×
20.08.2015
216.013.7290

Результат интеллектуальной деятельности: УСТАНОВКА ДЛЯ ОБРАБОТКИ НАНОКОМПОЗИТОВ В ВОДОРОДНОЙ ПЛАЗМЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к вакуумно-плазменной обработке нанокомпозитов. Установка для обработки нанокомпозитов в водородной плазме содержит СВЧ-печь, установленный внутри СВЧ-печи кварцевый реактор для размещения в нем нанокомпозитов, состоящий из корпуса в виде полого цилиндра из кварцевого стекла и установленных на его торцах фланцев с хвостовиками для соединения с вакуумными шлангами, один из которых предназначен для подачи водорода в кварцевый реактор и снабжен натекателем, а другой - для вакуумирования СВЧ-печи и реактора. Один из фланцев выполнен с возможностью его снятия, при этом каждый из фланцев выполнен составным и состоит из наружной оболочки, крышки, уплотнения и профилированной прокладки из кварцевого стекла. Наружная оболочка выполнена в виде полого двухступенчатого цилиндра с хвостовиком для вакуумного шланга и имеет наружную резьбу для установки на нее крышки и внутреннюю конусную поверхность для установки уплотнения в конический зазор между корпусом реактора и наружной оболочкой, профилированная прокладка выполнена с хвостовиком, входящим ответно в хвостовик наружной оболочки и взаимодействующим с ним своей наружной поверхностью, при этом внутренняя полость СВЧ-печи соединена с устройством для создания разрежения в указанной полости. Обеспечивается непрерывная обработка нанокомпозитов в водородной плазме. 2 ил.
Основные результаты: Установка для обработки нанокомпозитов в водородной плазме, содержащая СВЧ-печь, установленный внутри СВЧ-печи кварцевый реактор для размещения в нем нанокомпозитов, состоящий из корпуса в виде полого цилиндра из кварцевого стекла и установленных на его торцах фланцев с хвостовиками для соединения с вакуумными шлангами, один из которых предназначен для подачи водорода в кварцевый реактор и снабжен натекателем, а другой - для вакуумирования СВЧ-печи и реактора, причем один из фланцев выполнен с возможностью его снятия, отличающаяся тем, что каждый из фланцев выполнен составным и состоит из наружной оболочки, крышки, уплотнения и профилированной прокладки из кварцевого стекла, при этом наружная оболочка выполнена в виде полого двухступенчатого цилиндра с хвостовиком для вакуумного шланга и имеет наружную резьбу для установки на нее крышки и внутреннюю конусную поверхность для установки уплотнения в конический зазор между корпусом реактора и наружной оболочкой, профилированная прокладка выполнена с хвостовиком, входящим ответно в хвостовик наружной оболочки и взаимодействующим с ним своей наружной поверхностью, при этом внутренняя полость СВЧ-печи соединена с устройством для создания разрежения в указанной полости.

Изобретение относится к вакуумно-плазменной обработке и может быть использовано при создании устройств и способов наводораживания нанокомпозитов.

Известна установка для вакуумно-плазменной обработки изделий в среде рабочего газа, содержащая рабочую вакуумную камеру с загрузочным окном для обрабатываемых изделий, средства вакуумной откачки полости рабочей камеры и средство генерирования потока атомов металла, используемого для осаждения слоя покрытия на поверхность обрабатываемых изделий, включающее несколько катодов с поверхностью испарения и анод электродугового испарителя металла, электрически связанные с источником постоянного тока вакуумно-дугового разряда.

К недостаткам вышеописанной установки типа "Булат" необходимо отнести следующее: большое время получения рабочего давления в вакуумном объеме рабочей камеры (в различных типах установок в зависимости от примененного вакуумного оборудования время колеблется от 0,5 до 1 ч); высокая стоимость относительно мощных откачных средств; наличие микрокапельной фазы; нестабильность характеристик упрочняющих покрытий из-за нестабильности вакуумной среды, вызванной частыми вскрытиями рабочей вакуумной камеры на атмосферу; низкий коэффициент использования испаренного металла (ниже 0,5); сложность электрооборудования, вызванная большим количеством испарительных устройств; большая материалоемкость установки, связанная с большими размерами вакуумной камеры.

Известна установка для вакуумно-плазменной обработки изделий в среде рабочего газа, содержащая рабочую вакуумную камеру с загрузочным окном для обрабатываемых изделий, средства вакуумной откачки полости рабочей камеры и средство генерирования потока атомов металла, используемого для осаждения слоя покрытия на поверхность обрабатываемых изделий, включающее катод с поверхностью испарения и анод электродугового испарителя металла, электрически связанные с источником постоянного тока вакуумно-дугового разряда, при этом она снабжена автономным устройством предварительного нагрева обрабатываемых изделий, вакуумным затвором с проходным отверстием и заслонкой, по меньшей мере, одной шлюзовой камерой с держателем для обрабатываемых изделий или кассеты с изделиями, установленным с возможностью возвратно-поступательного перемещения вдоль продольной оси камеры, вакуумный затвор герметично закреплен на рабочей камере в зоне расположения загрузочного окна для обрабатываемых изделий, шлюзовая камера установлена последовательно с вакуумным затвором и разъемно-герметично соединена с последним с возможностью циклического перемещения посредством механизма перемещения из рабочей позиции через технологическую зону разгрузки в позицию предварительного нагрева, при этом средства вакуумной откачки включают в себя электродуговой и форвакуумный насосы, первый из которых установлен со стороны загрузочного окна рабочей камеры перед заслонкой вакуумного затвора, второй посредством магистральной связи соединен с разделенными заслонкой вакуумного затвора полостями рабочей и шлюзовых камер, катод электродугового испарителя металла выполнен в виде катода электродугового насоса, средство генерирования потока металла, используемого для осаждения слоя покрытия на поверхность обрабатываемых изделий, снабжено мишенью с распыляемой поверхностью, расположенной по периметру внутренней поверхности рабочей камеры в зоне размещения обрабатываемых изделий и электрически связанной с отрицательным по отношению к электродам электродугового испарителя металла полюсом высоковольтного источника постоянного тока, а катод электродугового испарителя металла установлен вне зоны прямой видимости со стороны анода испарителя (Патент РФ №2060298, МПК: C23C 14/32).

Работа указанной установки осуществляется следующим образом.

Загруженная кассета с обрабатываемыми изделиями устанавливается в технологической зоне загрузки разгрузки, и над ней располагается шлюзовая камера. С помощью механизма подъема кассета загружается в шлюзовую камеру, и затем последняя размещается над устройством предварительного нагрева в виде печи, в которую опускается кассета с изделиями для прогрева. Производится прогрев изделий до температуры примерно 150°C. Прогретые изделия поднимаются в шлюзовую камеру. Затем последняя устанавливается над рабочей вакуумной камерой и герметично соединяется с ней посредством уплотнения. Производится откачка шлюзовой камеры с помощью форвакуумного насоса при закрытых заслонках вакуумного затвора. После откачки шлюзовой камеры открывается шлюзовой затвор. Совместная откачка рабочей и шлюзовой камер производится электродуговым насосом. Поскольку в электродуговой насос не производится напуск атмосферы, то откачка рабочего объема до рабочего давления производится за несколько секунд. После откачки рабочего объема в рабочую камеру подается гелий и на анод подается напряжение. При этом возбуждается двухступенчатый вакуумно-дуговой разряд. Далее производят прогрев изделия подачей на него высоковольтного отрицательного потенциала одним из известных способов. Ионы гелия, бомбардируя поверхность изделия, прогревают его до температуры от 150 до 500°C. При необходимости проведения химико-термической обработки в гелий добавляется азот. Нанесение покрытия осуществляется подачей напряжения на распыляемую мишень. Под воздействием ионной бомбардировки мишень распыляется, и распыленный металл осаждается на изделии.

Основным недостатком является недостаточная надежность работы установки, обусловленной значительная сложностью ее конструкции.

Известна установка для обработки нанокомпозитов в водородной плазме, содержащая СВЧ-печь, внутри которой размещен кварцевый реактор, представляющий собой цилиндр, зажатый между двумя фторопластовыми фланцами с вакуумным уплотнением из термостойкой резины, стянутыми друг к другу с помощью фторопластовых стержней, при этом к каждому из фланцев подведены вакуумные шланги, по одному из которых в реактор поступает водород, а через другой производится вакуумирование системы, состоящей из СВЧ-печи и реактора, при помощи механического насоса, при этом реактор выполнен с возможностью замены исследуемого образца, предпочтительно, при помощи съемной крышки, расположенной на одном из фланцев (И.М.Трегубов, О.В.Стогней, В.И.Пригожин и др. Термический нагрев тонкопленочных нанокомпозитов металл-диэлектрик в водородной плазме. Вестник Воронежского государственного технического университета, том 6, №3, 2010 г., г.Воронеж, стр.10-13 - прототип).

Принцип работы указанной установки заключается в следующем.

Сначала для вакуумирования системы производится откачка воздуха до предельного значения при открытом натекателе. После этого производится подача водорода в реактор из баллона и осуществляется промывка всей системы водородом. Затем натекатель прикрывается для достижения рабочего давления в реакторе. При включении СВЧ-разряда в реакторе зажигается водородная плазма и производится требуемая обработка образцов из нанокомпозиционных материалов.

Основными недостатками является то, что в процессе горения плазмы происходит сильный разогрев всех элементов и частей конструкции реактора, что делает невозможным постоянное поддержание процесса горения плазмы из-за сильного возрастания давления и температуры. При нагреве фланцев, который происходит в результате бомбардировки их ионами плазмы, молекулярные связи фторопласта начинают разрушаться и происходит деструкция поверхности фланца, обращенной внутрь реактора. В результате этого состав газа в реакторе меняется и давление, соответственно, падает, что приводит к необходимости использовать прерывистый режим горения плазмы. Для обеспечения работоспособности установки приходится осуществлять циклический режим работы, когда период горения плазмы составляет 5 секунд с интервалом 25 секунд. В этом режиме реализуется динамическое равновесие скорости подачи водорода и его откачки, но в то же время значительно возрастает время обработки нанокомпозиционных материалов в водородной плазме. Кроме этого одновременное стягивание фланцев к торцам кварцевого цилиндра при помощи фторопластовых стержней требует очень тщательной подгонки поверхностей, т.к. даже незначительный перекос приводит к разрушению хрупких уплотняемых поверхностей.

Задачей изобретения является устранение указанных недостатков и создание установки для обработки нанокомпозитов в водородной плазме, применение которой позволит обеспечить непрерывный процесс обработки с упрощением конструкции.

Решение указанной задачи достигается тем, что предложенная установка для обработки нанокомпозитов в водородной плазме, согласно изобретению, содержит, как минимум, СВЧ-печь, внутри которой размещен кварцевый реактор, представляющий собой полый цилиндр, выполненный из кварцевого стекла, на торцах которого установлены диэлектрические фланцы с хвостовиками и с вакуумным уплотнением из термостойкой резины и внутрь которого помещается исследуемый образец, при этом к каждому из фланцев подведены вакуумные шланги, по одному из которых в кварцевый реактор поступает водород, а через другой производится вакуумирование системы, состоящей из СВЧ-печи и реактора, при помощи механического насоса, причем кварцевый реактор выполнен с возможностью замены исследуемого образца, предпочтительно, за счет выполнения одного из фланцев с возможностью снятия/установки, при этом каждый фланец выполнен составным, состоящим, как минимум, из наружной оболочки, выполненной в виде полого двухступенчатого цилиндра, на наружной поверхности входной части которого выполнена наружная резьба, а на внутренней поверхности входной части выполнен внутренний конус, при этом в выходной части упомянутой наружной оболочки расположен хвостовик для вакуумного шланга, крышки, на внутренней поверхности которой выполнена внутренняя резьба, устанавливаемой на наружную оболочку и взаимодействующей с ней резьбовой поверхностью, уплотнения, устанавливаемого в конический зазор между корпусом реактора и наружной оболочкой и поджимаемого крышкой, при этом между внутренним торцом наружной оболочки и торцом полого цилиндра реактора установлена профилированная прокладка из кварцевого стекла с центральным отверстием, одна поверхность которой взаимодействует с торцом упомянутого цилиндра, а на другой поверхности выполнен хвостовик, входящий в ответный хвостовик наружной части и взаимодействующий с ним своим наружным диаметром.

Сущность изобретения иллюстрируется чертежами, где на фиг.1 показана принципиальная схема установки, на фиг.2 - продольный разрез реактора.

Предложенная установка для обработки нанокомпозитов в водородной плазме содержит СВЧ-печь 1, внутри которой размещен кварцевый реактор 2, представляющий собой полый цилиндр 3, выполненный из кварцевого стекла. На торцах цилиндра 3 установлены диэлектрические фланцы 4 и 5 с вакуумным уплотнением из термостойкой резины. К фланцам 4 и 5 подведены вакуумные шланги, при этом по фланцу 4 в реактор поступает водород из баллона 6 через натекатель 7, а через фланец 5 производится вакуумирование системы, состоящей из СВЧ-печи 1 и реактора 2, при помощи механического насоса 8. Реактор 2 выполнен с возможностью замены исследуемого образца 9, предпочтительно, при помощи одного из фланцев, выполненных с возможностью снятия/установки. Каждый фланец 4 и 5 выполнен составным, как минимум, из двух частей, наружной 11 и 12 соответственно, выполненной из фторопласта, и внутренней 13 и 14 соответственно, выполненной из кварцевого стекла и взаимодействующей с упомянутым цилиндром 3. Во внутренней части каждого фланца 4 и 5 выполнен хвостовик 15 и 16 соответственно, входящий в ответный хвостовик 17 и 18 наружной части и взаимодействующий с ним своим наружным диаметром.

В варианте исполнения, внутренняя полость СВЧ-печи 1 соединена с устройством 19 для создания разрежения в указанной полости.

Фланец 4 состоит из наружной части 11 и крышки 20, установленной на наружной части при помощи резьбы. Между наружной частью 11 и крышкой 20 установлено уплотнение 21.

Фланец 5 состоит из наружной части 12 и крышки 22, установленной на наружной части при помощи резьбы. Между наружной частью 11 и крышкой 22 установлено уплотнение 23.

Предложенная установка работает следующим образом.

Через съемный фланец внутрь корпуса кварцевого реактора 2 загружается исследуемый образец 9 из нанокомпозиционного материала. Для вакуумирования системы, состоящей из СВЧ-печи 1 и реактора 2, производится откачка воздуха при помощи механического насоса 8 до предельного значения при открытом натекателе 7. После этого производится подача водорода в кварцевый реактор 2 из баллона 6 и осуществляется промывка всей системы водородом. Затем натекатель 7 прикрывается для достижения рабочего давления в реакторе 2. При включении СВЧ-разряда в кварцевом реакторе 2 зажигается водородная плазма и производится требуемая обработка водородом образцов из нанокомпозиционных материалов.

За счет того, что каждый фланец 4 и 5 выполнен составным из двух частей, наружной 11 и 12 соответственно, выполненной из фторопласта, и внутренней 13 и 14 соответственно, выполненной из кварцевого стекла, и взаимодействующей с упомянутым цилиндром 3, фторопласт фланца непосредственно не контактирует с плазмой и его разрушения не происходит. Кроме этого выполнение во внутренней части фланца каждого фланца 4 и 5 хвостовиков 15 и 16 соответственно, входящих в ответные хвостовик 17 и 18 наружной части и взаимодействующих с ним своим наружным диаметром, позволяет исключить контакт фторопласта с плазмой и снизить температуру конструкции в месте подвода/отвода рабочего тела-водорода. Нагрев фторопластовой части фланцев осуществляется только за счет теплопроводности кварца и, как показали измерения, их температура не превышает 70°C. Использование составных фланцев позволило перейти от циклического режима горения плазмы к непрерывному, что позволило значительно снизить трудоемкость процесса.

Создание при работе установки разрежения в полости СВЧ-печи 1 при помощи устройства 19 позволит улучшить условия создания разрежения в кварцевом реакторе 2 и тем самым улучшить условия воздействия на исследуемый образец 9.

Проведенные авторами и заявителем испытания полноразмерной установки для обработки нанокомпозиционных материалов в водородной плазме подтвердили правильность заложенных конструкторско-технологических решений.

Использование предложенного технического решения позволит создать установку для обработки нанокомпозитов в водородной плазме с непрерывным процессом обработки.

Установка для обработки нанокомпозитов в водородной плазме, содержащая СВЧ-печь, установленный внутри СВЧ-печи кварцевый реактор для размещения в нем нанокомпозитов, состоящий из корпуса в виде полого цилиндра из кварцевого стекла и установленных на его торцах фланцев с хвостовиками для соединения с вакуумными шлангами, один из которых предназначен для подачи водорода в кварцевый реактор и снабжен натекателем, а другой - для вакуумирования СВЧ-печи и реактора, причем один из фланцев выполнен с возможностью его снятия, отличающаяся тем, что каждый из фланцев выполнен составным и состоит из наружной оболочки, крышки, уплотнения и профилированной прокладки из кварцевого стекла, при этом наружная оболочка выполнена в виде полого двухступенчатого цилиндра с хвостовиком для вакуумного шланга и имеет наружную резьбу для установки на нее крышки и внутреннюю конусную поверхность для установки уплотнения в конический зазор между корпусом реактора и наружной оболочкой, профилированная прокладка выполнена с хвостовиком, входящим ответно в хвостовик наружной оболочки и взаимодействующим с ним своей наружной поверхностью, при этом внутренняя полость СВЧ-печи соединена с устройством для создания разрежения в указанной полости.
УСТАНОВКА ДЛЯ ОБРАБОТКИ НАНОКОМПОЗИТОВ В ВОДОРОДНОЙ ПЛАЗМЕ
УСТАНОВКА ДЛЯ ОБРАБОТКИ НАНОКОМПОЗИТОВ В ВОДОРОДНОЙ ПЛАЗМЕ
Источник поступления информации: Роспатент

Показаны записи 11-20 из 701.
10.04.2013
№216.012.3481

Способ определения расстояния между телами

Способ может быть использован для определения заданного расстояния между телами при сближении. Способ основан на обнаружении объекта посредством светового импульсного излучения и регистрации отраженного излучения с последующим анализом. Определение заданного расстояния между телами осуществляют...
Тип: Изобретение
Номер охранного документа: 0002478984
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.3482

Способ определения скорости сближения двух тел между собой

Способ предназначен для определения скорости сближения двух тел между собой. Способ основан на определении по измеренной величине временного промежутка между моментами обнаружения одним телом другого тела на дальней и ближней дистанциях, за счет обнаружения одного тела другим посредством...
Тип: Изобретение
Номер охранного документа: 0002478985
Дата охранного документа: 10.04.2013
20.04.2013
№216.012.35e7

Мясорубка

Мясорубка содержит корпус со струбциной и съемную ручку для вращения шнека. В корпусе расположен полый шнек с подвижным ножом. Внутри шнека находится вал, на одном конце которого установлена выходная решетка, выполненная с возможностью вращения. Между шнеком и валом установлена кинематическая...
Тип: Изобретение
Номер охранного документа: 0002479352
Дата охранного документа: 20.04.2013
20.04.2013
№216.012.376a

Жидкостный ракетный двигатель

Изобретение относится к области энергетических установок, а именно к устройствам для перемешивания и распыливания компонентов топлива, и может быть использовано при разработке жидкостных ракетных двигателей (ЖРД). Жидкостный ракетный двигатель содержит газогенератор, турбонасосный агрегат,...
Тип: Изобретение
Номер охранного документа: 0002479739
Дата охранного документа: 20.04.2013
20.04.2013
№216.012.376b

Камера жидкостного ракетного двигателя

Изобретение относится к области энергетических установок, в частности к камерам жидкостных ракетных двигателей (ЖРД). Ступенчатое изменение проходного сечения трубчатого корпуса форсунок выполнено с уменьшением проходного сечения корпуса от пилонов к выходной части, преимущественно, в виде...
Тип: Изобретение
Номер охранного документа: 0002479740
Дата охранного документа: 20.04.2013
20.04.2013
№216.012.376c

Смесительная головка камеры жидкостного ракетного двигателя

Изобретение относится к области энергетических установок, а именно к форсункам и смесительным головкам жидкостных ракетных двигателей (ЖРД). Смесительная головка камеры ЖРД содержит соосно-струйные форсунки, установленные в блоках смесительной головки по концентрическим окружностям. Форсунки...
Тип: Изобретение
Номер охранного документа: 0002479741
Дата охранного документа: 20.04.2013
27.04.2013
№216.012.39d9

Способ повышения живучести корпуса подводного судна

Изобретение относится к области судостроения, в частности к способам борьбы за живучесть подводных объектов в случае возникновения пробоины в их корпусе. Способ повышения живучести корпуса подводного судна, содержащего силовую внутреннюю оболочку, внешнюю обшивку, образующие межкорпусное...
Тип: Изобретение
Номер охранного документа: 0002480370
Дата охранного документа: 27.04.2013
27.04.2013
№216.012.39da

Способ повышения живучести корпуса батискафа

Изобретение относится к области судостроения, в частности к способам борьбы за живучесть подводных объектов в случае возникновения пробоины в их корпусе. Способ повышения живучести корпуса батискафа, содержащего силовую внутреннюю оболочку, внешнюю обшивку, образующих межкорпусное пространство,...
Тип: Изобретение
Номер охранного документа: 0002480371
Дата охранного документа: 27.04.2013
27.04.2013
№216.012.3ac5

Жидкостный ракетный двигатель

Изобретение относится к области энергетических установок, а именно к устройствам для перемешивания и распыливания компонентов топлива в жидкостных ракетных двигателях (ЖРД). Жидкостный ракетный двигатель содержит газогенератор, турбонасосный агрегат, органы питания и регулирования,...
Тип: Изобретение
Номер охранного документа: 0002480606
Дата охранного документа: 27.04.2013
27.04.2013
№216.012.3ac6

Жидкостный ракетный двигатель

Изобретение относится к области энергетических установок, а именно к устройствам для перемешивания и распыливания компонентов топлива при разработке жидкостных ракетных двигателей (ЖРД). Жидкостный ракетный двигатель содержит газогенератор, турбонасосный агрегат, органы питания и регулирования,...
Тип: Изобретение
Номер охранного документа: 0002480607
Дата охранного документа: 27.04.2013
Показаны записи 11-20 из 772.
10.05.2013
№216.012.3e2e

Камера жидкостного ракетного двигателя

Изобретение относится к области энергетических установок, а именно к устройствам для перемешивания и распыливания компонентов топлива, и может быть использовано при разработке форсунок, смесительных головок и камер жидкостных ракетных двигателей (ЖРД). Камера ЖРД содержит профилированные...
Тип: Изобретение
Номер охранного документа: 0002481485
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3e2f

Жидкостный ракетный двигатель

Изобретение относится к области ракетного двигателестроения и может быть использовано при создании безгенераторных жидкостных ракетных двигателей, работающих на криогенных компонентах, например кислороде и водороде. Жидкостный ракетный двигатель содержит кольцевую камеру со смесительной...
Тип: Изобретение
Номер охранного документа: 0002481486
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3e30

Камера жидкостного ракетного двигателя

Изобретение относится к области энергетических установок, а именно к устройствам для перемешивания и распыливания компонентов топлива, и может быть использовано при разработке форсунок, смесительных головок и камер жидкостных ракетных двигателей (ЖРД). Камера жидкостного ракетного двигателя...
Тип: Изобретение
Номер охранного документа: 0002481487
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3e33

Соосно-струйная форсунка

Изобретение относится к области энергетических установок и может быть использовано при разработке форсунок и смесительных головок жидкостных ракетных двигателей (ЖРД). Соосно-струйная форсунка содержит имеющий осевой вход и выход трубчатый корпус с основным осевым каналом, а также не менее чем...
Тип: Изобретение
Номер охранного документа: 0002481490
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3e34

Смесительная головка камеры жидкостного ракетного двигателя

Изобретение относится к смесительным головкам жидкостных ракетных двигателей (ЖРД). Смесительная головка камеры жидкостного ракетного двигателя содержит корпус, блок подачи окислителя, блок подачи водорода, блок подачи керосина. Соосно-струйные форсунки установлены в указанных блоках...
Тип: Изобретение
Номер охранного документа: 0002481491
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3e35

Способ подачи компонентов топлива в камеру жидкостного ракетного двигателя

Изобретение относится к жидкостным ракетным двигателям (ЖРД). Способ подачи компонентов топлива в камеру жидкостного ракетного двигателя заключается в подаче окислителя, преимущественно кислорода, и горючего, преимущественно керосина и водорода, в полость камеры сгорания из соответствующих...
Тип: Изобретение
Номер охранного документа: 0002481492
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3e36

Способ подачи компонентов топлива в камеру жидкостного ракетного двигателя

Изобретение относится к жидкостным ракетным двигателей (ЖРД). Способ подачи компонентов топлива в камеру ЖРД включает подачу окислителя, преимущественно кислорода, и горючего, преимущественно керосина и водорода, в полость камеры сгорания из смесительной головки при помощи соосно-струйных...
Тип: Изобретение
Номер охранного документа: 0002481493
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3e37

Способ подачи компонентов топлива в камеру жидкостного ракетного двигателя

Изобретение относится к жидкостным ракетным двигателям (ЖРД). Способ подачи компонентов топлива в камеру ЖРД заключается в подаче окислителя и горючего в полость камеры сгорания при помощи соосно-струйных форсунок, содержащих трубчатый корпус с основным осевым каналом, а также не менее чем на...
Тип: Изобретение
Номер охранного документа: 0002481494
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3e38

Соосно-струйная форсунка

Изобретение относится к области энергетических установок, а именно к устройствам для перемешивания и распыливания компонентов топлива, и может быть использовано при разработке форсунок и смесительных головок жидкостных ракетных двигателей (ЖРД). Соосно-струйная форсунка содержит имеющий осевой...
Тип: Изобретение
Номер охранного документа: 0002481495
Дата охранного документа: 10.05.2013
20.05.2013
№216.012.4168

Камера жидкостного ракетного двигателя

Изобретение относится к жидкостным ракетным двигателям (ЖРД). Камера ЖРД содержит профилированные регенеративно охлаждаемые цилиндрическую часть, сопло, смесительную головку, содержащую корпус, блок подачи окислителя, блок подачи водорода, блок подачи керосина. Соосно-струйные форсунки...
Тип: Изобретение
Номер охранного документа: 0002482314
Дата охранного документа: 20.05.2013
+ добавить свой РИД