×
27.08.2015
216.013.7558

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО ПЛАКИРОВАННОГО ПОРОШКА ДЛЯ НАНЕСЕНИЯ ПОКРЫТИЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к получению композиционных порошков для защитных износостойких покрытий. Готовят смесь неметаллической керамической компоненты и металлического порошка при массовом соотношении 1:(1-4). Неметаллическую компоненту используют с размером фракций, составляющим 1/100 размера фракций металлического порошка, и твердостью, превышающей более чем в 1,5 раза твердость металлического порошка. Смесь подвергают сверхскоростному механосинтезу в среде реакционного газа со скоростью вращения роторов дезинтегратора 12000 об/мин с получением композиционного порошка. Обеспечивается получение поверхностно легированного композиционного порошка с упрочняющей пленкой на поверхности частиц при сохранении пластичной сердцевины, что обеспечивает повышение адгезионных и когезионных свойств покрытий. 2 з.п. ф-лы, 1 табл., 2 пр.

Изобретение относится к области порошковой металлургии, в частности к созданию композиционных поверхностно легированных порошков, и может быть использовано для получения защитных износостойких покрытий с заданными свойствами.

Известны способы получения легированных порошковых материалов, например способ получения композиционного керамического порошка, на основе нитрида кремния и нитрида титана (патент RU №2382690, опубл. 27.02.2010 г.), в котором готовят экзотермическую смесь смешением измельченных до размера частиц не более 0,1 мм ферросилиция, содержащего 65-95 мас.% кремния, ильменита, содержащего 60-65 мас.% диоксида титана, и предварительно азотированного ферросилиция, при соотношении компонентов в смеси, мас %: ферросилиций - 40-55, ильменит - 20-40, азотированный ферросилиций - 25-40. Полученную смесь воспламеняют при давлении азота 2-20 МПа. Осуществляют доазотирование смеси при давлении азота 0,1-10 МПа в течение 30-40 минут и ее последующее измельчение. Затем измельченный продукт подвергают магнитной сепарации, после чего его обрабатывают 15-30% раствором соляной кислоты.

Также известен способ получения азотосодержащей лигатуры (патент RU №2462526, опубл. 27.09.2012 г.), где для получения лигатуры исходный сплав, содержащий 40-85% ванадия, 2-57% железа и один или несколько элементов, выбранных из ряда: кальций, алюминий, кремний, углерод и марганец в количестве 1,0-21,0% измельчают порошок с размером частиц менее 1,5 мм, порошок помещают в атмосферу азота чистотой не менее 99,0% при давлении свыше 0,1 МПа, инициируют экзотермическую реакцию образования нитридов ванадия путем локального нагрева части поверхностного слоя порошка; осуществляют насыщение порошка азотом в так называемом режиме самораспространяющегося высокотемпературного синтеза (СВС) до получения композиционного сплава на основе нитрида ванадия плотностью 4,0-7,0 г/см3, состоящего из нитрида ванадия в количестве 44-92% и связующего сплава, представляющего собой сплав на основе железа, включающего, по крайней мере, два элемента, выбранных из ряда: кальций, алюминий, кремний, углерод, марганец и ванадий в количестве 1,0-20,0%, и имеющего температуру начала плавления менее 1500°C.

В качестве прототипа выбран способ получения композиционных порошковых материалов с металлической матрицей, армированной тугоплавкими наполнителями методом сверхскоростного механосинтеза (патент RU №2460815, опубл. 10.09.2012 г.).

Порошок металлической матрицы получают путем измельчения порошкового материала дисперсностью не более 100 мкм в высокоскоростном дезинтеграторе с помощью двух роторов с измельчающими элементами, изготовленными из плакирующего материала. Плакированный порошок смешивают с порошком керамического упрочнителя и обрабатывают в высокоскоростном дезинтеграторе с помощью двух роторов при скоростях относительного движения ударных элементов 120-220 м/с и частоте ударов 7000-10000 уд./с. Измельчающие элементы роторов изготовлены из материала твердостью ниже твердости обрабатываемого порошка или смеси. Полученные дисперсно-упрочненные частицы системы металл-керамика имеют степень армирования не менее 60% и обеспечивают высокие эксплуатационные свойства покрытия из них.

Обработка порошкового материала в рабочих камерах известным способом приводит к образованию неметаллической составляющей (нитриды, карбиды, оксиды или их комбинации) во всем объеме каждой частицы. Это снижает пластические свойства порошкового материала, что, в свою очередь, часто делает невозможным получение качественных покрытий с высокими адгезионными и когезионными свойствами.

Техническим результатом изобретения является создание порошковых композиционных материалов, существенной отличительной особенностью которых является наличие упрочняющей пленки (например оксидов, нитридов или карбидов) на поверхности частиц, при сохранении пластичной сердцевины для повышения адгезионных и когезионных свойств покрытий.

Технический результат достигается за счет того, что в способе получения композиционного порошка для нанесения покрытий, включающем приготовление смеси металлического порошка с неметаллической компонентой и сверхскоростной механосинтез в среде реакционного газа, в соответствии с изобретением приготовление смеси металлического порошка с неметаллической компонентой ведут при соблюдении соотношений их масс, соответственно, как (1-4):1; размера фракций, соответственно, как 100:1 и твердости, соответственно, не менее чем 1:1,5, а механосинтез ведут со скоростью 12000 об/мин.

Оптимальное содержание абразивного компонента в порошковой смеси составляет 25-50% с дисперсностью 80-100 нм, что обеспечивает образование ювенильной поверхности. При содержании абразивного компонента менее 25% не достигается достаточного и необходимого уровня освобождения поверхности от окислов и других загрязнений. При содержании абразивного компонента более 50% - излишний абразив остается на поверхности частиц.

Соотношение размера фракций металлического порошка и неметаллической компоненты (как правило, наноразмерной), как показали эксперименты, должно составлять 100:1. При изменении соотношения увеличением размера фракций металлической компоненты или уменьшением размера частиц неметаллической компоненты не удается получить требуемую ювенильную поверхность на обрабатываемых частицах. При изменении соотношения уменьшением размера металлического порошка или увеличением размера неметаллической (абразивной) компоненты наблюдается разрушение (измельчение) частиц металлического порошка при соударении.

Оптимальное соотношение твердости металлического порошка и неметаллической (абразивной) компоненты должно быть не менее чем 1:1,5. При меньшем соотношении на поверхности армируемой металлической частицы количество налипших частиц будет существенно меньше и эффект повышения твердости покрытия будет несущественным.

Вариации параметров режима обработки порошковой смеси (скорости относительного движения ударных элементов и частоты соударений) как в сторону их уменьшения, так и в сторону их увеличения не позволяют синтезировать материал с заданными свойствами. При уменьшении частоты вращения роторов менее 12000 об/мин не происходит полной обработки поверхности. При увеличении частоты вращения роторов более 12000 об/мин происходит облипание частиц металлического компонента частицами абразива.

Образование ювенильной поверхности частиц металлического порошка происходит при их интенсивном столкновении со сверхзвуковыми скоростями. Последующее кратковременное взаимодействие с реакционным газом (азот, кислород или метан) позволяет получить на ювенильной поверхности частицы тонкий (мономолекулярный) упрочняющий слой (нитридов, оксидов или карбидов), сохраняя пластическую сердцевину в каждой частице.

Сверхскоростной механосинтез предварительно полученной порошковой смеси проводят путем совместной обработки в рабочей зоне высокоскоростного универсального дезинтегратора-активатора с помощью двух роторов с рядами измельчающих ударных элементов. Взвешенные количества порошков металлического материала и абразивного компонента загружаются в смеситель, которым снабжена установка, и после смешивания (5-10 минут) порошковая смесь питателем-дозатором с регулируемой производительностью подачи материала равномерно подается в загрузочный канал и поступает в рабочую зону дезинтегратора, где происходит обработка порошковой смеси. Обработку проводят при частоте вращения роторов 12000 об/мин и частоте ударов 8000-10000 уд./с. Частота ударов определяется расчетным путем, исходя из скорости вращения роторов, количества ударных элементов и дозированного поступления материала в рабочую зону дезинтегратора.

Для реализации предложенного способа в качестве металлического порошка предлагается использовать Al, Fe, Cr или их сплавы, которые наряду с требуемой вязкостью, обеспечивающей стойкость к возникновению и развитию трещин в покрытии, в сочетании с высокими характеристиками твердости, являются определяющими для нанесения функциональных покрытий на их основе.

В качестве неметаллической компоненты целесообразно использовать тугоплавкие соединения оксидов, карбидов или нитридов, которые легко получаются в виде микронных или наноразмерных частиц известными методами плазмохимического синтеза, механохимического синтеза, СВС метода, с помощью золь-гель процесса.

Предлагаемый способ опробован на специализированном участке ФГУП «ЦНИИ КМ «Прометей».

Пример №1.

Для получения поверхностно легированного порошкового материала в качестве абразивного компонента отбирали наноразмерный карбид вольфрама дисперсностью 80-100 нм в количестве 100 г, твердостью 3,07 ГПа. В качестве обрабатываемого материала отбирали порошок сплава FeCrAl (ПВ-Х20Ю6И) дисперсностью (в соответствии с заявляемым соотношением) 8-10 мкм, в количестве 400 г и твердостью 1,14 ГПа. Взвешенные порошковые компоненты загружали в смеситель, которым снабжена установка, и производили смешивание в течение 5 минут. Далее порошковую смесь подвергли сверхскоростному механосинтезу путем совместной обработки в высокоскоростном дезинтеграторе за один проход в среде реакционного газа азота. Обрабатываемая порошковая смесь питателем равномерно подавалась в загрузочный канал и поступала в рабочую зону дезинтегратора. Обработку порошковой смеси проводили комплектом роторов с рядами ударных элементов при частоте вращения роторов 12000 об/мин и частоте ударов 8000-10000 уд./с. Частоту удара определяли расчетным путем, исходя из скорости вращения роторов, количества ударных элементов и дозированного поступления материала в рабочую зону дезинтегратора.

Полученный композиционный порошок, пройдя разгрузочный канал и циклон, собирался в специальный приемный контейнер. Таким образом, получили поверхностно легированный порошок оптимальный для устойчивого процесса получения износостойких покрытий газотермическими методами.

Пример №2.

Для получения поверхностно легированного порошкового материала в качестве абразивного компонента отбирали наноразмерный оксид алюминия дисперсностью 80-100 нм в количестве 250 г и твердостью 1,96 ГПа. В качестве обрабатываемого материала отбирали порошок сплава FeCrAl дисперсностью (в соответствии с заявляемым соотношением) 8-10 мкм в количестве 250 г и твердостью 1,14 ГПа. Взвешенные порошковые компоненты загружали в смеситель и производили предварительное смешивание в течение 10 минут. Сверхскоростной механосинтез порошковой смеси проводили по примеру 1.

Фазовое состояние образцов полученных поверхностно легированных порошков определяли рентгеноструктурным анализом на дифрактометре ДРОН-4М. На дифрактограмме с процентным содержанием Al2O3 - 50%, FeCrAl - 50% после дезинтеграторной обработки видны отличия в виде трех дополнительных пиков, идентифицировали эти три пика как FeN, AlN, CrN. Исследование микроструктуры порошков проводили методом сканирующей электронной микроскопии на атомно-силовом микроскопе (АСМ) типа «Nano Scan». Результаты испытаний приведены в таблице.

Таблица
Способ получения Состав порошкового материала Соотношение
масс
Режим обработки Микротвердость (ГПа)
скорость движения ударных эл-ов, м/с частота соударений, уд/с матрица оболочка
Пример 1 (Fe-Cr-Ni-Al-Si-Mn)+карбид вольфрама 4:1 450 8000-10000 8,54 10,52
Пример 2 (Fe-Cr-Ni-Al-Si-Mn)+нанокорунд 1:1 450 8000-10000 8,95 12,08

Полученные композиционные порошки (по примеру 1 и 2) использовались для изготовления покрытий методом ХГДН и микроплазменного напыления и имели хорошую адгезию с подложкой. Проведенные эксперименты показали, что поверхностно легированные порошки могут быть использованы для получения защитных износостойких покрытий с заданными свойствами.

Источник поступления информации: Роспатент

Показаны записи 221-230 из 264.
18.05.2019
№219.017.59f1

Конструкционный радиопоглощающий материал

Изобретение относится к области конструкционных радиопоглощающих материалов, которые используются для обеспечения электромагнитной совместимости бортовой аппаратуры, защиты персонала от электромагнитного излучения в СВЧ диапазоне. Предложенный конструкционный радиопоглощающий материал содержит...
Тип: Изобретение
Номер охранного документа: 0002456722
Дата охранного документа: 20.07.2012
18.05.2019
№219.017.59f5

Фиксатор положения лопастей

Изобретение относится к судостроению и авиастроению, в частности к конструкции систем управления движителем. Фиксатор положения управляемых лопастей включает управляющую тягу, расположенную в полой части вала, и установленный на корпусе гидроцилиндр. Шток гидроцилиндра кинематически связан с...
Тип: Изобретение
Номер охранного документа: 0002457147
Дата охранного документа: 27.07.2012
18.05.2019
№219.017.5b5e

Огнестойкий слоистый звукотеплоизолирующий материал

Изобретение относится к области создания слоистых звукотеплоизолирующих огнестойких материалов авиационного назначения, используемых в бортовой звукотеплоизолирующей конструкции пассажирских самолетов. Огнестойкий слоистый звукотеплоизолирующий материал содержит теплозвукоизолирующий и...
Тип: Изобретение
Номер охранного документа: 0002465145
Дата охранного документа: 27.10.2012
18.05.2019
№219.017.5b73

Способ получения волокнистого керамического материала

Изобретение относится к волокнистым керамическим материалам, которые способны выдерживать вибрационные нагрузки и градиент температур как по толщине материала, так и по его поверхности и которые предназначены для теплоизоляции металлических корпусов камер сгорания газотурбинных двигателей....
Тип: Изобретение
Номер охранного документа: 0002466966
Дата охранного документа: 20.11.2012
18.05.2019
№219.017.5b7e

Способ определения прочностных характеристик полимерных композиционных материалов

Использование: для определения прочностных характеристик полимерных композиционных материалов. Сущность изобретения заключается в том, что в полимерном композиционном материале контролируемого изделия с помощью излучающего преобразователя возбуждают импульсы ультразвуковых колебаний, принимают...
Тип: Изобретение
Номер охранного документа: 0002461820
Дата охранного документа: 20.09.2012
20.05.2019
№219.017.5cca

Устройство газификации твердых углеводородов для прямоточного воздушно-реактивного двигателя

Устройство газификации твердых углеводородов для прямоточного воздушно-реактивного двигателя содержит твердотопливный газогенератор с выпускным патрубком и воспламенителем и газификатор, имеющий полый корпус с впускной и выпускной полостями, расположенными на противоположных сторонах корпуса,...
Тип: Изобретение
Номер охранного документа: 0002688054
Дата охранного документа: 17.05.2019
20.05.2019
№219.017.5d69

Судно на подводных крыльях

Изобретение относится к судостроению и касается создания судов на подводных крыльях. Судно на подводных крыльях, имеющее корпус, движительный комплекс и комплекс подводных крыльев, оборудовано расположенным по обе стороны корпуса центропланом брызгозащитной конфигурации, простирающимся вдоль...
Тип: Изобретение
Номер охранного документа: 0002434778
Дата охранного документа: 27.11.2011
29.05.2019
№219.017.681a

Способ летного моделирования ручной визуальной посадки самолета на объект

Изобретение относится к области исследований устойчивости, управляемости и динамики посадки самолетов и может быть использовано в приборном оборудовании летательных аппаратов для повышения безопасности и сокращения сроков и стоимости летного обучения и летной отработки управляемости самолетов...
Тип: Изобретение
Номер охранного документа: 0002471151
Дата охранного документа: 27.12.2012
29.05.2019
№219.017.6909

Многоцелевая подводная станция (мпс)

Изобретение относится к области освоения минеральных ресурсов недр арктического шельфа. Многофункциональная подводная станция имеет семь отсеков, атомную энергетическую установку (7), лебедки, грузовой трюм (5), самоходную спасательную камеру, устройство для разрушения льда (9). В отсеках...
Тип: Изобретение
Номер охранного документа: 0002436705
Дата охранного документа: 20.12.2011
29.05.2019
№219.017.69bd

Измерительное устройство

Изобретение относится к области измерительной техники и может быть использовано для измерения неэлектрических величин при помощи тензометрических мостовых датчиков с инструментальными усилителями, запитанных постоянным током. Техническим результатом изобретения является повышение точности...
Тип: Изобретение
Номер охранного документа: 0002469341
Дата охранного документа: 10.12.2012
Показаны записи 211-218 из 218.
25.07.2019
№219.017.b8d3

Способ изготовления плоских деталей из высокопрочного чугуна

Изобретение относится к машиностроению, в частности к области обработки металлов давлением, и может быть использовано при изготовлении плоских деталей из высокопрочного чугуна для дальнейшего изготовления из них штампованных изделий. Предварительно нагретую трубную заготовку осаживают на прессе...
Тип: Изобретение
Номер охранного документа: 0002695402
Дата охранного документа: 23.07.2019
27.07.2019
№219.017.b9bd

Способ нанесения износостойкого покрытия на сталь

Изобретение относится к формированию функциональных покрытий на стальной поверхности, обладающих высокой стойкостью к коррозионному разрушению и износу. Способ включает последовательное сверхзвуковое холодное газодинамическое напыление композиционных частиц порошка сверхзвуковой газовой струей...
Тип: Изобретение
Номер охранного документа: 0002695718
Дата охранного документа: 25.07.2019
02.10.2019
№219.017.cb6d

Способ получения покрытий с интерметаллидной структурой

Изобретение относится к способу получения покрытий с интерметаллидной структурой из порошковых материалов с высокой адгезионной прочностью. Техническим результатом изобретения является получение интерметаллидного покрытия с регулируемой структурой. Осуществляют послойное нанесение...
Тип: Изобретение
Номер охранного документа: 0002701612
Дата охранного документа: 30.09.2019
22.12.2019
№219.017.f0a6

Способ получения функционального покрытия на основе алюминий-углеродных нановолокон

Изобретение относится к способу получения композиционного материала для изготовления функциональных покрытий из сплава алюминия и углеродного нановолокна и может быть использовано в авиационной, космической, судостроительной и других областях промышленности. Способ получения композиционного...
Тип: Изобретение
Номер охранного документа: 0002709688
Дата охранного документа: 19.12.2019
12.04.2023
№223.018.4468

Способ получения конструкционного керамического материала на основе карбида кремния для изделий сложной геометрии

Изобретение относится к области создания конструкционных керамических материалов на основе карбида кремния для изготовления изделий сложной геометрической формы, обладающих высокой стойкостью к износу и твердостью. Изобретение может быть использовано в машиностроении, морской и авиационной...
Тип: Изобретение
Номер охранного документа: 0002739774
Дата охранного документа: 28.12.2020
21.04.2023
№223.018.50cd

Износостойкий сплав на основе квазикристаллической композиции al-cu-fe

Изобретение относится к области создания износостойких функциональных покрытий на основе квазикристаллов системы Al-Cu-Fe для защиты от механических нагрузок изделий прецизионного машино- и энергомашиностроения. Сплав на основе квазикристаллической композиции Al-Cu–Fe содержит, мас.%: цирконий...
Тип: Изобретение
Номер охранного документа: 0002794146
Дата охранного документа: 11.04.2023
03.06.2023
№223.018.7657

Износостойкий резистивный сплав на основе меди с отрицательным температурным коэффициентом сопротивления

Изобретение относится к области создания резистивных сплавов на основе меди и может быть использовано для получения износостойких покрытий с отрицательным температурным коэффициентом сопротивления при создании миниатюрных датчиков. Сплав на основе меди содержит, мас. %: марганец 18,0-22,0,...
Тип: Изобретение
Номер охранного документа: 0002796582
Дата охранного документа: 25.05.2023
03.06.2023
№223.018.765c

Сплав на основе алюминия для нанесения износостойких покрытий

Изобретение относится к области создания износостойких сплавов на основе алюминия и может быть использовано для получения функциональных покрытий, защищающих элементы прецизионного машино- и приборостроения от действия механических нагрузок. Сплав на основе алюминия содержит, мас.%: олово...
Тип: Изобретение
Номер охранного документа: 0002796583
Дата охранного документа: 25.05.2023
+ добавить свой РИД