчиками (12, 15) угла и приводами (13, 16) на его осях, а также вычислительное...
Тип: Изобретение
Номер охранного документа: 0002717603
Дата охранного документа: 24.03.2020
+ добавить свой РИД