×
20.08.2015
216.013.6fab

Результат интеллектуальной деятельности: КАТАЛИЗАТОР ИЗОДЕПАРАФИНИЗАЦИИ ДИЗЕЛЬНЫХ ФРАКЦИЙ И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области катализа в нефтепереработке, более конкретно к катализатору изодепарафинизации для получения низкозастывающих дизельных топлив в процессе каталитической изодепарафинизации и способу его приготовления, и может быть использовано в нефтеперерабатывающей промышленности. Катализатор изодепарафинизации дизельных фракций содержит цеолит ZSM-23, имеющий общую кислотность, определенную по методу термопрограммируемой десорбции аммиака в интервале 0,5-1,0 ммоль/г цеолита, предпочтительно 0,7-0,9 ммоль/г, обладающий, преимущественно слабыми кислотными центрами и соотношение слабых кислотных центров к сильным в интервале 2-3 или цеолит SAPO-41, имеющий общую кислотность, определенную по методу термопрограммируемой десорбции аммиака в интервале 0,3-0,8 ммоль/г, предпочтительно 0,5-0,6 ммоль/г цеолита, обладающий, преимущественно слабыми и средними по силе кислотными центрами, при следующем соотношении компонентов, мас.%: платина 0,20-0,40, цеолит ZSM-23 или SAPO-41 10-40 и оксид алюминия - остальное. Готовят гранулированный носитель на основе оксида алюминия и вышеобозначенных цеолитов ZSM-23 или SAPO-41, сформованный экструзией. Носитель просушивают и прокаливают. На прокаленный носитель наносят платину из водного раствора тетрааминплатины и проводят процесс ионного обмена при температуре 70-98°C в течение 8-10 ч. Полученный катализатор просушивают и прокаливают. Изобретение обеспечивает повышение каталитической активности катализатора изодепарафинизации и увеличение выхода низкозастывающих дизельных топлив. 2 н.п. ф-лы, 3 табл., 14 пр.

Изобретение относится к области катализа в нефтепереработке, более конкретно к катализатору изодепарафинизации, в частности для получения низкозастывающих дизельных топлив в процессе каталитической изодепарафинизации, а также к способу его приготовления и может быть использовано в нефтеперерабатывающей промышленности.

Депарафинизация представляет собой процесс удаления линейных или слаборазветвленных алифатических (парафиновых) углеводородов преимущественно из нефтяных фракций с целью улучшения низкотемпературных характеристик продуктов. Широко используется в промышленности для получения масел и низкозастывающих классов дизельных топлив для применения в холодном и арктическом климате. Существуют несколько видов депарафинизации: сольвентная, с использованием растворителей; каталитическая депарафинизация с преимущественным протеканием реакций гидрокрекинга нормальных парафинов в легкие углеводороды с их последующим удалением из целевого продукта; каталитическая изодепарафинизация, с преимущественным протеканием реакций изомеризации н-парафинов сырья характеризующаяся высоким выходом целевых продуктов.

Побочными реакциями каталитической изодепарафинизации являются реакции гидрокрекинга, приводящие к получению углеводородов с более короткой длиной цепи. Реакции гидрокрекинга улучшают низкотемпературные свойства продуктов, но значительно изменяют фракционный состав и снижают выход целевых продуктов. Преимущественное протекание реакций изомеризации наиболее желательно в процессе каталитической изодепарафинизации, поскольку не приводят к снижению выхода продуктов.

Известно, что высокую селективность в реакциях гидроизомеризации длинноцепочечных парафинов проявляют катализаторы на основе алюмофосфатных цеолитов типов AEL, АТО, AFO, а также на основе алюмосиликатных цеолитов МТТ, MFI, USY и др. как содержащие те или иные металлы, так и чисто цеолитные катализаторы. Бифункциональные цеолитные катализаторы, содержащие металлический компонент, активный в реакциях гидрирования-дегидрирования, отличаются более высокой селективностью в реакциях гидроизомеризации.

Известен состав и способ получения катализатора на основе молекулярного сита, представляющего собой смесь цеолитов со структурой AEL (SAPO-11) и AFO (SAPO-41) и, как минимум, 5 мас.% аморфа. Катализатор, содержащий 0,5 мас.% Pt на носителе, состоящем из 70 мас.% указанного молекулярного сита и 30 мас.% оксида алюминия, показал высокую активность и селективность в реакции гидроизомеризации гексадекана (селективность до 98%, выход продуктов гидроизомеризации до 83 мас.%). US 2010/0317910 А1, 10.06.2010.

Так, известен процесс гидроизомеризации высокопарафинистого сырья с применением послойной загрузки в реактор гидроизомеризации не менее двух типов катализаторов на основе цеолитов. Предпочтительным для использования в составе первого катализатора является цеолит со структурой AEL (SAPO-11 или SM-3), во втором - цеолит со структурой МТТ (ZSM-23 или SSZ-32). Носители катализаторов также содержали оксид алюминия в качестве связующего. В качестве активного металла катализаторов предпочтительны платина и палладий. US 7384538 В2, 10.08.2008.

В патенте RU 2519747 С2, 20.06.2014, описывающем способ получения базового масла для смазочных материалов, указано на предпочтительное использование одного или несколько материалов, выбранных из ZSM-48, ZSM-22 и ZSM-23, где ZSM-48 является особенно предпочтительным. В качестве возможного способа нанесения металла рассматривается, в том числе, и метод ионного обмена.

Наиболее близким к предлагаемому изобретению являются катализатор изодепарафинизации и способ его получения, описанные в патенте RU 2500473 С2, 10.12.2013. В состав носителя катализатора входит по меньшей мере один цеолит, выбранный из группы, состоящей из цеолита ZSM-22, цеолита ZSM-23 и цеолита ZSM-48 и оксид алюминия в качестве связующего. Способ получения катализатора включает приготовление гранулированного носителя на основе оксида алюминия и цеолита типа МТТ, сформованного экструзией, просушенного и прокаленного, и нанесение платины из раствора соответствующей соли на прокаленный носитель методом ионного обмена, просушивание и прокаливание.

К недостаткам способа можно отнести то, что в описании специально не оговаривается методика нанесения активного металла, которая имеет важное значение.

Техническая задача заявленного изобретения заключается в разработке способа получения катализатора изодепарафинизации дизельных фракций с повышенной активностью в целевых реакциях, позволяющего получать низкозастывающие классы дизельных топлив для холодного и арктического климата с высоким выходом.

Технический результат от реализации заявленной группы изобретений заключается в повышении каталитической активности катализатора изодепарафинизации дизельных фракций и увеличении выхода низкозастывающих дизельных топлив.

Технический результат достигается тем, что при приготовлении гранулированного носителя на основе оксида алюминия и цеолита, имеющего одномерную структуру пор, образованную 10-членными кольцами, сформованного экструзией, просушенного и прокаленного, используют цеолит ZSM-23, имеющий общую кислотность, определенную по методу термопрограммируемой десорбции аммиака в интервале 0,5-1,0 ммоль/г цеолита, предпочтительно 0,7-0,9 ммоль/г, обладающий, преимущественно слабыми кислотными центрами и соотношением слабых кислотных центров к сильным в интервале 2-3 или цеолит SAPO-41, имеющий общую кислотность, определенную по методу термопрограммируемой десорбции аммиака в интервале 0,3-0,8 ммоль/г, предпочтительно 0,5-0,6 ммоль/г цеолита, обладающий преимущественно слабыми и средними по силе кислотными центрами, нанесение активного металла - платины на прокаленный носитель методом ионного обмена проводят из водного раствора тетрааминплатины при температуре 70-98°С в течение 8-10 ч с последующим просушиванием и прокаливанием.

В результате получают катализатор изодепарафинизации дизельных фракций со следующим соотношении компонентов, мас.%:

цеолит ZSM-23 или SAPO-41 10-40
платина 0,2-0,4
оксид алюминия остальное

Используемый цеолит ZSM-23 - молекулярное сито - со структурой МТТ также характеризуется тем, что имеет мольное отношение оксида кремния к оксиду алюминия не более 50, одномерную структуру пор, образованную 10-членными кольцами, с размерами каналов в интервале 4,5 Å до 5,2 Å.

Цеолит SAPO-41 - молекулярное сито со структурой AFO также характеризуется тем, что имеет одномерную структуру пор, образованную 10-членными кольцами, с размерами каналов в интервале 4,3 Å до 7,0 Å.

Кислотность цеолита измеряют методом термопрограммируемой десорбции аммиака с использованием нижеприведенной методики. Анализ проводят на лабораторной установке при постоянном токе гелия 30 см3/мин. 0,200 г порошкообразного образца помещают на подложку из пористого кварцевого материала в ячейку, представляющую собой полую кварцевую трубку. Образец нагревают до температуры 550°С и выдерживают при этой температуре в течение 1,5 ч. Затем температуру понижают до 100°С и обрабатывают образец смесью гелия и аммиака (содержание NH3 2,5 об %) до насыщения поверхности образца аммиаком (5-10 мин). Отдув физически сорбированного аммиака проводят при той же температуре и повышенном токе гелия (150 см2/мин) течение 1 ч. Температуру образца снижают до комнатной. Съемку спектра ТПД проводят при подъеме температуры образца со скоростью 5°С/мин до 550°С. Сигнал фиксируют с использованием детектора по теплопроводности. Для определения количества кислотных центров на поверхности образца, детектор по теплопроводности калибровали с использованием смесей гелия и аммиака известной концентрации. Для цеолита, обладающего, преимущественно, слабыми кислотными центрами, характерна десорбция аммиака при температурах 120-250°С (с максимумом при температуре около 180°С), и средними по силе кислотными центрами, характерна десорбция аммиака при температурах 220-350°С (с максимумом при температуре около 280°С). Для цеолита обладающего, преимущественно, сильными кислотными центрами, характерна десорбция аммиака при температурах 300-550°С (с максимумом при температуре около 450°С).

Изобретение иллюстрируется, но не лимитируется нижеприведенными примерами.

Пример 1

Для приготовления Носителя №1 в качестве кислотного компонента используют цеолит ZSM-23, количество кислотных центров (кислотность) на поверхности которого составляло 0,85 ммоль/г.

Пример иллюстрирует способ получения цеолитсодержащего носителя катализатора (Носитель №1) на основе цеолита ZSM-23 (40 масс %) и оксида алюминия - остальное. Для получения носителя используют порошковый гидроксид алюминия - бемит. Ниже приведен пример расчета реагентов для синтеза 100,0 г готового прокаленного носителя образца катализатора. Образец носителя катализатора состава, масс %: цеолит ZSM-23 - 40, оксид алюминия - остальное, готовят следующим способом.

79,0 г порошка гидроксида алюминия смешивают с 42,5 г порошка цеолита ZSM-23, затем медленно при перемешивании приливают раствор пептизатора. В качестве пептизатора используют раствор азотной кислоты, который готовят внесением 2,55 мл HNO3 (65%-ной) в 90 мл дистиллированной воды. К полученной массе добавляют 8,0 мл триэтиленгликоля в качестве порообразующего агента и пластификатора, а затем перемешивают. Избыточную влагу из полученной массы удаляют нагреванием на водяной бане при постоянном перемешивании до остаточной влажности 70 мас.%, затем массу формуют на шнековом экструдере с диаметром фильеры 1,5 мм. Сформованные гранулы подвяливают на воздухе в течение 24 ч, затем помещают в сушильный шкаф для просушки. Режим высушивания ступенчатый: 60°С - 2 ч, 80°С - 2 ч, 110°С - 2 ч.

Просушенный носитель катализатора переносят в муфельную печь для прокаливания в режиме непрерывной подачи воздуха. Скорость подъема температуры 50-70°С/ч до 550°С. Выдержка при температуре 550°С - 4 ч.

Для приготовления носителей по примеру 1 использовали цеолиты с разной кислотностью, таблица 2.

Пример 2

Для приготовления Носителя №2 в качестве кислотного компонента используют цеолит ZSM-23, количество кислотных центров (кислотность) на поверхности которого составляло 0,85 ммоль/г.

Пример иллюстрирует способ получения цеолитсодержащего носителя катализатора (Носитель №2) на основе цеолита ZSM-23 (10 мас.%) и оксида алюминия - остальное. Для получения носителя использовали порошковый гидроксид алюминия - бемит. Ниже приведен пример расчета реагентов для синтеза 100,0 г готового прокаленного носителя образца катализатора. Образец носителя катализатора состава, мас.%: цеолит ZSM-23 - 10, оксид алюминия - остальное, готовят следующим способом.

118,5 г порошка гидроксида алюминия смешивают с 10,5 г порошка цеолита ZSM-23, затем медленно при перемешивании приливают раствор пептизатора. В качестве пептизатора используют раствор азотной кислоты, который готовят внесением 3,8 мл HNO3 (65% -ной) в 90 мл дистиллированной воды. К полученной массе добавляют 8,0 мл триэтиленгликоля в качестве порообразующего агента и пластификатора, а затем перемешивают. Избыточную влагу из полученной массы удаляют нагреванием на водяной бане при постоянном перемешивании до остаточной влажности 70 мас.%, затем массу формуют на шнековом экструдере с диаметром фильеры 1,5 мм. Сформованные гранулы подвяливают на воздухе в течение 20 ч, затем помещают в сушильный шкаф для просушки. Режим высушивания ступенчатый: 60°С - 2 ч, 80°С - 2 ч, 110°С - 2 ч. Просушенный носитель катализатора переносят в муфельную печь для прокаливания в режиме непрерывной подачи воздуха. Скорость подъема температуры 50-70°С/ч до 550°С. Выдержка при температуре 550°С - 4 ч.

Пример 3

Для приготовления Носителя №3 в качестве кислотного компонента используют цеолит ZSM-23, количество кислотных центров (кислотность) на поверхности которого составляло 0,85 ммоль/г.

Пример иллюстрирует способ получения цеолитсодержащего носителя катализатора (Носитель №3) на основе цеолита ZSM-23 (60 масс %) и оксида алюминия - остальное. Для получения носителя используют порошковый гидроксид алюминия - бемит. Ниже приведен пример расчета реагентов для синтеза 100,0 г готового прокаленного носителя образца катализатора. Образец носителя катализатора состава, мас.%: цеолит ZSM-23 - 60, оксид алюминия - остальное, готовят следующим способом.

52,5 г порошка гидроксида алюминия смешивают с 63,5 г порошка цеолита ZSM-23, затем медленно при перемешивании приливают раствор пептизатора. В качестве пептизатора используют раствор азотной кислоты, который готовят внесением 1,7 мл HNO3 (65% - ной) в 90 мл дистиллированной воды. К полученной массе добавляют 8,0 мл триэтиленгликоля в качестве порообразующего агента и пластификатора, а затем перемешивают. Избыточную влагу из полученной массы удаляют нагреванием на водяной бане при постоянном перемешивании до остаточной влажности 65 мас.%, затем массу формуют на шнековом экструдере с диаметром фильеры 1,5 мм. Сформованные экструдаты подвяливают на воздухе в течение 18 ч, затем экструдаты помещают в сушильный шкаф для просушки. Режим высушивания ступенчатый: 60°С - 2 ч, 80°С - 2 ч, 110°С - 2 ч. Просушенный носитель катализатора переносят в муфельную печь для прокаливания в режиме непрерывной подачи воздуха. Скорость подъема температуры 50-70°С/ч до 550°С. Выдержка при температуре 550°С - 4 ч.

Пример 4

Для приготовления носителя №4 в качестве кислотного компонента используют цеолит ZSM-5.

Пример иллюстрирует способ получения цеолитсодержащего носителя катализатора (Носитель №4) на основе цеолита ZSM-5 (40 мас.%) и оксида алюминия - остальное. Для получения носителя используют порошковый гидроксид алюминия - бемит. Ниже приведен пример расчета реагентов для синтеза 100,0 г готового прокаленного носителя образца катализатора. Образец носителя катализатора состава, масс %: цеолит ZSM-5 - 40, оксид алюминия - остальное, готовят следующим способом.

79,0 г порошка гидроксида алюминия смешивают с 43,0 г порошка цеолита ZSM-5, затем медленно при перемешивании приливали раствор пептизатора. В качестве пептизатора используют раствор азотной кислоты, который готовят внесением 1,65 мл HNO3 (65%-ной) в 90 мл дистиллированной воды. К полученной массе добавляют 6,5 мл триэтиленгликоля в качестве порообразующего агента и пластификатора, а затем перемешивают. Избыточную влагу из полученной массы удаляют нагреванием на водяной бане при постоянном перемешивании до остаточной влажности 70 масс %, затем массу формуют на шнековом экструдере с диаметром фильеры 1,5 мм. Сформованные гранулы подвяливают на воздухе в течение 18 ч, затем помещают в сушильный шкаф для просушки. Режим высушивания ступенчатый: 60°С - 2 ч, 80°С - 2 ч, 110°С - 2 ч.

Просушенный носитель катализатора переносят в муфельную печь для прокаливания в режиме непрерывной подачи воздуха. Скорость подъема температуры 50-70°С/ч до 550°С. Выдержка при температуре 550°С - 4 ч.

Пример 5

Для приготовления Носителя №5 в качестве кислотного компонента используют цеолит SAPO-41, количество кислотных центров (кислотность) на поверхности которого составляло 0,6 ммоль/г.

Пример иллюстрирует способ получения цеолитсодержащего носителя катализатора (Носитель №5) на основе цеолита SAPO-41 (40 мас.%) и оксида алюминия - остальное. Для получения носителя используют порошковый гидроксид алюминия - бемит. Ниже приведен пример расчета реагентов для синтеза 100,0 г готового прокаленного носителя образца катализатора. Образец носителя катализатора состава, мас.%: цеолит SAPO-41 - 40, оксид алюминия - остальное, готовят следующим способом.

79,0 г порошка гидроксида алюминия смешивают с 44,5 г порошка цеолита SAPO-41, затем медленно при перемешивании приливают раствор пептизатора. В качестве пептизатора используют раствор азотной кислоты, который готовят внесением 1,92 мл HNO3 (65 мас.%) в 90 мл дистиллированной воды. К полученной массе добавляют 8,0 мл триэтиленгликоля в качестве порообразующего агента и пластификатора, а затем перемешивают. Избыточную влагу из полученной массы удаляют нагреванием на водяной бане при постоянном перемешивании до остаточной влажности 60 мас.%, затем массу формуют на шнековом экструдере с диаметром фильеры 1,5 мм. Сформованные гранулы подвяливают на воздухе в течение 20 ч, затем помещают в сушильный шкаф для просушки. Режим высушивания ступенчатый: 60°С - 2 ч, 80°С - 2 ч, 110°С - 2 ч. Просушенный носитель катализатора переносят в муфельную печь для прокаливания в режиме непрерывной подачи воздуха. Скорость подъема температуры 50-70°С/ч до 550°С. Выдержка при температуре 550°С - 4 ч.

Для приготовления носителей по примеру 5 использовали цеолиты с разной кислотностью, таблица 2.

Пример 6

Приготовление Катализатора №1 методом пропитки. На прокаленный Носитель №5 методом пропитки наносят 0,3 мас.% платины. Для введения металла на прокаленный носитель готовят пропиточный раствор, объем которого в два раза превышает насыпной объем носителя. В качестве источника платины используют водный раствор H2PtCl6 с концентрацией 15 мг Pt/мл.

При нанесении платины в пропиточный раствор в качестве конкурентов вносят концентрированную соляную и «ледяную» уксусную кислоты. При пропитке платина из раствора практически полностью переходит на катализатор. Таким образом, количество H2PtCl6 брали без избытка. Пропиточный раствор готовят смешением необходимых количеств реагентов с последующим доведением до нужного объема дистиллированной водой.

Перед пропиткой носитель катализатора вакуумировали в течение 30 мин при остаточном давлении не более 1 мБар.

Для приготовления 100,0 г Катализатора №1 на основе Носителя №5 (Пример 5) берут 99,7 г Носителя №5. Пропиточный раствор готовят смешением 17,5 мл раствора H2PtCl6, 1,05 мл HCl (37 мас.%), 1,25 мл уксусной кислоты и 230 мл дистиллированной воды. Пропитку проводят в течение 18 ч. После этого пропиточный раствор отделяют декантацией. После стадии пропитки катализатор сушат при ступенчатом подъеме температуры. Режим сушки: 60°C - 2 ч, 80°C - 2 ч, 110°C - 2 ч.

Пример 7

Приготовление палладийсодержащего Катализатора №2 методом пропитки. На прокаленный Носитель №5 методом пропитки наносят 0,6 мас.% палладия.

Металл вводят в виде раствора тетрахлоропалладиевой кислоты H2[PdCl4]. Используют 0,065% -ную азотную кислоту в качестве конкурента. Пропиточный раствор готовят смешением необходимых количеств реагентов с последующим доведением до нужного объема дистиллированной водой. Для приготовления 100 г Катализатора №2 на основе Носителя №5 готовят пропиточный раствор следующего состава: 53,2 мл раствора тетрахлоропалладиевой кислоты с концентрацией палладия 10,1 мг/мл, 4 мл азотной кислоты и 155 мл дистиллированной воды.

Перед пропиткой носитель катализатора вакуумируют в течение 30 мин при остаточном давлении не более 1 мбар. Пропитку проводят в течение 24 ч. После этого пропиточный раствор отделяют декантацией. После стадии пропитки катализатор сушат при ступенчатом подъеме температуры. Режим сушки: 60°C - 2 ч, 80°C - 2 ч, 110°C - 2 ч.

Пример 8

Приготовление Катализатора №3 методом ионного обмена. На прокаленный Носитель №5 методом ионного обмена наносят 0,3 мас.% платины из водного раствора [(NH3)4Pt]Cl2 с концентрацией 1,8 мг Pt/мл и проводят ионный обмен при температуре 95°C в течение 8 ч, после чего отделяют отработанный раствор декантацией.

Особенностью метода ионного обмена является то, что не вся соль активного металла, находящаяся в растворе, переходит на носитель. Предварительно эмпирически была определена степень обмена (перераспределения между раствором и твердой фазой носителя) аммиаката платины, которая составила значение 0,5. Исходя из этого для

приготовления 100 г Катализатора №3 берут 108,7 г Носителя №5 естественной влажности и 335 мл раствора аммиаката платины [Pt(NH3)4]Cl2.

Степень адсорбции металла контролируют по анализу содержания платины в обменном растворе. По окончании обмена пропиточный раствор отделяют декантацией.

После стадии пропитки катализатор сушат при ступенчатом подъеме температуры. Режим сушки: 60°C - 2 ч, 80°C - 2 ч, 110°C - 2 ч. Просушенный Катализатор №3 переносят в муфельную печь для прокаливания в режиме непрерывной подачи воздуха. Скорость подъема температуры 20°C/ч до 550°C. Выдержка при температуре 550°C - 4 ч.

Пример 9

Катализатор №4 был синтезирован аналогично Катализатору №1, приготовление которого описано в Примере 6, за исключением того, что вместо Носителя №5 был использован Носитель №1.

Пример 10

Катализаторы №№5, 5а, 5b были синтезирован аналогично Катализатору №3, приготовление которого описано в Примере 8, за исключением того, что вместо Носителя №5 был использован Носитель №1.

Пример 11

Катализатор №6 был синтезирован аналогично Катализатору №3, приготовление которого описано в Примере 8, за исключением того, что вместо Носителя №5 был использован Носитель №2.

Пример 12

Катализатор №7 был синтезирован аналогично Катализатору №3, приготовление которого описано в Примере 8, за исключением того, что вместо Носителя №5 был использован Носитель №3.

Пример 13

Катализатор №8 был синтезирован аналогично Катализатору №1, приготовление которого описано в Примере 6, за исключением того, что вместо Носителя №5 был использован Носитель №4.

Состав синтезированных образцов катализаторов представлен в таблице 1.

Общая кислотность цеолитов, входящих в состав образцов катализаторов, определенная методом термопрограммируемой десорбции аммиака, представлена в таблице 2.

Пример 14

Катализаторы №№1-8, синтезированные по методикам, описанным в Примерах 6-13, были испытаны в процессе изодепарафинизации гидроочищенных дизельных фракций нефтяного происхождения с температурами выкипания в интервале 180-360°C. Предельная температура фильтруемости (ПТФ) сырья (по EN 116), равнялась -7°C, содержание серы (по ASTM D 4294) было 23 ppm.

Процесс изодепарафинизации проводили на проточной каталитической установке путем пропускания водородсодержащего газа и дизельной фракции через неподвижный слой катализатора, загруженного в трубчатый реактор. Установка оборудована сырьевой емкостью, реактором, смесителем, холодильником и сепаратором. Внутренний диаметр реактора составлял 13 мм, загрузка катализатора для проведения испытаний - 10 см3. Перед проведением испытаний катализаторы восстанавливали в реакторе водородсодержащим газом при температурах 350-450°С.

Эффективность процесса оценивали по снижению предельной температуры фильтруемости стабильного продукта по сравнению с исходным сырьем.

В ходе проведения испытаний сырье из емкости, находящейся на весах, подавали в систему насосом высокого давления. Количество подаваемого сырья фиксировали. В смесителе сырье смешивалось с водородом и поступало в реактор. Продукты из нижней части реактора поступали в холодильник и сепаратор. В сепараторе происходило отделение газовой фазы от жидкого продукта. Жидкий продукт накапливали в пробосборнике, из которого производили периодический отбор проб жидкого катализата.

Процесс изодепарафинизации проводили при следующих параметрах: давление 4,0-5,5 МПа, объемная скорость подачи сырья 1,0-4,0 ч-1, соотношение водород:сырье 350-700:1 нл/л, температура 250-420°С (в зависимости от типа катализатора).

Полученные катализаты были подвергнуты стабилизации в вакууме при нагревании для отделения легких углеводородов, образовавшихся в процессе побочных реакций гидрокрекинга.

Качество полученных стабильных продуктов на разных катализаторах представлено в таблице 3.

Наилучшие низкотемпературные свойства продуктов изодепарафинизации со стабильно высокими выходами были достигнуты на катализаторах №№1 и 6.

Источник поступления информации: Роспатент

Показаны записи 131-133 из 133.
26.08.2017
№217.015.e5e8

Тандемный металлооксидный солнечный элемент

Изобретение относится к области солнечной фотоэнергетики. Тандемный металлооксидный солнечный элемент содержит два расположенных один под другим по ходу светового потока металлооксидных солнечных элемента (МО СЭ) на основе мезоскопических слоев сенсибилизированного металлооксида, имеющих общий...
Тип: Изобретение
Номер охранного документа: 0002626752
Дата охранного документа: 31.07.2017
26.08.2017
№217.015.e958

Катализатор изодепарафинизации углеводородного сырья с10+ для получения низкозастывающих масел и дизельных топлив и способ получения низкозастывающих масел и топлив с его использованием

Изобретение относится к области катализа и нефтепереработки, в частности к составу и способу приготовления катализатора изодепарафинизации, а также способу получения низкозастывающих масел или дизельных топлив путем преимущественной изомеризации н-парафинов углеводородного сырья с...
Тип: Изобретение
Номер охранного документа: 0002627770
Дата охранного документа: 11.08.2017
19.01.2018
№218.016.0921

Способ изготовления образца из слабоконсолидированного керна для проведения петрофизических исследований

Изобретение относится к петрофизике и может быть использовано при подготовке образцов керна слабоконсолидорованных осадочных горных пород к лабораторным исследованиям. Предлагаемый способ изготовления образца из слабоконсолидированного керна включает заморозку слабоконсолидированного и рыхлого...
Тип: Изобретение
Номер охранного документа: 0002631704
Дата охранного документа: 26.09.2017
Показаны записи 131-140 из 148.
19.01.2018
№218.016.0921

Способ изготовления образца из слабоконсолидированного керна для проведения петрофизических исследований

Изобретение относится к петрофизике и может быть использовано при подготовке образцов керна слабоконсолидорованных осадочных горных пород к лабораторным исследованиям. Предлагаемый способ изготовления образца из слабоконсолидированного керна включает заморозку слабоконсолидированного и рыхлого...
Тип: Изобретение
Номер охранного документа: 0002631704
Дата охранного документа: 26.09.2017
12.07.2018
№218.016.6fd8

Катализатор защитного слоя для процесса гидроочистки

Катализатор защитного слоя для процесса гидроочистки нефтяных фракций, содержащий, масс. %: оксид молибдена - 2,5-6,0, оксид кобальта или никеля - 1,0-3,0, оксид натрия - 0,9-1,2, оксид алюминия – остальное. Технический результат заключается в увеличении продолжительности межрегенерационного...
Тип: Изобретение
Номер охранного документа: 0002660904
Дата охранного документа: 11.07.2018
17.08.2018
№218.016.7cab

Способ приготовления носителя катализатора глубокого гидрообессеривания вакуумного газойля

Изобретение относится к каталитической химии, в частности к приготовлению носителей катализаторов глубокого гидрообессеривания вакуумного газойля, и может быть использовано в нефтеперерабатывающей промышленности. Описан способ приготовления носителя катализатора глубокого гидрообессеривания...
Тип: Изобретение
Номер охранного документа: 0002663901
Дата охранного документа: 13.08.2018
13.09.2018
№218.016.8701

Катализатор глубокого гидрообессеривания вакуумного газойля и способ его приготовления (варианты)

Катализатор глубокого гидрообессеривания вакуумного газойля содержит, мас.%: оксид кобальта 6-8, оксид молибдена 18-24 и носитель, состоящий из оксида кремния 6-16 и оксида алюминия-остальное, в том числе: 20-60 мас.% оксида алюминия в виде бемита, 20-40 мас.% оксида алюминия, полученного...
Тип: Изобретение
Номер охранного документа: 0002666733
Дата охранного документа: 12.09.2018
19.10.2018
№218.016.9474

Каталитическая система для низкотемпературного риформинга бензиновых фракций и способ его осуществления с применением каталитической системы

Изобретение относится к каталитической системе для процесса низкотемпературного риформинга бензиновых фракций, включающей три последовательно соединенных реактора с гранулированными катализаторами, первый из которых содержит катализатор, имеющий состав, мас.%: платина - 0,1-0,3, цеолит...
Тип: Изобретение
Номер охранного документа: 0002670108
Дата охранного документа: 18.10.2018
18.01.2019
№219.016.b114

Способ приготовления катализатора гидроочистки нефтяных фракций в сульфидной форме (варианты)

Предложено три варианта способа приготовления катализатора гидроочистки нефтяных фракций в сульфидной форме. Один из вариантов способа приготовления катализатора гидроочистки нефтяных фракций в сульфидной форме осуществляется формованием соэкструзией смеси гидроксида алюминия, оксида молибдена...
Тип: Изобретение
Номер охранного документа: 0002677285
Дата охранного документа: 16.01.2019
29.03.2019
№219.016.f3f0

Способ получения деароматизированного дизельного топлива с ультранизким содержанием серы

Изобретение относится к области нефтепереработки, а именно к способу получения деароматизированного экологически чистого дизельного топлива с ультранизким содержанием серы. Способ получения дизельного топлива состоит в том, что нефтяную прямогонную дизельную фракцию, выкипающую в пределах...
Тип: Изобретение
Номер охранного документа: 0002362797
Дата охранного документа: 27.07.2009
11.04.2019
№219.017.0b65

Способ получения катализатора гидроочистки дизельных фракций и катализатор, полученный этим способом

Изобретение относится к способу получения катализатора гидроочистки дизельных фракций. Гидроксид алюминия в форме бемита или псевдобемита смешивают с порошками оксида молибдена, кобальта углекислого основного или никеля углекислого основного, взятых в массовом соотношении от 1,7:1 до 2,3:1....
Тип: Изобретение
Номер охранного документа: 0002684422
Дата охранного документа: 09.04.2019
19.04.2019
№219.017.294f

Способ получения фосфорномолибденовых кислот

Изобретение может быть использовано в производстве гетерогенных катализаторов гидроочистки нефтяных фракций. Для получения фосфорномолибденовых кислот оксид молибдена смешивают с водным раствором 0,28-1,86%-ной фосфорной кислоты в мольном отношении MoO к НРО, равном 12:1. Полученный раствор...
Тип: Изобретение
Номер охранного документа: 0002685207
Дата охранного документа: 16.04.2019
29.05.2019
№219.017.63c9

Катализатор превращения углеводородов и способ его получения

Изобретение относится к катализаторам превращений углеводородов и, в частности, касается катализаторов на основе синтетических мезопористых кристаллических материалов и способа их получения. Описан катализатор превращения углеводородов, имеющий состав металл VIII группы/SO /ZrO-ЭО, где...
Тип: Изобретение
Номер охранного документа: 0002276621
Дата охранного документа: 20.05.2006
+ добавить свой РИД