×
10.09.2015
216.013.77eb

Результат интеллектуальной деятельности: СПОСОБ КОНВЕРСИИ ОТВАЛЬНОГО ГЕКСАФТОРИДА УРАНА В МЕТАЛЛИЧЕСКИЙ УРАН

Вид РИД

Изобретение

Аннотация: Изобретение относится к области экологии и направлено на предупреждение возможности загрязнения окружающей среды и отравления населения радиоактивными веществами. Способ конверсии отвального гексафторида урана в металлический уран включает взаимодействие гексафторида урана с металлическим натрием, при этом исходные компоненты подают в реактор в стехиометрическом соотношении в виде газообразного гексафторида урана и жидкого металлического натрия, распыленного через форсунки, температуру поддерживают от 1133°С до 1705°С. Изобретение обеспечивает эффективную конверсию гексафторида урана. 1 пр.
Основные результаты: Способ конверсии отвального гексафторида урана в металлический уран, включающий взаимодействие гексафторида урана с металлическим натрием, отличающийся тем, что исходные компоненты подаются в реактор в стехиометрическом соотношении в виде газообразного гексафторида урана и жидкого металлического натрия, распыленного через форсунки, температуру поддерживают от 1133°C до 1705°C.

Изобретение относится к области экологии, оно направлено на предупреждение возможности загрязнения окружающей среды и отравления населения радиоактивными веществами. В результате разделения изотопов урана получается две фракции: обогащенная с содержанием изотопа 235U больше 0,72% масс. и отвальная, в которой содержится 0,1-0,3% масс. 235U.

Отвального гексафторида урана в России накопилось более 700 тысяч тонн, а в мире более 1,5 млн тонн.

Отвальный гексафторид урана хранится в контейнерах, преимущественно на открытых площадках. Это представляет значительную опасность для природы и населения. В результате коррозии при длительном хранении, действии природных явлений - гроза, землетрясение, а также диверсий и бомбардировок может нарушиться герметичность части контейнеров и в окружающую среду выйдет гексафторид урана - радиоактивный ядовитый газ, обладающий удушающим действием, что может привести к массовому отравлению населения

Известен способ конверсии гексафторида урана в тетрафторид урана и безводный фтороводород, и устройство для его осуществления (патент RU №2188795 от 23.11.2000). Изобретение используют для переработки обедненного гексафторида урана. Способ заключается во взаимодействии гексафторида урана с водородом во фтороводородном пламени. Процесс ведут в реакторе при давлении в нем 540-720 мм рт. ст. Мольное соотношение компонентов UF6:F22 = 1:(0,12-0,36):(1,5-3). В качестве восстановителя используют катодный газ.

Температуру стенок реактора поддерживают около 480°C. Охлаждение продуктов реакции осуществляют путем охлаждения стенок реактора. Порошок тетрафторида урана шнеком-питателем разгрузочного устройства перемещают в приемник готового продукта. Корпус разгрузочного устройства выполнен в виде вертикального овала. Фтористый водород из технологических газов конденсируют при температуре (-35)-(-40)°C и при (-70)-(-80)°C. Дополнительно извлекают HF фторидом натрия при температурах 70-80°C и 20-30°C. Десорбцию фтористого водорода ведут при температуре 350-375°C. Результат изобретения: степень превращения гексафторида урана в тетрафторид урана до 99,5%. Степень извлечения фтористого водорода до 99,6%.

Недостаток способа - конечным продуктом является порошкообразный продукт - тетрафторид урана, который при аварии загрязняет и атмосферу, и гидросферу.

Известен способ получения порошка диоксида урана из гексафторида урана (пат. RU 2381993 от 16.01.2008), включающий подачу в предварительно разогретую реакционную зону реакционной камеры гексафторида урана и водяного пара, подачу во вторую реакционную зону реакционной камеры смеси водяного пара и водорода с переводом в этой зоне уранилфторида до диоксида урана, выгрузку порошка из реакционной камеры до восстановления непрореагировавшего уранилфторида. Полученный порошок охлаждают и стабилизируют смесью воздуха и азота.

Недостатки данного способа - многостадийность операций, получение конечного продукта в виде порошка, что усложняет его хранение и дает возможность загрязнения окружающей среды.

Известен способ конверсии обедненного гексафторида урана в оксид урана (U3O8) путем высокотемпературного пирогидролиза [Proven managemen for flepleted uranium: the French reference of Cogema′s defluorination plant / P. Netter, B. Dupperret, B. Le Motais. - International Conferences "Decomissioning, decontamination and reutilization of commercial and government facilities". Knoxville, USA, September 12-16, 1999. - 11 p.].

Недостаток способа - высокая энергоемкость процесса, а также получение конечного продукта в виде порошка, что может ухудшить экологическую обстановку в случае повреждения упаковки.

Известен способ восстановления гексафторида урана (Патент RU №2204529 от 28.03.2001). Изобретение относится к способам восстановления гексафторида урана до низших фторидов и металлического урана и может быть использовано при переработке обедненного гексафторида урана. Результат способа: возможность получения продукта заданного состава и осуществление реакции восстановления гексафторида урана при более низкой температуре. Восстановление гексафторида UF6 осуществляют предварительно атомизированным водородом в химическом реакторе в смеси с буферным газом-разбавителем в режиме непрерывного самопроизвольного горения. Атомарный водород получают при смешении в потоке молекулярного водорода в избытке молекулярного фтора, поджигаемого в блоке горелок, так что избыток молекул фтора термически диссоциирует на атомы фтора. Восстановление UF6 осуществляется до металлического урана при соотношении концентраций атомарного водорода и молекул UF6 в смеси, подаваемой в реактор, 6:1 соответственно. Восстановление гексафторида UF6 осуществляют до тетрафторида урана при соотношении концентраций атомарного водорода и молекул UF6 в смеси, подаваемой в реактор, 2:1 соответственно. Результат способа: возможность получения продукта заданного состава и осуществление реакции восстановления гексафторида урана при более низкой температуре.

Недостаток способа - металлический уран получается в виде мелкодисперсного пирофорного порошка, не пригодного для хранения.

Известен способ переработки гексафторида урана в тетрафторид урана (Ф.С. Паттон, Д.М. Гуджин, В.Л. Гриффитс «Ядерное горючее на основе обогащенного урана», Атомиздат, М., 1966, стр. 42-47). Согласно этому способу, через сопло типа «труба в трубе» по его внешней части в реактор подается водород, а затем через внутреннюю часть сопла начинают подавать смесь гексафторида урана и фтора, причем фтор подается для достижения нужного температурного режима. Происходят следующие реакции:

UF6(газ)+H2(газ)→UF4(газ)+2HF(газ), ΔH329=-280 кДж/моль

F2(газ)+H2(газ)→2HF(газ), ΔH298=-268 кДж/моль

Избыток водорода 100-500%, расход фтора 20-32 г/кг UF6, 90% полученного UF4 оседает в нижнем бункере, UF4, унесенный газами, улавливают металлокерамическими фильтрами.

Недостатком данного способа является получение сыпучего порошкообразного продукта сравнительно малой плотности (ρ(UF4)=6,7 г/см3), что затрудняет условия его хранения.

Известен способ конверсии отвального гексафторида урана в металлический уран (пат. RU №2444475 от 29.07.2010 г. ), принятый за прототип. Способ предусматривает взаимодействие гексафторида урана с металлическим кальцием.

При проведении процесса газообразный гексафторид урана вводят в расплав металлического кальция путем барботажа. Для получения компактного слитка урана температуру процесса поддерживают выше температуры плавления фторида кальция.

Недостатки способа - высокая температура начала процесса - выше 842°C, это выше температуры плавления кальция, высокая стоимость металлического кальция 4000 долларов за тонну, высокая температура процесса - выше температуры плавления фторида кальция - 1418°C, дефицит металлического кальция.

Задача изобретения - превращение токсичного гексафторида урана в нелетучий компактный продукт - слиток металлического урана, не обладающий высокопроницающей гамма-активностью.

Способ конверсии отвального гексафторида урана в металлический уран включает взаимодействие гексафторида урана с металлическим натрием. Исходные компоненты подают в реактор в стехиометрическом соотношении в виде газообразного гексафторида урана и жидкого металлического натрия, распыленного через форсунки, температуру поддерживают от 1133°C до 1705°C.

Процесс проводят путем соединения в стехиометрическом соотношении в реакторе восстановления газообразного гексафторида урана с распыленным жидким металлическим натрием по реакции:

UF6+6Na=U+6NaF

Реакция необратима, так как изменение свободной энергии Гиббса составляет большую отрицательную величину -1238 кДж/моль.

В ходе реакции выделяется значительное количество тепла - ΔН°298=-1256,4 кДж/моль. Теоретическая температура процесса 2561°C. Большое значение теплового эффекта реакции указывает на то, что процесс проходит без подвода тепла извне и то, что продукты реакции будут находиться в расплавленном состоянии. Температуру процесса для получения компактного слитка урана за счет охлаждения продуктов реакции поддерживают выше температуры плавления урана 1133°C и ниже температуры кипения фторида натрия 1705°C, чтобы предупредить повышения давления в реакторе.

Преимущества предлагаемого способа:

- температура начала реакции натрийтермии (98°C) гораздо ниже, чем кальцийтермии (842°C);

- нижний температурный предел натрийтермии определяется температурой плавления урана, а кальцийтермии - температурой плавления фторида кальция (1418°C), то есть кальцийтермия более энергозатратна;

- стоимость восстановителя при натрийтермии (Na 99,7% - 3000 долл/тонну) ниже, чем при кальцийтермии (Ca 98,5% - 4000 долл/тонну), для получения 1 кг урана по стехиометрии требуется 0,58 кг натрия стоимостью 1,74 доллара, а при кальцийтермии - 0,5 кг кальция стоимостью 2 доллара, то есть больше на 0,26 доллара/кг урана;

- оборудование будет работать при более мягком температурном режиме, что снизит скорость коррозии;

- полученный фтористый натрий может быть использован как интенсивный антисептик или для получения фтороводорода, а также как сорбент.

Пример

В предварительно вакуумированный аппарат, представляющий собой цилиндрический сосуд, футерованный внутри, одновременно подают в стехиометрическом соотношении газообразный гексафторид урана и жидкий металлический натрий, распыленный через форсунки. Процесс идет с образованием жидких фаз (фторида натрия и металлического урана), что создает вакуум в реакторе, улучшающий диспергирование жидкого натрия. Небольшой избыток натрия вводится в реактор в конце процесса для обеспечения полного восстановления гексафторида урана и высокого выхода урана в слиток.

Температуру процесса поддерживают от 1133°C (температура плавления урана) до 1705°C (температура кипения NaF). В этом диапазоне температур продукты реакции находятся в жидком состоянии, что положительно сказывается на их ликвации и формировании слитка урана, упругость паров фтористого натрия составляет менее 1 атмосферы.

Жидкие продукты реакции в соответствии с их плотностями распределяются следующим образом: нижний слой - расплав металлического урана, верхний слой - расплав фторида натрия. Избыток натрия находится в парообразном состоянии в свободном объеме реактора.

После охлаждения и кристаллизации продукты реакции извлекаются из реактора и разделяются: слиток металлического урана - на хранение, шлак - на использование в качестве сорбента, антисептика, сырья для получения фтороводорода, а металлический натрий - на повторное использование.

На получение 100 г урана в слитке требуется 150 г UF6, 61 г металлического натрия, при этом получается в шлаке 106 г NaF.

Способ конверсии отвального гексафторида урана в металлический уран, включающий взаимодействие гексафторида урана с металлическим натрием, отличающийся тем, что исходные компоненты подаются в реактор в стехиометрическом соотношении в виде газообразного гексафторида урана и жидкого металлического натрия, распыленного через форсунки, температуру поддерживают от 1133°C до 1705°C.
Источник поступления информации: Роспатент

Показаны записи 141-143 из 143.
20.04.2016
№216.015.342a

Сверло одностороннего резания с твердосплавным стеблем

Изобретение относится к машиностроению и может быть использовано при сверлении глубоких отверстий малых диаметров. Сверло содержит стебель из твердого сплава, соединенный посредством цапфы с хвостовиком из стали. В стебле выполнены наружный V-образный прямой канал и внутренний прямой канал...
Тип: Изобретение
Номер охранного документа: 0002581541
Дата охранного документа: 20.04.2016
10.05.2016
№216.015.3c6d

Линейный индукционный ускоритель

Изобретение относится к ускорительной технике и может быть использовано для создания пучков заряженных частиц наносекундной длительности с высокой частотой следования импульсов. Линейный индукционный ускоритель содержит индукционную систему 1 в виде набора ферромагнитных сердечников, охваченных...
Тип: Изобретение
Номер охранного документа: 0002583039
Дата охранного документа: 10.05.2016
25.08.2017
№217.015.b0de

Способ установления состояния предразрушения конструкционного изделия

Изобретение относится к контрольно-измерительной технике и может быть использовано лабораториями неразрушающего контроля, проектными и научно-исследовательскими организациями для диагностики трещинообразования в конструкционных материалах и прогнозирования состояния предразрушения конструкции....
Тип: Изобретение
Номер охранного документа: 0002613486
Дата охранного документа: 16.03.2017
Показаны записи 161-170 из 235.
10.02.2015
№216.013.243f

Ячеистый теплозвукоизоляционный материал

Изобретение относится к области создания пористых теплозвукоизоляционных материалов и может быть использовано в строительстве, судостроении и энергетической промышленности. Технический результат изобретения заключается в улучшении звукоизолирующих характеристик и снижении водопоглощения...
Тип: Изобретение
Номер охранного документа: 0002540732
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.2617

Устройство для дорнования глубоких отверстий

Изобретение относится к металлообработке. Устройство состоит из корпуса с отверстием для размещения дорна и толкателя его привода. На корпусе закреплено направляющее устройство для толкателя, в корпусе которого выполнены центральное сквозное ромбическое отверстие для направления толкателя и...
Тип: Изобретение
Номер охранного документа: 0002541204
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.2675

Устройство для создания зарядов на поверхности тел и способ его применения

Изобретение относится к области измерительной и учебной техники и может быть использовано для изучения явлений электромагнетизма. По периметру диэлектрического диска впрессованы металлические шарики, диаметр которых равен толщине диска. Диск расположен на изолированном основании. Металлический...
Тип: Изобретение
Номер охранного документа: 0002541298
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.26c7

Сверхпроводящий выключатель

Сверхпроводящий выключатель может быть использован для коммутации электрических цепей постоянного тока, в системах вывода энергии из индуктивных сверхпроводящих накопителей, для защиты крупных магнитных сверхпроводящих систем, работающих в режиме «замороженного» магнитного поля, сверхпроводящих...
Тип: Изобретение
Номер охранного документа: 0002541380
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.26cf

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области машиностроения и касается прогнозирования и контроля износостойкости твердосплавных группы применяемости К режущих инструментов по содержанию водорода в поверхностной и приповерхностной структуре. Отличительная особенность способа прогнозирования износостойкости...
Тип: Изобретение
Номер охранного документа: 0002541388
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.284a

Способ создания модели перекисного окисления лимфоцитов

Изобретение относится к медицине и может быть использовано для оценки эффективности модели перекисного окисления липидов мембран лимфоцитов. Для этого предварительно обрабатывают лимфоциты перекисью водорода в конечной концентрации 0,5 мМ и определяют белково-связанный глутатион. При увеличении...
Тип: Изобретение
Номер охранного документа: 0002541771
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2b9c

Парогазовая установка

Изобретение относится к области теплоэнергетики. Парогазовая установка содержит газотурбинную установку, связанную газоходом с котлом-утилизатором, в который встроены связанные между собой поверхности нагрева экономайзера, испарителя и пароперегревателя, который паропроводом связан с паровой...
Тип: Изобретение
Номер охранного документа: 0002542621
Дата охранного документа: 20.02.2015
27.02.2015
№216.013.2dc5

Способ очистки сточных вод от фенолов и нефтепродуктов

Способ очистки сточных вод от фенолов и нефтепродуктов может найти применение для очистки различных вод, в том числе сточных вод нефтехимических и нефтеперерабатывающих производств. Основными операциями способа являются введение в исходную очищаемую воду коагулянта, флотация, создание...
Тип: Изобретение
Номер охранного документа: 0002543185
Дата охранного документа: 27.02.2015
27.02.2015
№216.013.2e01

Секция механизированной крепи

Изобретение относится к горной промышленности, в частности к секции горной крепи, предназначенной для механизации очистных работ при разработке пластов угля, калийной соли и рудных залежей. Техническим результатом является трансформация энергии обрушающихся пород в электроэнергию, что позволяет...
Тип: Изобретение
Номер охранного документа: 0002543245
Дата охранного документа: 27.02.2015
10.03.2015
№216.013.2f9a

Способ получения меченного технецием-99m наноколлоида

Изобретение относится к способу получения меченного технецием-99m наноколлоида для радионуклидной диагностики. Заявленный способ включает приготовление исходной суспензии наноколлоида в 0,1% растворе додецилбензол сульфата натрия и пропускание ее через фильтр с диаметром пор 100 нм, введение в...
Тип: Изобретение
Номер охранного документа: 0002543654
Дата охранного документа: 10.03.2015
+ добавить свой РИД