×
27.08.2015
216.013.742c

СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУР ФАЗОВЫХ ПРЕВРАЩЕНИЙ В МЕТАЛЛИЧЕСКИХ МАТЕРИАЛАХ

Вид РИД

Изобретение

Аннотация: Изобретение относится к термическому и дилатометрическому анализу и может быть использовано для определения критических точек фазовых превращений в металлических материалах при непрерывном нагреве. Согласно способу испытывают образец с использованием одинарного закалочного дилатометра и безинерционной термопары, приваренной к образцу. Нагревают исследуемый образец с постоянной скоростью с помощью индуктора. Автоматически фиксируют время от начала измерения, температуру исследуемого образца, абсолютное удлинение образца и относительную мощность индуктора. Для фазовых превращений 1 рода по результатам испытаний образца строят на одном координатном поле зависимости W=f(T), где W - относительная мощность индуктора, %, T - температура исследуемого образца, °C. По построенным зависимостям находят первую производную относительной мощности индуктора в каждой точке. Затем строят на одном координатном поле зависимости абсолютного удлинения от температуры исследуемого образца Δl=f(T) и первой производной относительной мощности индуктора от температуры исследуемого образца dW/dT=f(T). Определяют начало и окончание фазовых превращений 1 рода в виде критических точек (T) и (T) по моменту отрыва функции dW/dT=f(T) от пулевого уровня на фоне изменения функции Δl=f(T). Определяют температуру фазового превращения 2 рода в виде критической точки (T) по положению максимума первой производной относительной мощности индуктора. Технический результат - повышение точности определения начала и конца фазовых превращений 1 и 2 рода в исследуемом металлическом материале. 5 ил.
Основные результаты: Способ определения температур фазовых превращений в металлических материалах, заключающийся в том, что испытывают образец с использованием одинарного закалочного дилатометра и безинерционной термопары, приваренной к образцу, нагревают исследуемый образец с постоянной скоростью с помощью индуктора, при этом автоматически фиксируют время от начала измерения, температуру исследуемого образца, абсолютное удлинение образца и относительную мощность индуктора, строят зависимость абсолютного удлинения образца при нагреве от температуры исследуемого образца, по профилю построенной зависимости определяют характер фазовых превращений, определяют критические точки фазовых превращений 1 рода, отличающийся тем, что для фазовых превращений 1 рода по результатам испытаний образца строят на одном координатном поле зависимости W=f(T), где W - относительная мощность индуктора, %, T - температура исследуемого образца, °C, при этом испытания проводят на образце при нагреве с различными скоростями в интересующем диапазоне, не превышающем максимальной скорости нагрева дилатометра, и определяют условия нагрева, при которых проявляется экстремум на зависимостях относительной мощности индуктора от температуры, по построенным зависимостям находят первую производную относительной мощности индуктора в каждой точке, затем строят на одном координатном поле зависимости абсолютного удлинения от температуры исследуемого образца Δl=f(T) и первой производной относительной мощности индуктора от температуры исследуемого образца dW/dT=f(T), определяют начало и окончание фазовых превращений 1 рода в виде критических точек (T) и (T) по моменту отрыва функции dW/dT=f(T) от нулевого уровня на фоне изменения функции ∆l=f(T.) и определяют температуру фазового превращения 2 рода в виде критической точки (T) по положению максимума первой производной относительной мощности индуктора.

Изобретение относится к термическому и дилатометрическому анализу, в частности к безэталонному определению критических точек фазовых превращений в металлических материалах (чистых металлов, сталей, сплавов, чугуна) при непрерывном нагреве.

Оно может быть использовано для исследования фазовых превращений 1 и 2 рода с помощью закалочного дилатометра типа «Linseis» R.L.T.A.L78, имеющего программное обеспечение WIN - DIL.

Известен способ безэталонного термического анализа фазовых превращений (а.с. №1689824, МПК G01N 25/02 от 07.11.91 г.), основанный на нагреве образца, помещенного в держатель, с помощью нагревательного элемента, осуществляемом в две стадии. В первой стадии регистрируют скорость нагрева нагревательного элемента и разность температур между держателем образца и нагревательным элементом в отсутствии образца в держателе. Во второй - регистрируют скорость нагрева нагревательного элемента и разность температур между держателем образца и нагревательным элементом в присутствии образца в держателе. Дополнительно определяют параметр, характеризующий термическую инерцию держателя образца и скорости нагрева держателя образца на обеих стадиях нагрева. О результате исследований судят по разности температур, вычисляемой с помощью измеренных величин.

К недостаткам известного способа относят то, что известный способ учитывает разности температур и скорости нагрева нагревательного элемента, держателя образца, что обеспечивает точность формирования термического профиля, но не уточняет положение критических точек (начала и конца фазовых превращений 1 и 2 рода) на получаемых расчетных данных.

Известен способ определения температур фазовых превращений в материалах (а.с. №719259, МПК G01N 25/02 от 06.09.77 г.) путем изменения температуры образца в исследуемом температурном интервале, равномерно увеличивая мощность нагревательного элемента, пропускания сквозь образец потока монохроматического γ-излучения и регистрации его на выходе. Изменение температуры образца проводят при одностороннем отводе от него тепла перпендикулярно направлению потока монохроматического γ-излучения, осуществляют ряд изотермических выдержек образца в исследуемом температурном интервале при пропускании потока монохроматического γ-излучения и регистрируют при этом поток γ-излучения и температуру образца, а искомые величины определяют, сопоставляя значения потоков монохроматического излучения для обоих режимов изменения температуры образца. Способ используют для установления температур фазовых превращений 1 и 2 рода.

К недостаткам известного способа относят то, что известный способ использует измерения, связанные с интенсивностью потока γ-излучения и временем прохождения его сквозь образец, а также температурой нагрева образца. Схематично изображенные зависимости дают мало информации и некорректны, так как проведение ступенчатых изотермических выдержек непрерывного нагрева совершенно не учитывает различия в характере превращений и возможность влияния облучения на фазовые превращения при смене времени и различных скоростей нагрева (температур). Влияние мощности нагревательного элемента ограничено регулированием температуры его в процессе нагрева: температура его равномерно должна подниматься в процессе нагрева образца.

Наиболее близким способом того же назначения к заявленному изобретению по совокупности признаков является способ определения температуры фазовых превращений 1 рода, критических точек начала (Ac1) и окончания (Ac3) этих превращений и абсолютного удлинения Δl исследуемого образца при нагреве в закалочном дилатометре (Руководство по эксплуатации. Высокоскоростной дилатометр «Linseis» R.I.T.A.L78. Email: info@linseis.com., Web site: http:/www.linseis.com). Способ заключается в использовании одинарного (безэталонного) закалочного дилатометра типа «Linseis» R.I.T.A.L.78 и безинерционной термопары, которую приваривают электроконтактной сваркой на исследуемый образец. Перед испытаниями, используя программное обеспечение WIN-DIL, задают температурно-временной режим исследования образца: скорость нагрева, температуру нагрева, время выдержки, скорость охлаждения, температуру охлаждения, время выдержки при температуре охлаждения. При этом во время работы дилатометра автоматически с определенной частотой (до 1 запроса в 1 мс) записывают время от начала измерения, задаваемую температуру, температуру исследуемого образца, абсолютное удлинение исследуемого образца, относительную мощность нагреваемого элемента (в процентах - мощность индуктора в точках измерения при непрерывном нагреве от максимальной потребляемой мощности). На основании полученных данных строят дилатограмму - зависимость абсолютного удлинения исследуемого образца при нагреве от температуры образца, нагреваемого с заданной скоростью нагрева индуктором, используемым в качестве нагревательного элемента. Затем строят на одном координатном поле зависимости «Время, с - Температура, °C» и «Время, с - Абсолютное удлинение исследуемого образца, мкм» при нагреве. С использованием закалочного дилатометра «Linseis» R.I.T.A.L78 определяют фазовые переходы сталей - критические точки Aс1, Aс3, так как эти переходы сопровождаются изменениями размеров образца (ΔL), которые измеряет дилатометр. Точка Ac1 - температура начала фазового перехода (1 рода), Ac3 - температура окончания фазового перехода (1 рода) во время нагрева. Все найденные фазовые переходы отображают на диаграмме «Время, с - Температура, °C» вместе с температурными кривыми (см. с. 51 Руководства). Оценивают положение Ac1 и Ac3 на кривых при заданной скорости нагрева исследуемого образца. Точки перехода (критические точки) определяют двумя путями: наносят отдельную точку (метку) на точку экстремума графика или проводят касательную - линию пересечения с линией на графике (для этого на графике отмечают 4 точки: две до фазового перехода и две - после него). В месте отрыва касательной от линии на кривой наносят точку (см. стр. 53 Руководства). Данный способ принят за прототип.

Признаки прототипа, совпадающие с существенными признаками заявляемого способа, - используют для испытания образца одинарный закалочный дилатометр и безинерционную термопару, приваренную к образцу; нагревают исследуемый образец с постоянной скоростью с помощью индуктора; автоматически фиксируют в процессе нагрева время от начала измерения, температуру исследуемого образца, абсолютное удлинение образца и относительную мощность индуктора; строят зависимость абсолютного удлинения образца при нагреве от температуры исследуемого образца; определяют характер фазовых превращений по профилю построенной зависимости; определяют критические точки фазовых превращений 1 рода.

К недостаткам известного способа, принятого за прототип, относят недостаточную точность определения критических точек начала (Ac1) и окончания (Ac3) фазовых превращений, так как на дилатограмме часто присутствуют различные аномалии, не связанные с фазовыми превращениями, которые проявляются на дилатограмме в виде перегибов, то есть отклонений от прямолинейности до фазовых переходов. Поэтому отрыв касательной от линии на графике не гарантирует точность фиксирования ни критической точки Ac1, ни критической точки Ac3. Кроме того, известный способ не определяет точки фазового превращения 2 рода (в том числе точку Кюри), ограничивая тем самым техническую функцию дилатометра.

Задачей, на решение которой направлено изобретение, является повышение точности определения начала и конца фазовых превращений 1 и 2 рода в исследуемом металлическом материале с использованием одинарного закалочного дилатометра «Linseis» R.I.T.A.L78, расширение функциональных возможностей закалочного дилатометра.

Поставленная задача была решена за счет того, что в известном способе определения температур фазовых превращений в металлических материалах, заключающемся в том, что испытывают образец с использованием одинарного закалочного дилатометра и безинерционной термопары, приваренной к образцу, нагревают исследуемый образец с постоянной скоростью с помощью индуктора, при этом автоматически фиксируют время от начала измерения, температуру исследуемого образца, абсолютное удлинение образца и относительную мощность индуктора, строят зависимость абсолютного удлинения образца при нагреве от температуры исследуемого образца, по профилю построенной зависимости определяют характер фазовых превращений, определяют критические точки фазовых превращений 1 рода, согласно изобретению для фазовых превращений 1 рода по результатам испытаний образца строят на одном координатном поле зависимости W=f(Tобр.), где W - относительная мощность индуктора, %, Tобр. - температура исследуемого образца, °C, при этом испытания проводят на образце при нагреве с различными скоростями в интересующем диапазоне, не превышающем максимальной скорости нагрева дилатометрам определяют условия нагрева, при которых проявляется экстремум на зависимостях относительной мощности индуктора от температуры, по построенным зависимостям находят первую производную относительной мощности индуктора в каждой точке, затем строят на одном координатном поле зависимости абсолютного удлинения от температуры исследуемого образца Δl=f(Tобр.) и первой производной относительной мощности индуктора от температуры исследуемого образца dW/dTобр.=f(Tобр.), определяют начало и окончание фазовых превращений 1 рода в виде критических точек (Tн) и (Tк) по моменту отрыва функции dW/dTобр.=f(Tобр.) от нулевого уровня на фоне изменения функции Δl=f(Tобр.) и определяют температуру фазового превращения 2 рода в виде критической точки (Tкр) по положению максимума первой производной относительной мощности индуктора.

Признаки заявляемого технического решения, отличительные от прототипа - для фазовых превращений 1 рода по результатам испытаний образца строят на одном координатном поле зависимости W=f(Tобр.), где W - относительная мощность индуктора, %, Tобр. - температура исследуемого образца, °C; испытания проводят на образце при нагреве с различными скоростями в интересующем диапазоне, не превышающем максимальной скорости нагрева дилатометра, и определяют условия нагрева, при которых проявляется экстремум на зависимостях относительной мощности индуктора от температуры; по построенным зависимостям находят первую производную относительной мощности индуктора в каждой точке; строят на одном координатном поле зависимости абсолютного удлинения от температуры исследуемого образца Δl=f(Tобр.) и первой производной относительной мощности индуктора от температуры исследуемого образца dW/dTобр.=f(Tобр.); определяют начало и окончание фазовых превращений 1 рода в виде критических точек (Tн) и (Tк) по моменту отрыва функции dW/dTобр.=f(Tобр.) от нулевого уровня на фоне изменения функции Δl=f(Tобр.); определяют температуру фазового превращения 2 рода в виде критической точки (Tкр) по положению максимума первой производной относительной мощности индуктора.

В ходе экспериментов авторами впервые обнаружено, что температурный профиль относительной мощности (W) отображает состояние нагреваемого образца, выраженное в виде резких скачков и перегибов в исследуемом температурном интервале.

Построение на одном координатном поле зависимостей W=f(Tобр.) при различных скоростях нагрева позволяет определить диапазон скоростей нагрева, при которых наблюдается экстремум на зависимостях относительной мощности индуктора от температуры исследуемого образца, что, в свою очередь, позволяет определить начало и конец фазовых превращений в исследуемом образце.

Нахождение первой производной относительной мощности индуктора в каждой точке позволяет увеличить перегибы на зависимостях относительной мощности от температуры, что обеспечит повышение точности определения критических точек фазовых превращений не только 1 рода, но и 2 рода, расширение соответственно возможностей одинарного закалочного дилатометра «Linseis» R.I.T.A.L78.

Определение для фазовых превращений 1 рода положения критических точек (Tн) и (Tк) по моменту отрыва функции dW/dTобр.=f(Tобр.) от нулевого уровня, а для фазовых превращений 2 рода критической точки (Tкр) (в том числе точки Кюри) по положению максимума функции dW/dTобр.=f(Tобр.), позволяет существенно повысить точность определения критических точек и избежать влияния различных дилатометрических аномалий на результаты исследования.

Повышение точности определения положения критических точек в исследуемом металлическом материале заявляемым способом позволяет улучшить технологические режимы обработки, в том числе термической, для получения заданного структурного состояния и физико-механических свойств, определить возможные интервалы рабочих температур материала.

Расширение функциональных возможностей закалочного дилатометра позволяет совместить при одновременном измерении дилатометрический и термический анализ исследуемого металлического материала без проведения дополнительных измерений методами калориметрического или термического анализа (в отличие от прототипа).

Способ поясняется с помощью графиков, представленных на фиг. 1-5.

На фиг. 1 графически представлены зависимости относительной мощности индуктора от температуры исследуемого образца W=f(Tобр) для непрерывного нагрева исследуемого образца стали 12ХН3А с фазовым превращением 1-го рода с различными скоростями.

На фиг. 2 графически представлены зависимости первой производной относительной мощности индуктора от температуры исследуемого образца стали 12ХН3А (dW/dTобр.=f(Tобр)) и зависимость абсолютного удлинения от температуры исследуемого образца Δl=f(Tобр) для непрерывного нагрева исследуемого образца с фазовым превращением 1-го рода со скоростью 1°С/с.

На фиг. 3 графически представлены зависимости первой производной относительной мощности индуктора от температуры исследуемого образца стали 12XН3A (dW/dTобр=f(Tобр)) и зависимость абсолютного удлинения от температуры исследуемого образца Δl=f(Tобр) для непрерывного нагрева исследуемого образца с фазовым превращением 1-го рода со скоростью 90°C/с.

На фиг. 4 графически представлены зависимости первой производной относительной мощности индуктора от температуры исследуемого образца стали 12ХН3А (dW/dTобр=f(Tобр)) и зависимость абсолютного удлинения от температуры исследуемого образца Δl=f(Tобр) для непрерывного нагрева исследуемого образца с фазовым превращением 1-го рода со скоростью 350°C/с.

На фиг. 5 графически представлены зависимости первой производной относительной мощности индуктора от температуры исследуемого образца никеля (dW/dTобр=f(Tобр)) и зависимость абсолютного удлинения от температуры исследуемого образца Δl=f(Tобр) для непрерывного нагрева исследуемого образца с фазовым превращением 2-го рода со скоростью 10°C/с.

Способ осуществляется следующим образом.

Для дилатометрических испытаний с использованием закалочного дилатометра «Linseis» R.I.T.A.L78 готовят цилиндрический образец диаметром 3-4 мм и длиной 9-11 мм. На исследуемый образец методом электроконтактной сварки привариваются концы предварительно откалиброванной термопары, что позволяет во время измерения непосредственно и безинерционно фиксировать температуру исследуемого образца. Перед испытаниями с использованием программного обеспечения WIN-DIL задают температурно-временной режим исследования: скорость нагрева, температуру нагрева, время выдержки, температуру охлаждения и время выдержки при температуре охлаждения. Во время работы прибора при дилатометрическом исследовании образца при реализации заранее заданного температурно-временного режима идет одновременная запись времени от начала измерения (τ), температуры исследуемого образца (Tобр), задаваемой температуры (Tз), абсолютного удлинения (Δl) и относительной мощности индуктора (W) с частотой до 1 запроса в 1 мс.

Испытания проводят на образце при нагреве с различными скоростями в интересующем диапазоне, не превышающем максимальной скорости нагрева дилатометра. По результатам испытаний на одном координатном поле строят зависимости W=f(Tобр) (фиг. 1). Определяют условия нагрева, при которых проявляется экстремум на зависимостях относительной мощности индуктора от температуры исследуемого образца.

Находят первую производную относительной мощности индуктора (dW/dTобр). Далее строят на одном координатном поле зависимости первой производной относительной мощности индуктора от температуры исследуемого образца dW/dTобр=f(Tобр) и зависимость абсолютного удлинения от температуры исследуемого образца Δl=f(Tобр) (фиг. 2).

По построенным зависимостям определяют положение критических температур фазовых превращений 1 и 2 рода.

Для фазовых превращений 1 рода определяют температуры начала и окончания в виде критических точек (Tн) и (Tк) по четким резким перегибам первой производной dW/dTобр.=f(Tобр.) на фоне изменения функции Δl=f(Tобр.). Оценивают характер фазовых превращений по профилю построенных зависимостей абсолютного удлинения от температуры образца в диапазоне между Tн и Tк. Определяют положение критических точек (Tн) и (Tк) по моменту отрыва функции dW/dTобр.=f(Tобр.) от нулевого уровня.

Для фазовых превращений 2 рода определяют температуру фазового превращения 2 рода в виде критической точки (Tкр) (в том числе точку Кюри) по положению максимума первой производной относительной мощности индуктора.

Для уточнения истинного местонахождения критических точек на дилатометрической кривой, построенной при удлинении исследуемого образца при нагреве, можно провести вертикальные линии от найденных точек Tн, Tк или Tкр на первой производной относительной мощности к кривой удлинения образца (фиг. 2, 3, 4, 5).

Предлагаемый способ поясняется с помощью зависимостей, представленных на фиг. 1-5.

На фиг. 1 представлены зависимости функций W=f(Tобр) для фазового превращения 1 рода - α→γ-превращение при непрерывном нагреве стали 12ХН3А со скоростями 1; 10; 20; 90; 150; 250; 300; 350°C/с. На представленных зависимостях видно, что при всех условиях нагрева происходит резкое увеличение относительной мощности индуктора (W) при температуре 730±5°C. Это вызвано необходимостью подавления эндотермического теплового эффекта α→γ-превращения в исследуемой стали при непрерывном нагреве для поддержания заранее заданных условий непрерывного нагрева. Обнаружено, что при окончании превращения наблюдают перелом функции W=f(Tобр) при переходе к линейному изменению для скоростей нагрева от 20 до 300°C/с.

На фиг. 2 представлены зависимости Δl=f(Tобр) и dW/dTобр=f(Tобр) для непрерывного нагрева стали 12ХН3А со скоростью 1°C/с. Положение критической точки Ac1 (Tн) по данной зависимости можно определить по моменту отрыва функции dW/dTобр=f(Tобр) от нулевого уровня, что является признаком возникновения теплового эффекта α→γ-превращения. Однако при нагреве со скоростями менее 20°C/с на зависимости W=f(Tобр) (фиг. 1) отсутствует минимум в момент окончания превращения, что делает невозможным определить положение критической точки Ac3 (Tк) по функции dW/dTобр=f(Tобр).

На фиг.3 представлены зависимости Δl=f(Tобр) и dW/dTобр=f(Tобр) для непрерывного нагрева стали 12XН3А со скоростью 90°C/с, то есть в интервале скоростей нагрева от 20 до 300°C/с. Положение критической точки Ac1 (Tн) по данной зависимости можно определить по моменту отрыва функции dW/dTобр=f(Tобр) от нулевого уровня, что является признаком возникновения теплового эффекта α→γ-превращения при непрерывном нагреве. Критическую точку Ac3 (Tк) можно определить по точке максимума в области температур окончания превращения, что является признаком стабилизации условий нагрева.

На фиг. 4 представлены зависимости Δl=f(Tобр) и dW/dTобр=f(Tобр) для непрерывного нагрева стали 12XН3A со скоростью 350°C/с, т.е. в интервале скоростей нагрева от 350°С/с. Положение критической точки Ac1 (Tн) по данной зависимости можно определить по моменту отрыва функции dW/dTобр=f(Tобр) от нулевого уровня, что является признаком возникновения теплового эффекта α→γ-превращения при непрерывном нагреве. Критическую точку Ac3 (Tк) по характеру функции dW/dTобр=f(Tобр) определить невозможно, т.к. отсутствует этап выхода на постоянный уровень мощности при нагреве.

На фиг. 5 представлены зависимости Δl=f(Tобр) и dW/dTобр=f(Tобр) для непрерывного нагрева никеля со скоростью 10°C/с. Предлагаемым методом можно определить температуру фазового превращения 2-го рода точку Кюри Tк (Tкр) по положению максимума функции dW/dTобр=f(Tобр).

Преимущества предлагаемого способа:

1. Способ позволяет расширить границы применения закалочного дилатометра «Linseis» R.I.T.A.L78 для исследования фазовых превращений 1 и 2 рода в чистых металлах, сталях, сплавах, чугуне и других металлических материалах.

2. Использование зависимости первой производной мощности от температуры надеваемого образца dW/dTобр=f(Tобр) позволяет максимально точно определить положение температур фазового превращения при нагреве исследуемого образца.

3. Способ позволяет выявить закономерности развития процессов фазовых превращений и, следовательно, рекомендовать оптимальный вариант проведения режимов термической обработки без применения трудоемких и длительных исследований.

Способ определения температур фазовых превращений в металлических материалах, заключающийся в том, что испытывают образец с использованием одинарного закалочного дилатометра и безинерционной термопары, приваренной к образцу, нагревают исследуемый образец с постоянной скоростью с помощью индуктора, при этом автоматически фиксируют время от начала измерения, температуру исследуемого образца, абсолютное удлинение образца и относительную мощность индуктора, строят зависимость абсолютного удлинения образца при нагреве от температуры исследуемого образца, по профилю построенной зависимости определяют характер фазовых превращений, определяют критические точки фазовых превращений 1 рода, отличающийся тем, что для фазовых превращений 1 рода по результатам испытаний образца строят на одном координатном поле зависимости W=f(T), где W - относительная мощность индуктора, %, T - температура исследуемого образца, °C, при этом испытания проводят на образце при нагреве с различными скоростями в интересующем диапазоне, не превышающем максимальной скорости нагрева дилатометра, и определяют условия нагрева, при которых проявляется экстремум на зависимостях относительной мощности индуктора от температуры, по построенным зависимостям находят первую производную относительной мощности индуктора в каждой точке, затем строят на одном координатном поле зависимости абсолютного удлинения от температуры исследуемого образца Δl=f(T) и первой производной относительной мощности индуктора от температуры исследуемого образца dW/dT=f(T), определяют начало и окончание фазовых превращений 1 рода в виде критических точек (T) и (T) по моменту отрыва функции dW/dT=f(T) от нулевого уровня на фоне изменения функции ∆l=f(T.) и определяют температуру фазового превращения 2 рода в виде критической точки (T) по положению максимума первой производной относительной мощности индуктора.
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУР ФАЗОВЫХ ПРЕВРАЩЕНИЙ В МЕТАЛЛИЧЕСКИХ МАТЕРИАЛАХ
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУР ФАЗОВЫХ ПРЕВРАЩЕНИЙ В МЕТАЛЛИЧЕСКИХ МАТЕРИАЛАХ
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУР ФАЗОВЫХ ПРЕВРАЩЕНИЙ В МЕТАЛЛИЧЕСКИХ МАТЕРИАЛАХ
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУР ФАЗОВЫХ ПРЕВРАЩЕНИЙ В МЕТАЛЛИЧЕСКИХ МАТЕРИАЛАХ
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУР ФАЗОВЫХ ПРЕВРАЩЕНИЙ В МЕТАЛЛИЧЕСКИХ МАТЕРИАЛАХ
Источник поступления информации: Роспатент

Показаны записи 41-50 из 122.
27.09.2014
№216.012.f886

Способ проветривания выемочного участка при обратном порядке отработки

Изобретение относится к горной промышленности и может быть использовано для проветривания выемочных участков панелей, в частности, калийных рудников. Технический результат заключается в повышении эффективности проветривания, что достигается за счет предотвращения утечек воздуха путем...
Тип: Изобретение
Номер охранного документа: 0002529459
Дата охранного документа: 27.09.2014
20.10.2014
№216.013.0004

Устройство для очистки трубопроводов

Изобретение относится к эксплуатации трубопроводных систем, в частности к очистке внутренней поверхности трубопроводов от асфальтеносмолопарафиновых отложений. Устройство включает корпус, выполненный в виде пустотелой вытянутой полусферы из эластичного материала, с тыльной части корпуса...
Тип: Изобретение
Номер охранного документа: 0002531396
Дата охранного документа: 20.10.2014
27.10.2014
№216.013.00d2

Измельчитель

Изобретение относится к устройствам для измельчения материалов и может быть использовано для измельчения углеродосодержащих материалов, например терморасширенного графита, сажи и т.д. Измельчитель содержит корпус загрузочного бункера 1, соединенный с корпусом цилиндрической камеры размола 2....
Тип: Изобретение
Номер охранного документа: 0002531608
Дата охранного документа: 27.10.2014
27.10.2014
№216.013.0331

Устройство для получения металлического порошка

Изобретение относится к получению металлических порошков. Устройство содержит водоохлаждаемую рабочую камеру с контролируемой атмосферой, установленный в верхней части рабочей камеры плазмотрон для формирования плазменного потока, одно или несколько устройств для подачи пруткового материала в...
Тип: Изобретение
Номер охранного документа: 0002532215
Дата охранного документа: 27.10.2014
10.11.2014
№216.013.04b2

Способ упрочнения крепежных изделий из низкоуглеродистой стали

Изобретение относится к металлургии, в частности к способам для получения высокопрочных и высоковязких крепежных изделий любых конструктивных параметров без резьбы и с резьбой. Способ получения крепежных изделий из низкоуглеродистой легированной стали типа 15Х3Г3МФТ включает горячую...
Тип: Изобретение
Номер охранного документа: 0002532600
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.04cc

Способ электронно-лучевой сварки

Изобретение относится к способу электронно-лучевой сварки. Сварку осуществляют со сквозным проплавлением и регулированием мощности электронного пучка. В процессе сварки регистрируют частоту и продолжительность импульсов сквозного тока. Электронно-лучевую сварку проводят с осцилляцией...
Тип: Изобретение
Номер охранного документа: 0002532626
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.04ce

Сталь для изготовления изделий с повышенной прокаливаемостью

Изобретение относится к области металлургии, в частности к сталям бейнитного класса с повышенной прокаливаемостью, и может быть использовано при изготовлении крупногабаритных изделий, работающих в условиях значительных ударных воздействий, сосудов высокого давления, режущего инструмента, в...
Тип: Изобретение
Номер охранного документа: 0002532628
Дата охранного документа: 10.11.2014
20.11.2014
№216.013.087f

Способ получения многослойного многофункционального покрытия

Изобретение относится к нанесению ионно-плазменных покрытий. Способ получения многослойного покрытия на поверхности технологических инструментов включает ионную очистку поверхности и нанесение слоев покрытия дуальной магнетронной системой с титановым и алюминиевым магнетронами. Слои покрытия...
Тип: Изобретение
Номер охранного документа: 0002533576
Дата охранного документа: 20.11.2014
10.12.2014
№216.013.0f29

Способ определения поврежденной линии в компенсированной трехфазной сети

Изобретение относится к электроэнергетике, в частности к релейной защите электрических сетей напряжением 6-35 кВ с компенсированной нейтралью, и предназначено для селективного определения поврежденной линии среди других линий сети при возникновении однофазного замыкания на землю (ОЗЗ). Согласно...
Тип: Изобретение
Номер охранного документа: 0002535298
Дата охранного документа: 10.12.2014
20.12.2014
№216.013.10f7

Расширяющийся тампонажный раствор для ограничения водопритока

Изобретение относится к области строительства скважин, в частности к тампонажным растворам для ограничения водопритока. Расширяющийся тампонажный раствор содержит жидкость затворения - воду, и основу, состоящую из портландцемента тампонажного, гидроксиэтилцеллюлозы, пластификатора FOX-8H,...
Тип: Изобретение
Номер охранного документа: 0002535766
Дата охранного документа: 20.12.2014
Показаны записи 41-50 из 123.
27.09.2014
№216.012.f886

Способ проветривания выемочного участка при обратном порядке отработки

Изобретение относится к горной промышленности и может быть использовано для проветривания выемочных участков панелей, в частности, калийных рудников. Технический результат заключается в повышении эффективности проветривания, что достигается за счет предотвращения утечек воздуха путем...
Тип: Изобретение
Номер охранного документа: 0002529459
Дата охранного документа: 27.09.2014
20.10.2014
№216.013.0004

Устройство для очистки трубопроводов

Изобретение относится к эксплуатации трубопроводных систем, в частности к очистке внутренней поверхности трубопроводов от асфальтеносмолопарафиновых отложений. Устройство включает корпус, выполненный в виде пустотелой вытянутой полусферы из эластичного материала, с тыльной части корпуса...
Тип: Изобретение
Номер охранного документа: 0002531396
Дата охранного документа: 20.10.2014
27.10.2014
№216.013.00d2

Измельчитель

Изобретение относится к устройствам для измельчения материалов и может быть использовано для измельчения углеродосодержащих материалов, например терморасширенного графита, сажи и т.д. Измельчитель содержит корпус загрузочного бункера 1, соединенный с корпусом цилиндрической камеры размола 2....
Тип: Изобретение
Номер охранного документа: 0002531608
Дата охранного документа: 27.10.2014
27.10.2014
№216.013.0331

Устройство для получения металлического порошка

Изобретение относится к получению металлических порошков. Устройство содержит водоохлаждаемую рабочую камеру с контролируемой атмосферой, установленный в верхней части рабочей камеры плазмотрон для формирования плазменного потока, одно или несколько устройств для подачи пруткового материала в...
Тип: Изобретение
Номер охранного документа: 0002532215
Дата охранного документа: 27.10.2014
10.11.2014
№216.013.04b2

Способ упрочнения крепежных изделий из низкоуглеродистой стали

Изобретение относится к металлургии, в частности к способам для получения высокопрочных и высоковязких крепежных изделий любых конструктивных параметров без резьбы и с резьбой. Способ получения крепежных изделий из низкоуглеродистой легированной стали типа 15Х3Г3МФТ включает горячую...
Тип: Изобретение
Номер охранного документа: 0002532600
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.04cc

Способ электронно-лучевой сварки

Изобретение относится к способу электронно-лучевой сварки. Сварку осуществляют со сквозным проплавлением и регулированием мощности электронного пучка. В процессе сварки регистрируют частоту и продолжительность импульсов сквозного тока. Электронно-лучевую сварку проводят с осцилляцией...
Тип: Изобретение
Номер охранного документа: 0002532626
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.04ce

Сталь для изготовления изделий с повышенной прокаливаемостью

Изобретение относится к области металлургии, в частности к сталям бейнитного класса с повышенной прокаливаемостью, и может быть использовано при изготовлении крупногабаритных изделий, работающих в условиях значительных ударных воздействий, сосудов высокого давления, режущего инструмента, в...
Тип: Изобретение
Номер охранного документа: 0002532628
Дата охранного документа: 10.11.2014
20.11.2014
№216.013.087f

Способ получения многослойного многофункционального покрытия

Изобретение относится к нанесению ионно-плазменных покрытий. Способ получения многослойного покрытия на поверхности технологических инструментов включает ионную очистку поверхности и нанесение слоев покрытия дуальной магнетронной системой с титановым и алюминиевым магнетронами. Слои покрытия...
Тип: Изобретение
Номер охранного документа: 0002533576
Дата охранного документа: 20.11.2014
10.12.2014
№216.013.0f29

Способ определения поврежденной линии в компенсированной трехфазной сети

Изобретение относится к электроэнергетике, в частности к релейной защите электрических сетей напряжением 6-35 кВ с компенсированной нейтралью, и предназначено для селективного определения поврежденной линии среди других линий сети при возникновении однофазного замыкания на землю (ОЗЗ). Согласно...
Тип: Изобретение
Номер охранного документа: 0002535298
Дата охранного документа: 10.12.2014
20.12.2014
№216.013.10f7

Расширяющийся тампонажный раствор для ограничения водопритока

Изобретение относится к области строительства скважин, в частности к тампонажным растворам для ограничения водопритока. Расширяющийся тампонажный раствор содержит жидкость затворения - воду, и основу, состоящую из портландцемента тампонажного, гидроксиэтилцеллюлозы, пластификатора FOX-8H,...
Тип: Изобретение
Номер охранного документа: 0002535766
Дата охранного документа: 20.12.2014
+ добавить свой РИД