×
27.08.2015
216.013.742c

СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУР ФАЗОВЫХ ПРЕВРАЩЕНИЙ В МЕТАЛЛИЧЕСКИХ МАТЕРИАЛАХ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к термическому и дилатометрическому анализу и может быть использовано для определения критических точек фазовых превращений в металлических материалах при непрерывном нагреве. Согласно способу испытывают образец с использованием одинарного закалочного дилатометра и безинерционной термопары, приваренной к образцу. Нагревают исследуемый образец с постоянной скоростью с помощью индуктора. Автоматически фиксируют время от начала измерения, температуру исследуемого образца, абсолютное удлинение образца и относительную мощность индуктора. Для фазовых превращений 1 рода по результатам испытаний образца строят на одном координатном поле зависимости W=f(T), где W - относительная мощность индуктора, %, T - температура исследуемого образца, °C. По построенным зависимостям находят первую производную относительной мощности индуктора в каждой точке. Затем строят на одном координатном поле зависимости абсолютного удлинения от температуры исследуемого образца Δl=f(T) и первой производной относительной мощности индуктора от температуры исследуемого образца dW/dT=f(T). Определяют начало и окончание фазовых превращений 1 рода в виде критических точек (T) и (T) по моменту отрыва функции dW/dT=f(T) от пулевого уровня на фоне изменения функции Δl=f(T). Определяют температуру фазового превращения 2 рода в виде критической точки (T) по положению максимума первой производной относительной мощности индуктора. Технический результат - повышение точности определения начала и конца фазовых превращений 1 и 2 рода в исследуемом металлическом материале. 5 ил.
Основные результаты: Способ определения температур фазовых превращений в металлических материалах, заключающийся в том, что испытывают образец с использованием одинарного закалочного дилатометра и безинерционной термопары, приваренной к образцу, нагревают исследуемый образец с постоянной скоростью с помощью индуктора, при этом автоматически фиксируют время от начала измерения, температуру исследуемого образца, абсолютное удлинение образца и относительную мощность индуктора, строят зависимость абсолютного удлинения образца при нагреве от температуры исследуемого образца, по профилю построенной зависимости определяют характер фазовых превращений, определяют критические точки фазовых превращений 1 рода, отличающийся тем, что для фазовых превращений 1 рода по результатам испытаний образца строят на одном координатном поле зависимости W=f(T), где W - относительная мощность индуктора, %, T - температура исследуемого образца, °C, при этом испытания проводят на образце при нагреве с различными скоростями в интересующем диапазоне, не превышающем максимальной скорости нагрева дилатометра, и определяют условия нагрева, при которых проявляется экстремум на зависимостях относительной мощности индуктора от температуры, по построенным зависимостям находят первую производную относительной мощности индуктора в каждой точке, затем строят на одном координатном поле зависимости абсолютного удлинения от температуры исследуемого образца Δl=f(T) и первой производной относительной мощности индуктора от температуры исследуемого образца dW/dT=f(T), определяют начало и окончание фазовых превращений 1 рода в виде критических точек (T) и (T) по моменту отрыва функции dW/dT=f(T) от нулевого уровня на фоне изменения функции ∆l=f(T.) и определяют температуру фазового превращения 2 рода в виде критической точки (T) по положению максимума первой производной относительной мощности индуктора.
Реферат Свернуть Развернуть

Изобретение относится к термическому и дилатометрическому анализу, в частности к безэталонному определению критических точек фазовых превращений в металлических материалах (чистых металлов, сталей, сплавов, чугуна) при непрерывном нагреве.

Оно может быть использовано для исследования фазовых превращений 1 и 2 рода с помощью закалочного дилатометра типа «Linseis» R.L.T.A.L78, имеющего программное обеспечение WIN - DIL.

Известен способ безэталонного термического анализа фазовых превращений (а.с. №1689824, МПК G01N 25/02 от 07.11.91 г.), основанный на нагреве образца, помещенного в держатель, с помощью нагревательного элемента, осуществляемом в две стадии. В первой стадии регистрируют скорость нагрева нагревательного элемента и разность температур между держателем образца и нагревательным элементом в отсутствии образца в держателе. Во второй - регистрируют скорость нагрева нагревательного элемента и разность температур между держателем образца и нагревательным элементом в присутствии образца в держателе. Дополнительно определяют параметр, характеризующий термическую инерцию держателя образца и скорости нагрева держателя образца на обеих стадиях нагрева. О результате исследований судят по разности температур, вычисляемой с помощью измеренных величин.

К недостаткам известного способа относят то, что известный способ учитывает разности температур и скорости нагрева нагревательного элемента, держателя образца, что обеспечивает точность формирования термического профиля, но не уточняет положение критических точек (начала и конца фазовых превращений 1 и 2 рода) на получаемых расчетных данных.

Известен способ определения температур фазовых превращений в материалах (а.с. №719259, МПК G01N 25/02 от 06.09.77 г.) путем изменения температуры образца в исследуемом температурном интервале, равномерно увеличивая мощность нагревательного элемента, пропускания сквозь образец потока монохроматического γ-излучения и регистрации его на выходе. Изменение температуры образца проводят при одностороннем отводе от него тепла перпендикулярно направлению потока монохроматического γ-излучения, осуществляют ряд изотермических выдержек образца в исследуемом температурном интервале при пропускании потока монохроматического γ-излучения и регистрируют при этом поток γ-излучения и температуру образца, а искомые величины определяют, сопоставляя значения потоков монохроматического излучения для обоих режимов изменения температуры образца. Способ используют для установления температур фазовых превращений 1 и 2 рода.

К недостаткам известного способа относят то, что известный способ использует измерения, связанные с интенсивностью потока γ-излучения и временем прохождения его сквозь образец, а также температурой нагрева образца. Схематично изображенные зависимости дают мало информации и некорректны, так как проведение ступенчатых изотермических выдержек непрерывного нагрева совершенно не учитывает различия в характере превращений и возможность влияния облучения на фазовые превращения при смене времени и различных скоростей нагрева (температур). Влияние мощности нагревательного элемента ограничено регулированием температуры его в процессе нагрева: температура его равномерно должна подниматься в процессе нагрева образца.

Наиболее близким способом того же назначения к заявленному изобретению по совокупности признаков является способ определения температуры фазовых превращений 1 рода, критических точек начала (Ac1) и окончания (Ac3) этих превращений и абсолютного удлинения Δl исследуемого образца при нагреве в закалочном дилатометре (Руководство по эксплуатации. Высокоскоростной дилатометр «Linseis» R.I.T.A.L78. Email: info@linseis.com., Web site: http:/www.linseis.com). Способ заключается в использовании одинарного (безэталонного) закалочного дилатометра типа «Linseis» R.I.T.A.L.78 и безинерционной термопары, которую приваривают электроконтактной сваркой на исследуемый образец. Перед испытаниями, используя программное обеспечение WIN-DIL, задают температурно-временной режим исследования образца: скорость нагрева, температуру нагрева, время выдержки, скорость охлаждения, температуру охлаждения, время выдержки при температуре охлаждения. При этом во время работы дилатометра автоматически с определенной частотой (до 1 запроса в 1 мс) записывают время от начала измерения, задаваемую температуру, температуру исследуемого образца, абсолютное удлинение исследуемого образца, относительную мощность нагреваемого элемента (в процентах - мощность индуктора в точках измерения при непрерывном нагреве от максимальной потребляемой мощности). На основании полученных данных строят дилатограмму - зависимость абсолютного удлинения исследуемого образца при нагреве от температуры образца, нагреваемого с заданной скоростью нагрева индуктором, используемым в качестве нагревательного элемента. Затем строят на одном координатном поле зависимости «Время, с - Температура, °C» и «Время, с - Абсолютное удлинение исследуемого образца, мкм» при нагреве. С использованием закалочного дилатометра «Linseis» R.I.T.A.L78 определяют фазовые переходы сталей - критические точки Aс1, Aс3, так как эти переходы сопровождаются изменениями размеров образца (ΔL), которые измеряет дилатометр. Точка Ac1 - температура начала фазового перехода (1 рода), Ac3 - температура окончания фазового перехода (1 рода) во время нагрева. Все найденные фазовые переходы отображают на диаграмме «Время, с - Температура, °C» вместе с температурными кривыми (см. с. 51 Руководства). Оценивают положение Ac1 и Ac3 на кривых при заданной скорости нагрева исследуемого образца. Точки перехода (критические точки) определяют двумя путями: наносят отдельную точку (метку) на точку экстремума графика или проводят касательную - линию пересечения с линией на графике (для этого на графике отмечают 4 точки: две до фазового перехода и две - после него). В месте отрыва касательной от линии на кривой наносят точку (см. стр. 53 Руководства). Данный способ принят за прототип.

Признаки прототипа, совпадающие с существенными признаками заявляемого способа, - используют для испытания образца одинарный закалочный дилатометр и безинерционную термопару, приваренную к образцу; нагревают исследуемый образец с постоянной скоростью с помощью индуктора; автоматически фиксируют в процессе нагрева время от начала измерения, температуру исследуемого образца, абсолютное удлинение образца и относительную мощность индуктора; строят зависимость абсолютного удлинения образца при нагреве от температуры исследуемого образца; определяют характер фазовых превращений по профилю построенной зависимости; определяют критические точки фазовых превращений 1 рода.

К недостаткам известного способа, принятого за прототип, относят недостаточную точность определения критических точек начала (Ac1) и окончания (Ac3) фазовых превращений, так как на дилатограмме часто присутствуют различные аномалии, не связанные с фазовыми превращениями, которые проявляются на дилатограмме в виде перегибов, то есть отклонений от прямолинейности до фазовых переходов. Поэтому отрыв касательной от линии на графике не гарантирует точность фиксирования ни критической точки Ac1, ни критической точки Ac3. Кроме того, известный способ не определяет точки фазового превращения 2 рода (в том числе точку Кюри), ограничивая тем самым техническую функцию дилатометра.

Задачей, на решение которой направлено изобретение, является повышение точности определения начала и конца фазовых превращений 1 и 2 рода в исследуемом металлическом материале с использованием одинарного закалочного дилатометра «Linseis» R.I.T.A.L78, расширение функциональных возможностей закалочного дилатометра.

Поставленная задача была решена за счет того, что в известном способе определения температур фазовых превращений в металлических материалах, заключающемся в том, что испытывают образец с использованием одинарного закалочного дилатометра и безинерционной термопары, приваренной к образцу, нагревают исследуемый образец с постоянной скоростью с помощью индуктора, при этом автоматически фиксируют время от начала измерения, температуру исследуемого образца, абсолютное удлинение образца и относительную мощность индуктора, строят зависимость абсолютного удлинения образца при нагреве от температуры исследуемого образца, по профилю построенной зависимости определяют характер фазовых превращений, определяют критические точки фазовых превращений 1 рода, согласно изобретению для фазовых превращений 1 рода по результатам испытаний образца строят на одном координатном поле зависимости W=f(Tобр.), где W - относительная мощность индуктора, %, Tобр. - температура исследуемого образца, °C, при этом испытания проводят на образце при нагреве с различными скоростями в интересующем диапазоне, не превышающем максимальной скорости нагрева дилатометрам определяют условия нагрева, при которых проявляется экстремум на зависимостях относительной мощности индуктора от температуры, по построенным зависимостям находят первую производную относительной мощности индуктора в каждой точке, затем строят на одном координатном поле зависимости абсолютного удлинения от температуры исследуемого образца Δl=f(Tобр.) и первой производной относительной мощности индуктора от температуры исследуемого образца dW/dTобр.=f(Tобр.), определяют начало и окончание фазовых превращений 1 рода в виде критических точек (Tн) и (Tк) по моменту отрыва функции dW/dTобр.=f(Tобр.) от нулевого уровня на фоне изменения функции Δl=f(Tобр.) и определяют температуру фазового превращения 2 рода в виде критической точки (Tкр) по положению максимума первой производной относительной мощности индуктора.

Признаки заявляемого технического решения, отличительные от прототипа - для фазовых превращений 1 рода по результатам испытаний образца строят на одном координатном поле зависимости W=f(Tобр.), где W - относительная мощность индуктора, %, Tобр. - температура исследуемого образца, °C; испытания проводят на образце при нагреве с различными скоростями в интересующем диапазоне, не превышающем максимальной скорости нагрева дилатометра, и определяют условия нагрева, при которых проявляется экстремум на зависимостях относительной мощности индуктора от температуры; по построенным зависимостям находят первую производную относительной мощности индуктора в каждой точке; строят на одном координатном поле зависимости абсолютного удлинения от температуры исследуемого образца Δl=f(Tобр.) и первой производной относительной мощности индуктора от температуры исследуемого образца dW/dTобр.=f(Tобр.); определяют начало и окончание фазовых превращений 1 рода в виде критических точек (Tн) и (Tк) по моменту отрыва функции dW/dTобр.=f(Tобр.) от нулевого уровня на фоне изменения функции Δl=f(Tобр.); определяют температуру фазового превращения 2 рода в виде критической точки (Tкр) по положению максимума первой производной относительной мощности индуктора.

В ходе экспериментов авторами впервые обнаружено, что температурный профиль относительной мощности (W) отображает состояние нагреваемого образца, выраженное в виде резких скачков и перегибов в исследуемом температурном интервале.

Построение на одном координатном поле зависимостей W=f(Tобр.) при различных скоростях нагрева позволяет определить диапазон скоростей нагрева, при которых наблюдается экстремум на зависимостях относительной мощности индуктора от температуры исследуемого образца, что, в свою очередь, позволяет определить начало и конец фазовых превращений в исследуемом образце.

Нахождение первой производной относительной мощности индуктора в каждой точке позволяет увеличить перегибы на зависимостях относительной мощности от температуры, что обеспечит повышение точности определения критических точек фазовых превращений не только 1 рода, но и 2 рода, расширение соответственно возможностей одинарного закалочного дилатометра «Linseis» R.I.T.A.L78.

Определение для фазовых превращений 1 рода положения критических точек (Tн) и (Tк) по моменту отрыва функции dW/dTобр.=f(Tобр.) от нулевого уровня, а для фазовых превращений 2 рода критической точки (Tкр) (в том числе точки Кюри) по положению максимума функции dW/dTобр.=f(Tобр.), позволяет существенно повысить точность определения критических точек и избежать влияния различных дилатометрических аномалий на результаты исследования.

Повышение точности определения положения критических точек в исследуемом металлическом материале заявляемым способом позволяет улучшить технологические режимы обработки, в том числе термической, для получения заданного структурного состояния и физико-механических свойств, определить возможные интервалы рабочих температур материала.

Расширение функциональных возможностей закалочного дилатометра позволяет совместить при одновременном измерении дилатометрический и термический анализ исследуемого металлического материала без проведения дополнительных измерений методами калориметрического или термического анализа (в отличие от прототипа).

Способ поясняется с помощью графиков, представленных на фиг. 1-5.

На фиг. 1 графически представлены зависимости относительной мощности индуктора от температуры исследуемого образца W=f(Tобр) для непрерывного нагрева исследуемого образца стали 12ХН3А с фазовым превращением 1-го рода с различными скоростями.

На фиг. 2 графически представлены зависимости первой производной относительной мощности индуктора от температуры исследуемого образца стали 12ХН3А (dW/dTобр.=f(Tобр)) и зависимость абсолютного удлинения от температуры исследуемого образца Δl=f(Tобр) для непрерывного нагрева исследуемого образца с фазовым превращением 1-го рода со скоростью 1°С/с.

На фиг. 3 графически представлены зависимости первой производной относительной мощности индуктора от температуры исследуемого образца стали 12XН3A (dW/dTобр=f(Tобр)) и зависимость абсолютного удлинения от температуры исследуемого образца Δl=f(Tобр) для непрерывного нагрева исследуемого образца с фазовым превращением 1-го рода со скоростью 90°C/с.

На фиг. 4 графически представлены зависимости первой производной относительной мощности индуктора от температуры исследуемого образца стали 12ХН3А (dW/dTобр=f(Tобр)) и зависимость абсолютного удлинения от температуры исследуемого образца Δl=f(Tобр) для непрерывного нагрева исследуемого образца с фазовым превращением 1-го рода со скоростью 350°C/с.

На фиг. 5 графически представлены зависимости первой производной относительной мощности индуктора от температуры исследуемого образца никеля (dW/dTобр=f(Tобр)) и зависимость абсолютного удлинения от температуры исследуемого образца Δl=f(Tобр) для непрерывного нагрева исследуемого образца с фазовым превращением 2-го рода со скоростью 10°C/с.

Способ осуществляется следующим образом.

Для дилатометрических испытаний с использованием закалочного дилатометра «Linseis» R.I.T.A.L78 готовят цилиндрический образец диаметром 3-4 мм и длиной 9-11 мм. На исследуемый образец методом электроконтактной сварки привариваются концы предварительно откалиброванной термопары, что позволяет во время измерения непосредственно и безинерционно фиксировать температуру исследуемого образца. Перед испытаниями с использованием программного обеспечения WIN-DIL задают температурно-временной режим исследования: скорость нагрева, температуру нагрева, время выдержки, температуру охлаждения и время выдержки при температуре охлаждения. Во время работы прибора при дилатометрическом исследовании образца при реализации заранее заданного температурно-временного режима идет одновременная запись времени от начала измерения (τ), температуры исследуемого образца (Tобр), задаваемой температуры (Tз), абсолютного удлинения (Δl) и относительной мощности индуктора (W) с частотой до 1 запроса в 1 мс.

Испытания проводят на образце при нагреве с различными скоростями в интересующем диапазоне, не превышающем максимальной скорости нагрева дилатометра. По результатам испытаний на одном координатном поле строят зависимости W=f(Tобр) (фиг. 1). Определяют условия нагрева, при которых проявляется экстремум на зависимостях относительной мощности индуктора от температуры исследуемого образца.

Находят первую производную относительной мощности индуктора (dW/dTобр). Далее строят на одном координатном поле зависимости первой производной относительной мощности индуктора от температуры исследуемого образца dW/dTобр=f(Tобр) и зависимость абсолютного удлинения от температуры исследуемого образца Δl=f(Tобр) (фиг. 2).

По построенным зависимостям определяют положение критических температур фазовых превращений 1 и 2 рода.

Для фазовых превращений 1 рода определяют температуры начала и окончания в виде критических точек (Tн) и (Tк) по четким резким перегибам первой производной dW/dTобр.=f(Tобр.) на фоне изменения функции Δl=f(Tобр.). Оценивают характер фазовых превращений по профилю построенных зависимостей абсолютного удлинения от температуры образца в диапазоне между Tн и Tк. Определяют положение критических точек (Tн) и (Tк) по моменту отрыва функции dW/dTобр.=f(Tобр.) от нулевого уровня.

Для фазовых превращений 2 рода определяют температуру фазового превращения 2 рода в виде критической точки (Tкр) (в том числе точку Кюри) по положению максимума первой производной относительной мощности индуктора.

Для уточнения истинного местонахождения критических точек на дилатометрической кривой, построенной при удлинении исследуемого образца при нагреве, можно провести вертикальные линии от найденных точек Tн, Tк или Tкр на первой производной относительной мощности к кривой удлинения образца (фиг. 2, 3, 4, 5).

Предлагаемый способ поясняется с помощью зависимостей, представленных на фиг. 1-5.

На фиг. 1 представлены зависимости функций W=f(Tобр) для фазового превращения 1 рода - α→γ-превращение при непрерывном нагреве стали 12ХН3А со скоростями 1; 10; 20; 90; 150; 250; 300; 350°C/с. На представленных зависимостях видно, что при всех условиях нагрева происходит резкое увеличение относительной мощности индуктора (W) при температуре 730±5°C. Это вызвано необходимостью подавления эндотермического теплового эффекта α→γ-превращения в исследуемой стали при непрерывном нагреве для поддержания заранее заданных условий непрерывного нагрева. Обнаружено, что при окончании превращения наблюдают перелом функции W=f(Tобр) при переходе к линейному изменению для скоростей нагрева от 20 до 300°C/с.

На фиг. 2 представлены зависимости Δl=f(Tобр) и dW/dTобр=f(Tобр) для непрерывного нагрева стали 12ХН3А со скоростью 1°C/с. Положение критической точки Ac1 (Tн) по данной зависимости можно определить по моменту отрыва функции dW/dTобр=f(Tобр) от нулевого уровня, что является признаком возникновения теплового эффекта α→γ-превращения. Однако при нагреве со скоростями менее 20°C/с на зависимости W=f(Tобр) (фиг. 1) отсутствует минимум в момент окончания превращения, что делает невозможным определить положение критической точки Ac3 (Tк) по функции dW/dTобр=f(Tобр).

На фиг.3 представлены зависимости Δl=f(Tобр) и dW/dTобр=f(Tобр) для непрерывного нагрева стали 12XН3А со скоростью 90°C/с, то есть в интервале скоростей нагрева от 20 до 300°C/с. Положение критической точки Ac1 (Tн) по данной зависимости можно определить по моменту отрыва функции dW/dTобр=f(Tобр) от нулевого уровня, что является признаком возникновения теплового эффекта α→γ-превращения при непрерывном нагреве. Критическую точку Ac3 (Tк) можно определить по точке максимума в области температур окончания превращения, что является признаком стабилизации условий нагрева.

На фиг. 4 представлены зависимости Δl=f(Tобр) и dW/dTобр=f(Tобр) для непрерывного нагрева стали 12XН3A со скоростью 350°C/с, т.е. в интервале скоростей нагрева от 350°С/с. Положение критической точки Ac1 (Tн) по данной зависимости можно определить по моменту отрыва функции dW/dTобр=f(Tобр) от нулевого уровня, что является признаком возникновения теплового эффекта α→γ-превращения при непрерывном нагреве. Критическую точку Ac3 (Tк) по характеру функции dW/dTобр=f(Tобр) определить невозможно, т.к. отсутствует этап выхода на постоянный уровень мощности при нагреве.

На фиг. 5 представлены зависимости Δl=f(Tобр) и dW/dTобр=f(Tобр) для непрерывного нагрева никеля со скоростью 10°C/с. Предлагаемым методом можно определить температуру фазового превращения 2-го рода точку Кюри Tк (Tкр) по положению максимума функции dW/dTобр=f(Tобр).

Преимущества предлагаемого способа:

1. Способ позволяет расширить границы применения закалочного дилатометра «Linseis» R.I.T.A.L78 для исследования фазовых превращений 1 и 2 рода в чистых металлах, сталях, сплавах, чугуне и других металлических материалах.

2. Использование зависимости первой производной мощности от температуры надеваемого образца dW/dTобр=f(Tобр) позволяет максимально точно определить положение температур фазового превращения при нагреве исследуемого образца.

3. Способ позволяет выявить закономерности развития процессов фазовых превращений и, следовательно, рекомендовать оптимальный вариант проведения режимов термической обработки без применения трудоемких и длительных исследований.

Способ определения температур фазовых превращений в металлических материалах, заключающийся в том, что испытывают образец с использованием одинарного закалочного дилатометра и безинерционной термопары, приваренной к образцу, нагревают исследуемый образец с постоянной скоростью с помощью индуктора, при этом автоматически фиксируют время от начала измерения, температуру исследуемого образца, абсолютное удлинение образца и относительную мощность индуктора, строят зависимость абсолютного удлинения образца при нагреве от температуры исследуемого образца, по профилю построенной зависимости определяют характер фазовых превращений, определяют критические точки фазовых превращений 1 рода, отличающийся тем, что для фазовых превращений 1 рода по результатам испытаний образца строят на одном координатном поле зависимости W=f(T), где W - относительная мощность индуктора, %, T - температура исследуемого образца, °C, при этом испытания проводят на образце при нагреве с различными скоростями в интересующем диапазоне, не превышающем максимальной скорости нагрева дилатометра, и определяют условия нагрева, при которых проявляется экстремум на зависимостях относительной мощности индуктора от температуры, по построенным зависимостям находят первую производную относительной мощности индуктора в каждой точке, затем строят на одном координатном поле зависимости абсолютного удлинения от температуры исследуемого образца Δl=f(T) и первой производной относительной мощности индуктора от температуры исследуемого образца dW/dT=f(T), определяют начало и окончание фазовых превращений 1 рода в виде критических точек (T) и (T) по моменту отрыва функции dW/dT=f(T) от нулевого уровня на фоне изменения функции ∆l=f(T.) и определяют температуру фазового превращения 2 рода в виде критической точки (T) по положению максимума первой производной относительной мощности индуктора.
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУР ФАЗОВЫХ ПРЕВРАЩЕНИЙ В МЕТАЛЛИЧЕСКИХ МАТЕРИАЛАХ
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУР ФАЗОВЫХ ПРЕВРАЩЕНИЙ В МЕТАЛЛИЧЕСКИХ МАТЕРИАЛАХ
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУР ФАЗОВЫХ ПРЕВРАЩЕНИЙ В МЕТАЛЛИЧЕСКИХ МАТЕРИАЛАХ
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУР ФАЗОВЫХ ПРЕВРАЩЕНИЙ В МЕТАЛЛИЧЕСКИХ МАТЕРИАЛАХ
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУР ФАЗОВЫХ ПРЕВРАЩЕНИЙ В МЕТАЛЛИЧЕСКИХ МАТЕРИАЛАХ
Источник поступления информации: Роспатент

Показаны записи 51-60 из 122.
20.12.2014
№216.013.1151

Фильтрующий элемент для очистки питьевой воды

Изобретение относится к устройству для очистки питьевой воды и может быть использовано в промышленности, для бытовых нужд и в очистных сооружениях. Фильтрующий элемент содержит центральную перфорированную трубу (3), на которую намотан фильтрующий материал. Фильтрующий материал состоит из...
Тип: Изобретение
Номер охранного документа: 0002535856
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.11b1

Способ исследования поверхности образца графитсодержащих композитов

Изобретение относится к области материаловедения и может быть использовано при исследовании структурного состояния, морфологии поверхности образцов из композиций, содержащих графит, например в графитопластах (с термопластом или реактопластом в качестве связующего). Способ включает...
Тип: Изобретение
Номер охранного документа: 0002535952
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.121f

Материал для рекультивации полигонов твердых бытовых отходов и карьеров

Изобретение относится к области охраны окружающей среды. Материал для рекультивации полигонов твердых бытовых отходов и карьеров содержит природный грунт и промышленные отходы. В качестве промышленных отходов он содержит конечный шлак, образующийся при производстве феррованадия...
Тип: Изобретение
Номер охранного документа: 0002536062
Дата охранного документа: 20.12.2014
27.12.2014
№216.013.14b5

Расширяющийся тампонажный раствор с регулируемыми технологическими свойствами

Изобретение относится к области строительства скважин, в частности к тампонажным растворам для цементирования обсадных колонн, а также хвостовиков дополнительных стволов нефтяных и газовых скважин. Расширяющийся тампонажный раствор содержит жидкость затворения - воду и основу, состоящую из...
Тип: Изобретение
Номер охранного документа: 0002536725
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.1531

Способ волочения полиметаллических многослойных прутковых и проволочных изделий

Изобретение относится к обработке металлов давлением и предназначено для производства полиметаллических многослойных прутковых и проволочных изделий волочением. Способ включает предварительное формирование на изделии захватки с заостренным и коническим участками и последующее волочение через...
Тип: Изобретение
Номер охранного документа: 0002536849
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.1590

Способ термической утилизации твердых бытовых отходов

Изобретение относится к области переработки, обезвреживания и утилизации твердых бытовых отходов. Для термической утилизации отходов бурят скважину, проводят газификацию органических компонентов отходов при помощи контролируемого нагрева и подачи топлива с получением синтез-газа и его...
Тип: Изобретение
Номер охранного документа: 0002536944
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.176f

Способ управления работой главной вентиляторной установки при проветривании шахт

Технический результат заключается в создании высокоэффективного способа управления работой главной вентиляторной установки (ГВУ), работающей на подземных горнодобывающих предприятиях, с использованием результатов статистических оценок значимости влияния параметров воздуха в вентиляторном и...
Тип: Изобретение
Номер охранного документа: 0002537427
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1966

Наклонная подъемная установка

Изобретение относится к горной промышленности и может быть использовано для подъема горной массы из карьеров и шахт. Наклонная подъемная установка содержит подъемную машину с приводом, направляющие шкивы, и подъемные канаты с сосудами, установленными на рельсовых направляющих с вогнутым...
Тип: Изобретение
Номер охранного документа: 0002537930
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1c73

Бактерицидный материал

Изобретение относится для стерилизации материалов, в частности к химическим средствам борьбы с микроорганизмами. Задачей изобретения является расширение сырьевых ресурсов для бактерицидных материалов. Поставленная задача решается применением конечного шлака, образующегося при производстве...
Тип: Изобретение
Номер охранного документа: 0002538711
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1cab

Устройство общесекционной защиты трехфазной сети от однофазных замыканий на землю

Изобретение относится к электроэнергетике и предназначено для защиты трехфазной сети с изолированной нейтралью от однофазных замыканий на землю (ОЗЗ), а также может быть использовано в сетях, где нейтраль заземлена через резистор, дугогасящий реактор или комбинированно. Технический результат -...
Тип: Изобретение
Номер охранного документа: 0002538767
Дата охранного документа: 10.01.2015
Показаны записи 51-60 из 123.
20.12.2014
№216.013.1151

Фильтрующий элемент для очистки питьевой воды

Изобретение относится к устройству для очистки питьевой воды и может быть использовано в промышленности, для бытовых нужд и в очистных сооружениях. Фильтрующий элемент содержит центральную перфорированную трубу (3), на которую намотан фильтрующий материал. Фильтрующий материал состоит из...
Тип: Изобретение
Номер охранного документа: 0002535856
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.11b1

Способ исследования поверхности образца графитсодержащих композитов

Изобретение относится к области материаловедения и может быть использовано при исследовании структурного состояния, морфологии поверхности образцов из композиций, содержащих графит, например в графитопластах (с термопластом или реактопластом в качестве связующего). Способ включает...
Тип: Изобретение
Номер охранного документа: 0002535952
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.121f

Материал для рекультивации полигонов твердых бытовых отходов и карьеров

Изобретение относится к области охраны окружающей среды. Материал для рекультивации полигонов твердых бытовых отходов и карьеров содержит природный грунт и промышленные отходы. В качестве промышленных отходов он содержит конечный шлак, образующийся при производстве феррованадия...
Тип: Изобретение
Номер охранного документа: 0002536062
Дата охранного документа: 20.12.2014
27.12.2014
№216.013.14b5

Расширяющийся тампонажный раствор с регулируемыми технологическими свойствами

Изобретение относится к области строительства скважин, в частности к тампонажным растворам для цементирования обсадных колонн, а также хвостовиков дополнительных стволов нефтяных и газовых скважин. Расширяющийся тампонажный раствор содержит жидкость затворения - воду и основу, состоящую из...
Тип: Изобретение
Номер охранного документа: 0002536725
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.1531

Способ волочения полиметаллических многослойных прутковых и проволочных изделий

Изобретение относится к обработке металлов давлением и предназначено для производства полиметаллических многослойных прутковых и проволочных изделий волочением. Способ включает предварительное формирование на изделии захватки с заостренным и коническим участками и последующее волочение через...
Тип: Изобретение
Номер охранного документа: 0002536849
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.1590

Способ термической утилизации твердых бытовых отходов

Изобретение относится к области переработки, обезвреживания и утилизации твердых бытовых отходов. Для термической утилизации отходов бурят скважину, проводят газификацию органических компонентов отходов при помощи контролируемого нагрева и подачи топлива с получением синтез-газа и его...
Тип: Изобретение
Номер охранного документа: 0002536944
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.176f

Способ управления работой главной вентиляторной установки при проветривании шахт

Технический результат заключается в создании высокоэффективного способа управления работой главной вентиляторной установки (ГВУ), работающей на подземных горнодобывающих предприятиях, с использованием результатов статистических оценок значимости влияния параметров воздуха в вентиляторном и...
Тип: Изобретение
Номер охранного документа: 0002537427
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1966

Наклонная подъемная установка

Изобретение относится к горной промышленности и может быть использовано для подъема горной массы из карьеров и шахт. Наклонная подъемная установка содержит подъемную машину с приводом, направляющие шкивы, и подъемные канаты с сосудами, установленными на рельсовых направляющих с вогнутым...
Тип: Изобретение
Номер охранного документа: 0002537930
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1c73

Бактерицидный материал

Изобретение относится для стерилизации материалов, в частности к химическим средствам борьбы с микроорганизмами. Задачей изобретения является расширение сырьевых ресурсов для бактерицидных материалов. Поставленная задача решается применением конечного шлака, образующегося при производстве...
Тип: Изобретение
Номер охранного документа: 0002538711
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1cab

Устройство общесекционной защиты трехфазной сети от однофазных замыканий на землю

Изобретение относится к электроэнергетике и предназначено для защиты трехфазной сети с изолированной нейтралью от однофазных замыканий на землю (ОЗЗ), а также может быть использовано в сетях, где нейтраль заземлена через резистор, дугогасящий реактор или комбинированно. Технический результат -...
Тип: Изобретение
Номер охранного документа: 0002538767
Дата охранного документа: 10.01.2015
+ добавить свой РИД