×
27.08.2015
216.013.74f0

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ МОНОКРИСТАЛЛИЧЕСКИХ ЦИЛИНДРИЧЕСКИХ ШАЙБ ИЗ ТУГОПЛАВКИХ СОЕДИНЕНИЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области выращивания из расплава профилированных кристаллов тугоплавких соединений методом Степанова и изготовления из них монокристаллических цилиндрических шайб, которые могут быть использованы в приборостроении, машиностроении. Способ изготовления монокристаллических цилиндрических шайб включает выращивание монокристаллов в виде лент, толщина которых превышает диаметр шайб, затем профилированные ленты режут перпендикулярно их продольной оси на бруски квадратного поперечного сечения со стороной квадрата, равной толщине ленты, после чего бруски обрабатывают до требуемого диаметра с получением цилиндрических стержней для последующей их резки на шайбы. Изобретение обеспечивает получение с высоким выходом годного шайб с высоким структурным совершенством и оптическим качеством. 3 з.п. ф-лы, 1 табл.

Изобретение относится к области выращивания из расплава профилированных кристаллов тугоплавких соединений, например лейкосапфира, рубина, алюмоиттриевого граната и других тугоплавких соединений, по способу Степанова и изготовления из них монокристаллических цилиндрических шайб оптического качества, которые могут быть использованы в приборостроении, машиностроении и т.п.

Основными техническими требованиями к оптическим характеристикам шайб из лейкосапфира для использования в качестве оптических элементов в приборах и устройствах являются:

1) плоскость шайбы должна совпадать с кристаллографической плоскостью (0001);

2) структурное совершенство (блочность не допускается);

3) оптическое качество, т.е. не допускаются такие дефекты, как шнуры, поры, мутные области, включения.

Известна работа (Бахолдин С.И., Крымов В.М. и др. «Блочная структура стержней сапфира различной кристаллографической ориентации, выращиваемых способом Степанова», Тезисы докладов конференции стран СНГ по росту кристаллов, Харьков, 2012 г.), в которой исследовалась блочная структура стержней диаметром 8 мм. Из стержней возможно получение цилиндрических шайб путем резки стержней поперек. Показано, что при затравлении на безблочную затравку удается получать безблочные стержни. К недостаткам такого способа изготовления цилиндрических шайб следует отнести нестабильность получения безблочных стержней на всю их длину, а также качества указанных шайб по оптической прозрачности, что делает невозможным на практике получение высокого выхода годного по указанным выше техническим требованиям. Также очевидно, что при использовании высокопроизводительного группового процесса выращивания, который необходим для требуемого массового производства, выход годного и качество выращиваемых стержней только снижается.

Наиболее близким техническим решением, взятым за прототип, является способ получения монокристаллических цилиндрических таблеток, изложенный в работе (Аксельрод М.С., Кортов B.C., Мильман И.И. и др. «Профилированные легированные углеродом монокристаллы окиси алюминия для термолюминесцентных дозиметрических детекторов», Известия АН СССР, серия физическая, т.52, №10, 1988 г.), в которой способом Степанова выращивались профилированные кристаллы из лейкосапфира в виде стержней диаметром 5 мм. Затем указанные стержни разрезались на многодисковых станках алмазным инструментом на таблетки толщиной 1 мм. Выращивание проводили в групповом процессе по 8-10 стержней одновременно. Однако, как показала практика, при отличных термолюминесцентных свойствах получаемые в групповом процессе стержни не обеспечивают необходимого качества по структурному совершенству и оптической прозрачности (эти свойства не важны для дозиметров), что не позволяет получать по уже указанным выше причинам цилиндрические шайбы оптического качества с высоким выходом годного.

Перед авторами стояла задача создания высокопроизводительного способа изготовления монокристаллических цилиндрических шайб, обеспечивающего получение с высоким выходом годного шайб с высоким структурным совершенством и оптическим качеством (плоскость шайбы должна совпадать с кристаллографической плоскостью (0001)).

Поставленная задача и указанный технический результат достигаются тем, что в способе изготовления цилиндрических шайб из монокристаллов тугоплавких соединений, включающем выращивание из расплава профилированных монокристаллов на монокристаллические затравки и резку цилиндрических стержней на шайбы, согласно изобретению монокристаллы выращивают в виде лент, толщина которых превышает диаметр шайб, затем профилированные ленты режут перпендикулярно их продольной оси на бруски квадратного поперечного сечения со стороной квадрата, равной толщине ленты, после чего бруски обрабатывают до требуемого диаметра с получением цилиндрических стержней для последующей резки на шайбы.

Оптимальным с точки зрения достижения технического результата является выращивание монокристаллических лент, толщина которых превышает диаметр шайб на 10-15%. Ленты режут перпендикулярно их продольной оси на бруски квадратного поперечного сечения со стороной квадрата, равной толщине ленты, с точностью ±3°, а полученные цилиндрические стержни режут перпендикулярно их продольной оси на шайбы с точностью ±3°.

Преимущество предлагаемого способа изготовления монокристаллических цилиндрических шайб по сравнению с известным изготовлением шайб из стержней состоит в том, что получение пластин с монокристаллической структурой по всей длине, в том числе в групповом процессе выращивания, с кристаллографической ориентацией (0001) бокового торца, т.е. по толщине пластины, не является проблемой и выход годного по монокристалличности (отсутствию блоков) составляет 95-100%. Кроме того, оптическое качество пластин - отсутствие шнуров, пор, мутных областей, включений - достигается при их выращивании из расплава значительно легче, чем при выращивании стержней.

Монокристаллы выращивают в виде лент, толщина которых превышает диаметр шайб на 10-15%. Такое превышение необходимо для проведения последующей операции получения цилиндрических стержней:

- если толщина лент превышает диаметр шайб на величину меньше 10%, то при обработке до требуемого диаметра (круглении) на получаемых цилиндрических стержнях часто возникают продольные лыски, недопустимые по техническим требованиям;

- если толщина лент превышает диаметр шайб на величину больше 15%, то необоснованно увеличивается расход достаточно дорогого монокристаллического материала.

Ленты для последующего получения цилиндрических стержней режут перпендикулярно их продольной оси на бруски квадратного поперечного сечения со стороной квадрата, равной толщине ленты, с точностью ±3°. Это делается для того, чтобы обеспечить совпадение с достаточной точностью плоскости шайбы с кристаллографической плоскостью (0001), что необходимо для дальнейшего использования шайб в качестве оптического элемента. Если резать ленты перпендикулярно их продольной оси на бруски с меньшей точностью (более 3°), то изготовленные шайбы бракуются из-за несоответствия требованиям по оптике (прохождению света через материал шайбы). Более точная резка не дает увеличения выхода годного, но увеличивает трудозатраты.

Цилиндрические стержни режут перпендикулярно их продольной оси на шайбы с точностью ±3° по причинам, изложенным выше.

Заявляемый способ реализуется следующим образом.

Сначала осуществляют сборку теплового узла с нагревателем, загружают в тигель исходное сырье, устанавливают формообразователь для группового выращивания лент. Далее герметизируют камеру роста, вакуумируют ее до остаточного давления 1×10-4 мм рт.ст. и проводят отжиг теплового узла в вакууме. После отжига напускают в камеру аргон, расплавляют исходное сырье и погружают формообразователь в расплав.

Далее проводят затравление и выращивание кристаллов-лент на скорости около 1,2 мм/мин. После отрыва выращенных лент от формообразователя останавливают подъем лент и выключают нагрев. Далее ленты охлаждаются вместе с камерой.

Выращенные ленты режут перпендикулярно их продольной оси на бруски, которые затем механически обрабатывают (круглят) до получения цилиндрических стержней заданного диаметра. На следующей операции стержни режут перпендикулярно их продольной оси на шайбы.

Пример конкретного исполнения

Требовалось изготовить в большом количестве шайбы диаметром 6 мм и высотой 3,5 мм.

Эксперименты проводили на установке для выращивания кристаллов типа СЗВН-20.800/22-И1 с графитовой тепловой зоной. Использовался молибденовый тигель диаметром 105 мм, вмещающий 1000 г загрузки из кристаллов корунда, полученных методом Вернейля. Использовали разработанный нами формообразователь, который позволял одновременно выращивать 4 ленты сечением 7,2×50 мм и длиной 170-180 мм, т.е. широкие и длинномерные.

Полученные ленты разрезали перпендикулярно их продольной оси алмазным инструментом на бруски квадратного сечения 7,2×7,2 мм. Бруски обрабатывали до требуемого диаметра 6 мм. Далее полученные цилиндрические бруски резали перпендикулярно их продольной оси на шайбы, которые затем шлифовали для получения требуемой толщины шайб.

Было проведено 5 серий экспериментов, всего 100 циклов выращивания.

Во время первой серии, состоящей из 10 циклов, выращивались кристаллы в виде стержней по методике прототипа.

Во время второй серии, состоящей также из 110 циклов, использовались условия и режимы по п.1 заявляемого изобретения. Это позволило увеличить выход годного.

Во время третьей серии использовались условия и режимы по п.1 формулы изобретения, но, кроме того, монокристаллы выращивались в виде лент, толщина которых превышала диаметр шайб на 8%, 10-15% и 18%. В первом случае выход годного снижался из-за появления продольных лысок на проводимой далее операции получения цилиндрических стержней, во втором случае лыски не возникали. Было проведено по 10 циклов выращивания в каждом из вариантов.

Во время четвертой серии использовали условия и режимы по пп.1 и 2 и полученные ленты резали алмазным инструментом перпендикулярно их продольной оси на бруски квадратного поперечного сечения со стороной квадрата, равной толщине ленты, с точностью ±1°, ±3° и ±5°, что приводило во втором случае к браку по кристаллографической ориентации шайб. Было проведено по 10 циклов выращивания в каждом из вариантов.

В пятой серии использовались условия и режимы по пп.1, 2 и 3, а полученные цилиндрические стержни резали на шайбы с точностью ±1°, ±3° и ±5°. Во втором случае шайбы браковались по кристаллографической ориентации. Было проведено по 10 циклов выращивания в каждом из вариантов.

Сравнительные результаты изготовления шайб диаметром 6 мм и высотой 3,5 мм в отношении выхода годного по заявляемому изобретению и по техническом решению, принятому за прототип, представлены в таблице. Выход годного определялся как отношение среднего выхода годного при заявляемых параметрах к среднему выходу годного прототипа, принятого за единицу.


серии
Характеристика Значение параметра Относительный выход годных кристаллов
1 Техническое решение - прототип 1,0
2 Операции по п.1 заявляемого изобретения 2,5
3 Величина превышения толщины лент относительно диаметра шайб, % 8 2,1
10-15 3,0
18 3,0
4 Точность резки лент перпендикулярно их продольной оси на бруски, град ±1° 3,8
±3° 3,8
±5° 0
5 Точность резки цилиндрических стержней поперек на шайбы, град ±1° 4,3
±3° 4,3
±5° 0

Из вышеприведенных примеров следует, что заявляемое изобретение позволяет изготавливать высококачественные шайбы из лейкосапфира, обладающие высоким структурным совершенством и оптическим качеством, с более высоким выходом годного. Выход годного по сравнению с прототипом при изготовлении монокристаллических шайб диаметром 6 мм высотой 3,5 мм из профилированных лент вместо изготовления их из профилированных монокристаллов в виде стержней повысился на 400%.

Заявляемое изобретение найдет широкое применение в приборостроении и других отраслях промышленности.

Источник поступления информации: Роспатент

Показаны записи 71-79 из 79.
20.05.2019
№219.017.5c97

Способ получения тетрафторида урана

Изобретение относится к химической технологии неорганических веществ, а именно к способу получения тетрафторида урана сухим методом, который может применяться в производстве гексафторида урана или металлического урана. Способ включает смешивание порошков диоксида урана с бифторидом аммония,...
Тип: Изобретение
Номер охранного документа: 0002687935
Дата охранного документа: 16.05.2019
29.05.2019
№219.017.62db

Способ определения кислородного коэффициента в диоксиде урана и устройство для его осуществления

Изобретение относится к области изготовления ядерного топлива в виде диоксида урана и может быть использовано для определения атомного кислородного коэффициента в диоксиде урана. Способ включает заполнение измерительного цилиндра 1% водным раствором хлористого натрия. Высчитывают массу навески...
Тип: Изобретение
Номер охранного документа: 0002688141
Дата охранного документа: 20.05.2019
04.06.2019
№219.017.736c

Способ нанесения многослойного покрытия на оптические подложки и установка для осуществления способа

Способ включает напыление путем электронно-лучевого испарения материала покрытия в вакууме и осаждения паров на поверхности подложки при вращении подложек механизмом с планетарной передачей. Осуществляют прямой оптический контроль путем измерения спектра пропускания покрытия на каждом обороте...
Тип: Изобретение
Номер охранного документа: 0002690232
Дата охранного документа: 31.05.2019
06.06.2019
№219.017.7438

Способ получения таблетированного пористого диоксида урана

Изобретение относится к области ядерной энергетики и может быть использовано для получения таблеток диоксида урана топливных сердечников высокотемпературных вентилируемых тепловыделяющих элементов (ТВЭЛОВ) преимущественно термоэмиссионных реакторов-преобразователей (ТРП) встроенного варианта....
Тип: Изобретение
Номер охранного документа: 0002690492
Дата охранного документа: 04.06.2019
09.10.2019
№219.017.d36f

Конструкционный материал на основе молибдена и/или вольфрама или их сплавов с защитным жаростойким покрытием и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к материалам, предназначенным для работы в окислительной среде при высоких температурах, которые могут использоваться в качестве конструкционного материала для ответственных деталей, работающих при высокой температуре в приборостроении,...
Тип: Изобретение
Номер охранного документа: 0002702254
Дата охранного документа: 07.10.2019
14.11.2019
№219.017.e16a

Способ рафинирования чернового урана

Изобретение относится к металлургии и атомной технике и может быть использовано для пирометаллургического рафинирования чернового урана, полученного кальциетермическим восстановлением тетрафторида урана. Рафинирование чернового урана, полученного кальциетермическим методом, включает...
Тип: Изобретение
Номер охранного документа: 0002705845
Дата охранного документа: 12.11.2019
09.02.2020
№220.018.014f

Способ переработки уран-молибденовой композиции

Изобретение относится к области металлургии и технологии урана, в частности к способу переработки уран-молибденовой композиции. Способ переработки уран-молибденовой композиции включает ее окисление и прокаливание в воздушной среде с последующим отделением молибдена от урансодержащего твердого...
Тип: Изобретение
Номер охранного документа: 0002713745
Дата охранного документа: 07.02.2020
12.02.2020
№220.018.018d

Способ эксплуатации двухрежимного термоэмиссионного реактора-преобразователя для ядерной энергетической установки

Изобретение относится к способу эксплуатации термоэмиссионного реактора-преобразователя (ТРП) с эмиттерными оболочками ЭГК из упрочненного монокристаллического сплава на основе молибдена, включающий эксплуатацию ТРП на форсированном режиме при постоянной тепловой мощности с последующим выводом...
Тип: Изобретение
Номер охранного документа: 0002713878
Дата охранного документа: 10.02.2020
12.04.2023
№223.018.45cb

Способ наведения лазерных пучков и устройство для его осуществления

Группа изобретений относится к области лазерной локации и лазерной связи в открытом пространстве. Способ наведения лазерных пучков заключается в том, что при помощи источника лазерного излучения формируют лазерный пучок, который разделяют на две части, при этом первый парциальный пучок посылают...
Тип: Изобретение
Номер охранного документа: 0002744040
Дата охранного документа: 02.03.2021
Показаны записи 61-66 из 66.
25.08.2018
№218.016.7eab

Способ электронно-лучевой сварки тонкостенных труб из молибденовых сплавов

Изобретение относится к способу электронно-лучевой сварки труб из молибденовых сплавов и может быть использовано при изготовлении тонкостенных трубных сварных изделий для атомной и космической техники, в частности для изготовления гильз канала системы управления и защиты. Перед стыковкой труб...
Тип: Изобретение
Номер охранного документа: 0002664746
Дата охранного документа: 22.08.2018
28.02.2019
№219.016.c853

Ампульное устройство для реакторных исследований

Изобретение относится к ядерной технике, а именно к ампульным облучательным устройствам для реакторных исследований свойств тепловыделяющих элементов. Ампульное устройство для реакторных исследований включает внешнюю цилиндрическую оболочку с герметизирующими торцевыми крышками, внутри которой...
Тип: Изобретение
Номер охранного документа: 0002680721
Дата охранного документа: 26.02.2019
18.05.2019
№219.017.59cc

Способ получения монокристаллов сплава вольфрам-тантал

Изобретение относится к металлургии тугоплавких металлов и сплавов и может быть использовано при выращивании однородных монокристаллов сплава вольфрам - тантал методом бестигельной зонной плавки с электронно-лучевым нагревом (ЭБЗП). Исходные компоненты - порошки вольфрама и тантала смешивают и...
Тип: Изобретение
Номер охранного документа: 0002453624
Дата охранного документа: 20.06.2012
13.06.2019
№219.017.8273

Способ получения смешанного фтористого сорбента для очистки гексафторида вольфрама, урана, молибдена и рения от фтористого водорода

Изобретение относится к технологии переработки отходов, образующихся при использовании высших фторидов металлов: WF, UF, МоF, ReF и содержащих фтористый водород, в частности к получению сорбента для очистки упомянутых гексафторидов. Способ получения сорбента осуществляют путем смешения...
Тип: Изобретение
Номер охранного документа: 0002408421
Дата охранного документа: 10.01.2011
09.10.2019
№219.017.d36f

Конструкционный материал на основе молибдена и/или вольфрама или их сплавов с защитным жаростойким покрытием и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к материалам, предназначенным для работы в окислительной среде при высоких температурах, которые могут использоваться в качестве конструкционного материала для ответственных деталей, работающих при высокой температуре в приборостроении,...
Тип: Изобретение
Номер охранного документа: 0002702254
Дата охранного документа: 07.10.2019
12.02.2020
№220.018.018d

Способ эксплуатации двухрежимного термоэмиссионного реактора-преобразователя для ядерной энергетической установки

Изобретение относится к способу эксплуатации термоэмиссионного реактора-преобразователя (ТРП) с эмиттерными оболочками ЭГК из упрочненного монокристаллического сплава на основе молибдена, включающий эксплуатацию ТРП на форсированном режиме при постоянной тепловой мощности с последующим выводом...
Тип: Изобретение
Номер охранного документа: 0002713878
Дата охранного документа: 10.02.2020
+ добавить свой РИД