×
27.08.2015
216.013.74f0

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ МОНОКРИСТАЛЛИЧЕСКИХ ЦИЛИНДРИЧЕСКИХ ШАЙБ ИЗ ТУГОПЛАВКИХ СОЕДИНЕНИЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области выращивания из расплава профилированных кристаллов тугоплавких соединений методом Степанова и изготовления из них монокристаллических цилиндрических шайб, которые могут быть использованы в приборостроении, машиностроении. Способ изготовления монокристаллических цилиндрических шайб включает выращивание монокристаллов в виде лент, толщина которых превышает диаметр шайб, затем профилированные ленты режут перпендикулярно их продольной оси на бруски квадратного поперечного сечения со стороной квадрата, равной толщине ленты, после чего бруски обрабатывают до требуемого диаметра с получением цилиндрических стержней для последующей их резки на шайбы. Изобретение обеспечивает получение с высоким выходом годного шайб с высоким структурным совершенством и оптическим качеством. 3 з.п. ф-лы, 1 табл.

Изобретение относится к области выращивания из расплава профилированных кристаллов тугоплавких соединений, например лейкосапфира, рубина, алюмоиттриевого граната и других тугоплавких соединений, по способу Степанова и изготовления из них монокристаллических цилиндрических шайб оптического качества, которые могут быть использованы в приборостроении, машиностроении и т.п.

Основными техническими требованиями к оптическим характеристикам шайб из лейкосапфира для использования в качестве оптических элементов в приборах и устройствах являются:

1) плоскость шайбы должна совпадать с кристаллографической плоскостью (0001);

2) структурное совершенство (блочность не допускается);

3) оптическое качество, т.е. не допускаются такие дефекты, как шнуры, поры, мутные области, включения.

Известна работа (Бахолдин С.И., Крымов В.М. и др. «Блочная структура стержней сапфира различной кристаллографической ориентации, выращиваемых способом Степанова», Тезисы докладов конференции стран СНГ по росту кристаллов, Харьков, 2012 г.), в которой исследовалась блочная структура стержней диаметром 8 мм. Из стержней возможно получение цилиндрических шайб путем резки стержней поперек. Показано, что при затравлении на безблочную затравку удается получать безблочные стержни. К недостаткам такого способа изготовления цилиндрических шайб следует отнести нестабильность получения безблочных стержней на всю их длину, а также качества указанных шайб по оптической прозрачности, что делает невозможным на практике получение высокого выхода годного по указанным выше техническим требованиям. Также очевидно, что при использовании высокопроизводительного группового процесса выращивания, который необходим для требуемого массового производства, выход годного и качество выращиваемых стержней только снижается.

Наиболее близким техническим решением, взятым за прототип, является способ получения монокристаллических цилиндрических таблеток, изложенный в работе (Аксельрод М.С., Кортов B.C., Мильман И.И. и др. «Профилированные легированные углеродом монокристаллы окиси алюминия для термолюминесцентных дозиметрических детекторов», Известия АН СССР, серия физическая, т.52, №10, 1988 г.), в которой способом Степанова выращивались профилированные кристаллы из лейкосапфира в виде стержней диаметром 5 мм. Затем указанные стержни разрезались на многодисковых станках алмазным инструментом на таблетки толщиной 1 мм. Выращивание проводили в групповом процессе по 8-10 стержней одновременно. Однако, как показала практика, при отличных термолюминесцентных свойствах получаемые в групповом процессе стержни не обеспечивают необходимого качества по структурному совершенству и оптической прозрачности (эти свойства не важны для дозиметров), что не позволяет получать по уже указанным выше причинам цилиндрические шайбы оптического качества с высоким выходом годного.

Перед авторами стояла задача создания высокопроизводительного способа изготовления монокристаллических цилиндрических шайб, обеспечивающего получение с высоким выходом годного шайб с высоким структурным совершенством и оптическим качеством (плоскость шайбы должна совпадать с кристаллографической плоскостью (0001)).

Поставленная задача и указанный технический результат достигаются тем, что в способе изготовления цилиндрических шайб из монокристаллов тугоплавких соединений, включающем выращивание из расплава профилированных монокристаллов на монокристаллические затравки и резку цилиндрических стержней на шайбы, согласно изобретению монокристаллы выращивают в виде лент, толщина которых превышает диаметр шайб, затем профилированные ленты режут перпендикулярно их продольной оси на бруски квадратного поперечного сечения со стороной квадрата, равной толщине ленты, после чего бруски обрабатывают до требуемого диаметра с получением цилиндрических стержней для последующей резки на шайбы.

Оптимальным с точки зрения достижения технического результата является выращивание монокристаллических лент, толщина которых превышает диаметр шайб на 10-15%. Ленты режут перпендикулярно их продольной оси на бруски квадратного поперечного сечения со стороной квадрата, равной толщине ленты, с точностью ±3°, а полученные цилиндрические стержни режут перпендикулярно их продольной оси на шайбы с точностью ±3°.

Преимущество предлагаемого способа изготовления монокристаллических цилиндрических шайб по сравнению с известным изготовлением шайб из стержней состоит в том, что получение пластин с монокристаллической структурой по всей длине, в том числе в групповом процессе выращивания, с кристаллографической ориентацией (0001) бокового торца, т.е. по толщине пластины, не является проблемой и выход годного по монокристалличности (отсутствию блоков) составляет 95-100%. Кроме того, оптическое качество пластин - отсутствие шнуров, пор, мутных областей, включений - достигается при их выращивании из расплава значительно легче, чем при выращивании стержней.

Монокристаллы выращивают в виде лент, толщина которых превышает диаметр шайб на 10-15%. Такое превышение необходимо для проведения последующей операции получения цилиндрических стержней:

- если толщина лент превышает диаметр шайб на величину меньше 10%, то при обработке до требуемого диаметра (круглении) на получаемых цилиндрических стержнях часто возникают продольные лыски, недопустимые по техническим требованиям;

- если толщина лент превышает диаметр шайб на величину больше 15%, то необоснованно увеличивается расход достаточно дорогого монокристаллического материала.

Ленты для последующего получения цилиндрических стержней режут перпендикулярно их продольной оси на бруски квадратного поперечного сечения со стороной квадрата, равной толщине ленты, с точностью ±3°. Это делается для того, чтобы обеспечить совпадение с достаточной точностью плоскости шайбы с кристаллографической плоскостью (0001), что необходимо для дальнейшего использования шайб в качестве оптического элемента. Если резать ленты перпендикулярно их продольной оси на бруски с меньшей точностью (более 3°), то изготовленные шайбы бракуются из-за несоответствия требованиям по оптике (прохождению света через материал шайбы). Более точная резка не дает увеличения выхода годного, но увеличивает трудозатраты.

Цилиндрические стержни режут перпендикулярно их продольной оси на шайбы с точностью ±3° по причинам, изложенным выше.

Заявляемый способ реализуется следующим образом.

Сначала осуществляют сборку теплового узла с нагревателем, загружают в тигель исходное сырье, устанавливают формообразователь для группового выращивания лент. Далее герметизируют камеру роста, вакуумируют ее до остаточного давления 1×10-4 мм рт.ст. и проводят отжиг теплового узла в вакууме. После отжига напускают в камеру аргон, расплавляют исходное сырье и погружают формообразователь в расплав.

Далее проводят затравление и выращивание кристаллов-лент на скорости около 1,2 мм/мин. После отрыва выращенных лент от формообразователя останавливают подъем лент и выключают нагрев. Далее ленты охлаждаются вместе с камерой.

Выращенные ленты режут перпендикулярно их продольной оси на бруски, которые затем механически обрабатывают (круглят) до получения цилиндрических стержней заданного диаметра. На следующей операции стержни режут перпендикулярно их продольной оси на шайбы.

Пример конкретного исполнения

Требовалось изготовить в большом количестве шайбы диаметром 6 мм и высотой 3,5 мм.

Эксперименты проводили на установке для выращивания кристаллов типа СЗВН-20.800/22-И1 с графитовой тепловой зоной. Использовался молибденовый тигель диаметром 105 мм, вмещающий 1000 г загрузки из кристаллов корунда, полученных методом Вернейля. Использовали разработанный нами формообразователь, который позволял одновременно выращивать 4 ленты сечением 7,2×50 мм и длиной 170-180 мм, т.е. широкие и длинномерные.

Полученные ленты разрезали перпендикулярно их продольной оси алмазным инструментом на бруски квадратного сечения 7,2×7,2 мм. Бруски обрабатывали до требуемого диаметра 6 мм. Далее полученные цилиндрические бруски резали перпендикулярно их продольной оси на шайбы, которые затем шлифовали для получения требуемой толщины шайб.

Было проведено 5 серий экспериментов, всего 100 циклов выращивания.

Во время первой серии, состоящей из 10 циклов, выращивались кристаллы в виде стержней по методике прототипа.

Во время второй серии, состоящей также из 110 циклов, использовались условия и режимы по п.1 заявляемого изобретения. Это позволило увеличить выход годного.

Во время третьей серии использовались условия и режимы по п.1 формулы изобретения, но, кроме того, монокристаллы выращивались в виде лент, толщина которых превышала диаметр шайб на 8%, 10-15% и 18%. В первом случае выход годного снижался из-за появления продольных лысок на проводимой далее операции получения цилиндрических стержней, во втором случае лыски не возникали. Было проведено по 10 циклов выращивания в каждом из вариантов.

Во время четвертой серии использовали условия и режимы по пп.1 и 2 и полученные ленты резали алмазным инструментом перпендикулярно их продольной оси на бруски квадратного поперечного сечения со стороной квадрата, равной толщине ленты, с точностью ±1°, ±3° и ±5°, что приводило во втором случае к браку по кристаллографической ориентации шайб. Было проведено по 10 циклов выращивания в каждом из вариантов.

В пятой серии использовались условия и режимы по пп.1, 2 и 3, а полученные цилиндрические стержни резали на шайбы с точностью ±1°, ±3° и ±5°. Во втором случае шайбы браковались по кристаллографической ориентации. Было проведено по 10 циклов выращивания в каждом из вариантов.

Сравнительные результаты изготовления шайб диаметром 6 мм и высотой 3,5 мм в отношении выхода годного по заявляемому изобретению и по техническом решению, принятому за прототип, представлены в таблице. Выход годного определялся как отношение среднего выхода годного при заявляемых параметрах к среднему выходу годного прототипа, принятого за единицу.


серии
Характеристика Значение параметра Относительный выход годных кристаллов
1 Техническое решение - прототип 1,0
2 Операции по п.1 заявляемого изобретения 2,5
3 Величина превышения толщины лент относительно диаметра шайб, % 8 2,1
10-15 3,0
18 3,0
4 Точность резки лент перпендикулярно их продольной оси на бруски, град ±1° 3,8
±3° 3,8
±5° 0
5 Точность резки цилиндрических стержней поперек на шайбы, град ±1° 4,3
±3° 4,3
±5° 0

Из вышеприведенных примеров следует, что заявляемое изобретение позволяет изготавливать высококачественные шайбы из лейкосапфира, обладающие высоким структурным совершенством и оптическим качеством, с более высоким выходом годного. Выход годного по сравнению с прототипом при изготовлении монокристаллических шайб диаметром 6 мм высотой 3,5 мм из профилированных лент вместо изготовления их из профилированных монокристаллов в виде стержней повысился на 400%.

Заявляемое изобретение найдет широкое применение в приборостроении и других отраслях промышленности.

Источник поступления информации: Роспатент

Показаны записи 61-70 из 79.
10.05.2018
№218.016.3ade

Способ изготовления мишени для наработки изотопа мо

Изобретение относится к способу изготовления мишеней для наработки изотопа Мо. Способ изготовления мишени для наработки изотопа Мо включает изготовление сердечника на основе фольги, который формируют путем послойной укладки биметаллической фольги или ее навивки на основу из циркония или его...
Тип: Изобретение
Номер охранного документа: 0002647492
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.3b3e

Способ испытания высокотемпературных тепловыделяющих элементов

Изобретение относится к способам испытаний высокотемпературных твэлов в исследовательском реакторе в составе ампульного облучательного устройства и может быть использовано при разработке и обосновании конструкции невентилируемых высокотемпературных твэлов, например, термоэмиссионного...
Тип: Изобретение
Номер охранного документа: 0002647486
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.40ee

Способ подготовки поверхности изделий из циркония или сплавов на его основе перед гальваническим никелированием

Изобретение относится к гальваностегии, в частности к нанесению защитных никелевых покрытий на изделия из циркония и сплавов на его основе, и может найти применение в области атомной энергии при производстве уран-циркониевых твэлов при подготовке поверхности перед гальваническим никелированием....
Тип: Изобретение
Номер охранного документа: 0002649112
Дата охранного документа: 29.03.2018
29.05.2018
№218.016.577c

Устройство для получения сферических частиц из жидких вязкотекучих материалов

Изобретение относится к технике диспергирования жидкотекучих сред, в частности вязкотекучих шликерных материалов, и может быть использовано в порошковой металлургии, химической, пищевой и других отраслях промышленности в процессах получения гранул. Устройство для получения сферических частиц из...
Тип: Изобретение
Номер охранного документа: 0002654962
Дата охранного документа: 23.05.2018
25.08.2018
№218.016.7eab

Способ электронно-лучевой сварки тонкостенных труб из молибденовых сплавов

Изобретение относится к способу электронно-лучевой сварки труб из молибденовых сплавов и может быть использовано при изготовлении тонкостенных трубных сварных изделий для атомной и космической техники, в частности для изготовления гильз канала системы управления и защиты. Перед стыковкой труб...
Тип: Изобретение
Номер охранного документа: 0002664746
Дата охранного документа: 22.08.2018
26.10.2018
№218.016.962b

Радиоизотопный элемент электрического питания с полупроводниковым преобразователем, совмещенным с источником излучения

Использование: для питания микроэлектронной аппаратуры. Сущность изобретения заключается в том, что радиоизотопный элемент электрического питания включает источник излучения, выполненный в виде содержащей радиоактивный изотоп фольги, и по крайней мере один полупроводниковый преобразователь, при...
Тип: Изобретение
Номер охранного документа: 0002670710
Дата охранного документа: 24.10.2018
01.03.2019
№219.016.ce20

Устройство контроля газа в жидкометаллическом теплоносителе

Изобретение относится к области диагностики энергетических установок и может использоваться преимущественно в атомной энергетике для контроля герметичности парогенераторов, в которых греющим теплоносителем является жидкий металл (натрий, свинец, свинец-висмут), передающий тепло воде и водяному...
Тип: Изобретение
Номер охранного документа: 0002426111
Дата охранного документа: 10.08.2011
08.03.2019
№219.016.d35f

Способ получения металлического урана

Изобретение относится к получению металлического урана. Способ включает смешивание тетрафторида урана с металлическим кальцием, взятым с избытком от стехиометрического количества, загрузку смеси в реактор и инициирование плавки с помощью нижнего электрозапала. Загрузку смеси осуществляют...
Тип: Изобретение
Номер охранного документа: 0002681331
Дата охранного документа: 06.03.2019
20.03.2019
№219.016.e306

Способ реакторных испытаний высокотемпературных вентилируемых тепловыделяющих элементов

Изобретение относится к способу реакторных испытаний высокотемпературных вентилируемых твэлов в составе ампульного облучательного устройства и может быть использовано при разработке конструкции и обосновании ресурса высокотемпературных, например, термоэмиссионных твэлов космической ЯЭУ. В...
Тип: Изобретение
Номер охранного документа: 0002682238
Дата охранного документа: 18.03.2019
18.05.2019
№219.017.59cc

Способ получения монокристаллов сплава вольфрам-тантал

Изобретение относится к металлургии тугоплавких металлов и сплавов и может быть использовано при выращивании однородных монокристаллов сплава вольфрам - тантал методом бестигельной зонной плавки с электронно-лучевым нагревом (ЭБЗП). Исходные компоненты - порошки вольфрама и тантала смешивают и...
Тип: Изобретение
Номер охранного документа: 0002453624
Дата охранного документа: 20.06.2012
Показаны записи 61-66 из 66.
25.08.2018
№218.016.7eab

Способ электронно-лучевой сварки тонкостенных труб из молибденовых сплавов

Изобретение относится к способу электронно-лучевой сварки труб из молибденовых сплавов и может быть использовано при изготовлении тонкостенных трубных сварных изделий для атомной и космической техники, в частности для изготовления гильз канала системы управления и защиты. Перед стыковкой труб...
Тип: Изобретение
Номер охранного документа: 0002664746
Дата охранного документа: 22.08.2018
28.02.2019
№219.016.c853

Ампульное устройство для реакторных исследований

Изобретение относится к ядерной технике, а именно к ампульным облучательным устройствам для реакторных исследований свойств тепловыделяющих элементов. Ампульное устройство для реакторных исследований включает внешнюю цилиндрическую оболочку с герметизирующими торцевыми крышками, внутри которой...
Тип: Изобретение
Номер охранного документа: 0002680721
Дата охранного документа: 26.02.2019
18.05.2019
№219.017.59cc

Способ получения монокристаллов сплава вольфрам-тантал

Изобретение относится к металлургии тугоплавких металлов и сплавов и может быть использовано при выращивании однородных монокристаллов сплава вольфрам - тантал методом бестигельной зонной плавки с электронно-лучевым нагревом (ЭБЗП). Исходные компоненты - порошки вольфрама и тантала смешивают и...
Тип: Изобретение
Номер охранного документа: 0002453624
Дата охранного документа: 20.06.2012
13.06.2019
№219.017.8273

Способ получения смешанного фтористого сорбента для очистки гексафторида вольфрама, урана, молибдена и рения от фтористого водорода

Изобретение относится к технологии переработки отходов, образующихся при использовании высших фторидов металлов: WF, UF, МоF, ReF и содержащих фтористый водород, в частности к получению сорбента для очистки упомянутых гексафторидов. Способ получения сорбента осуществляют путем смешения...
Тип: Изобретение
Номер охранного документа: 0002408421
Дата охранного документа: 10.01.2011
09.10.2019
№219.017.d36f

Конструкционный материал на основе молибдена и/или вольфрама или их сплавов с защитным жаростойким покрытием и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к материалам, предназначенным для работы в окислительной среде при высоких температурах, которые могут использоваться в качестве конструкционного материала для ответственных деталей, работающих при высокой температуре в приборостроении,...
Тип: Изобретение
Номер охранного документа: 0002702254
Дата охранного документа: 07.10.2019
12.02.2020
№220.018.018d

Способ эксплуатации двухрежимного термоэмиссионного реактора-преобразователя для ядерной энергетической установки

Изобретение относится к способу эксплуатации термоэмиссионного реактора-преобразователя (ТРП) с эмиттерными оболочками ЭГК из упрочненного монокристаллического сплава на основе молибдена, включающий эксплуатацию ТРП на форсированном режиме при постоянной тепловой мощности с последующим выводом...
Тип: Изобретение
Номер охранного документа: 0002713878
Дата охранного документа: 10.02.2020
+ добавить свой РИД